GNA33 is a membrane-bound lipoprotein with murein hydrolase activity that is present in all Neisseria species and well conserved in different meningococcal isolates. The protein shows 33% identity to a lytic transglycolase (MltA) from Escherichia coli and has been shown to be involved in the degradation of both insoluble murein sacculi and unsubstituted glycan strands. To study the function of the gene and its role in pathogenesis and virulence, a knockout mutant of a Neisseria meningitidis serogroup B strain was generated. The mutant exhibited retarded growth in vitro. Transmission electron microscopy revealed that the mutant grows in clusters which are connected by a continuous outer membrane, suggesting a failure in the separation of daughter cells. Moreover, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatant revealed that the mutant releases several proteins in the medium. The five most abundant proteins, identified by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry analysis, belong to the outer membrane protein family. Finally, the mutant showed an attenuated phenotype, since it was not able to cause bacteremia in the infant rat model. We conclude that GNA33 is a highly conserved lipoprotein which plays an important role in peptidoglycan metabolism, cell separation, membrane architecture, and virulence.

Adu Bobie, J., Lupetti, P., Brunelli, B., Granoff, D., Norais, N., Ferrari, G., et al. (2004). GNA33 of Neisseria meningitidis Is a Lipoprotein Required for Cell Separation, Membrane Architecture, and Virulence. INFECTION AND IMMUNITY, 72(4), 1914-1919 [10.1128/IAI.72.4.1914-1919.2004].

GNA33 of Neisseria meningitidis Is a Lipoprotein Required for Cell Separation, Membrane Architecture, and Virulence

LUPETTI, PIETRO;
2004-01-01

Abstract

GNA33 is a membrane-bound lipoprotein with murein hydrolase activity that is present in all Neisseria species and well conserved in different meningococcal isolates. The protein shows 33% identity to a lytic transglycolase (MltA) from Escherichia coli and has been shown to be involved in the degradation of both insoluble murein sacculi and unsubstituted glycan strands. To study the function of the gene and its role in pathogenesis and virulence, a knockout mutant of a Neisseria meningitidis serogroup B strain was generated. The mutant exhibited retarded growth in vitro. Transmission electron microscopy revealed that the mutant grows in clusters which are connected by a continuous outer membrane, suggesting a failure in the separation of daughter cells. Moreover, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of culture supernatant revealed that the mutant releases several proteins in the medium. The five most abundant proteins, identified by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry analysis, belong to the outer membrane protein family. Finally, the mutant showed an attenuated phenotype, since it was not able to cause bacteremia in the infant rat model. We conclude that GNA33 is a highly conserved lipoprotein which plays an important role in peptidoglycan metabolism, cell separation, membrane architecture, and virulence.
2004
Adu Bobie, J., Lupetti, P., Brunelli, B., Granoff, D., Norais, N., Ferrari, G., et al. (2004). GNA33 of Neisseria meningitidis Is a Lipoprotein Required for Cell Separation, Membrane Architecture, and Virulence. INFECTION AND IMMUNITY, 72(4), 1914-1919 [10.1128/IAI.72.4.1914-1919.2004].
File in questo prodotto:
File Dimensione Formato  
Adu-Bobie et al InfImm 2004.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 439.67 kB
Formato Adobe PDF
439.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/23268
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo