Activation of intracellular Ca(2+)-release channels/ryanodine receptors (RyRs) is a fundamental step in the regulation of muscle contraction. In mammalian skeletal muscle, Ca(2+)-release channels containing the type 1 isoform of RyR (RyR1) open to release Ca2+ from the sarcoplasmic reticulum (SR) upon stimulation by the voltage-activated dihydropyridine receptor on the T-tubule/plasma membrane. In addition to RyR1, low levels of the mRNA of the RyR3 isoform have been recently detected in mammalian skeletal muscles. Here we report data on the distribution of the RyR3 gene product in mammalian skeletal muscles. Western-blot analysis of SR of individual muscles indicated that, at variance with the even distribution of the RyR1 isoform, the RyR3 content varies among different muscles, with relatively higher amounts being detected in diaphragm and soleus, and lower levels in abdominal muscles and tibialis anterior. In these muscles RyR3 was localized in the terminal cisternae of the SR. No detectable levels of RyR3 were observed in the extensor digitorum longus. Preferential high content of RyR3 in the diaphragm muscle was observed in several mammalian species. In situ hybridization analysis demonstrated that RyR3 transcripts are not restricted to a specific subset of skeletal-muscle fibres. Differential utilization of the RyR3 isoform in skeletal muscle may be relevant to the modulation of Ca2+ release with respect to specific muscle-contraction properties.

Conti, A., Gorza, L., Sorrentino, V. (1996). Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. BIOCHEMICAL JOURNAL, 316(1), 19-23 [10.1042/bj3160019].

Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles

Sorrentino, V.
1996-01-01

Abstract

Activation of intracellular Ca(2+)-release channels/ryanodine receptors (RyRs) is a fundamental step in the regulation of muscle contraction. In mammalian skeletal muscle, Ca(2+)-release channels containing the type 1 isoform of RyR (RyR1) open to release Ca2+ from the sarcoplasmic reticulum (SR) upon stimulation by the voltage-activated dihydropyridine receptor on the T-tubule/plasma membrane. In addition to RyR1, low levels of the mRNA of the RyR3 isoform have been recently detected in mammalian skeletal muscles. Here we report data on the distribution of the RyR3 gene product in mammalian skeletal muscles. Western-blot analysis of SR of individual muscles indicated that, at variance with the even distribution of the RyR1 isoform, the RyR3 content varies among different muscles, with relatively higher amounts being detected in diaphragm and soleus, and lower levels in abdominal muscles and tibialis anterior. In these muscles RyR3 was localized in the terminal cisternae of the SR. No detectable levels of RyR3 were observed in the extensor digitorum longus. Preferential high content of RyR3 in the diaphragm muscle was observed in several mammalian species. In situ hybridization analysis demonstrated that RyR3 transcripts are not restricted to a specific subset of skeletal-muscle fibres. Differential utilization of the RyR3 isoform in skeletal muscle may be relevant to the modulation of Ca2+ release with respect to specific muscle-contraction properties.
1996
Conti, A., Gorza, L., Sorrentino, V. (1996). Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. BIOCHEMICAL JOURNAL, 316(1), 19-23 [10.1042/bj3160019].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/20835
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo