Vascular endothelial growth factor (VEGF) is the main regulator of physiological and pathological angiogenesis. Low molecular weight molecules able to stimulate angiogenesis have interesting medical application for example in regenerative medicine, but at present none has reached the clinic. We reported that a VEGF mimetic helical peptide, QK, designed on the VEGF helix sequence 17–25, is able to bind and activate the VEGF receptors, producing angiogenesis. In this study we evaluate the pharmacological properties of peptide QK with the aim to propose it as a VEGF-mimetic drug to be employed in reparative angiogenesis. We show that the peptide QK is able to recapitulate all the biological activities of VEGF in vivo and on endothelial cells. In experiments evaluating sprouting from aortic ring and vessel formation in an in vivo angiogenesis model, the peptide QK showed biological effects comparable with VEGF. At endothelial level, the peptide up-regulates VEGF receptor expression, activates intracellular pathways depending on VEGFR2, and consistently it induces endothelial cell proliferation, survival and migration. When added to angiogenic factors (VEGF and/or FGF-2), QK produces an improved biological action, which resulted in reduced apoptosis and accelerated in vitro wound healing. The VEGF-like activity of the short peptide QK, characterized by lower cost of production and easier handling compared to the native glycoprotein, suggests that it is an attractive candidate to be further developed for application in therapeutic angiogenesis.

Finetti, F., Basile, A., Capasso, D., Di Gaetano, S., Di Stasi, R., Pascale, M., et al. (2012). Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. BIOCHEMICAL PHARMACOLOGY, 84(3), 303-311.

Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis

FINETTI, FEDERICA;ZICHE, MARINA;MORBIDELLI, LUCIA;
2012-01-01

Abstract

Vascular endothelial growth factor (VEGF) is the main regulator of physiological and pathological angiogenesis. Low molecular weight molecules able to stimulate angiogenesis have interesting medical application for example in regenerative medicine, but at present none has reached the clinic. We reported that a VEGF mimetic helical peptide, QK, designed on the VEGF helix sequence 17–25, is able to bind and activate the VEGF receptors, producing angiogenesis. In this study we evaluate the pharmacological properties of peptide QK with the aim to propose it as a VEGF-mimetic drug to be employed in reparative angiogenesis. We show that the peptide QK is able to recapitulate all the biological activities of VEGF in vivo and on endothelial cells. In experiments evaluating sprouting from aortic ring and vessel formation in an in vivo angiogenesis model, the peptide QK showed biological effects comparable with VEGF. At endothelial level, the peptide up-regulates VEGF receptor expression, activates intracellular pathways depending on VEGFR2, and consistently it induces endothelial cell proliferation, survival and migration. When added to angiogenic factors (VEGF and/or FGF-2), QK produces an improved biological action, which resulted in reduced apoptosis and accelerated in vitro wound healing. The VEGF-like activity of the short peptide QK, characterized by lower cost of production and easier handling compared to the native glycoprotein, suggests that it is an attractive candidate to be further developed for application in therapeutic angiogenesis.
2012
Finetti, F., Basile, A., Capasso, D., Di Gaetano, S., Di Stasi, R., Pascale, M., et al. (2012). Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. BIOCHEMICAL PHARMACOLOGY, 84(3), 303-311.
File in questo prodotto:
File Dimensione Formato  
BiochPh2012.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 884.98 kB
Formato Adobe PDF
884.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/30027
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo