In this paper, we investigate a packet access scheme that is able to support mixed traffics in the presence of high propagation delays. Referring to a Time-Code Division Multiple Access air interface, we propose a Medium Access Control (MAC) protocol based on a random access scheme. A successful attempt grants the use of a slot-code resource. This protocol is named Adaptive Time Code-Packet Reservation Multiple Access (ATC-PRMA), since the access parameters are changed, depending on the traffic load conditions, so as to fulfil Quality of Service requirements. Numerical examples are carried out for the Low Earth Orbit (LEO)-Mobile Satellite System (MSS) scenario, but all these considerations could be applied to High-Altitude Platform Stations (HAPSs) as well. In both cases, high propagation delays prevent an immediate feedback to users. An analytical approach is proposed to study the stability of our MAC scheme. Accordingly, we define a criterion for optimizing system performance. The predicted ATC-PRMA behaviour is supported by simulation results. Finally, we show the performance improvement of ATC-PRMA with respect to a MAC protocol not employing adaptive parameters.

Giambene, G., Zoli, E. (2003). Stability analysis of an adaptive packet access scheme for mobile communication systems with high propagation delays. INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 21, 199-225 [10.1002/sat.750].

Stability analysis of an adaptive packet access scheme for mobile communication systems with high propagation delays

GIAMBENE, GIOVANNI;
2003-01-01

Abstract

In this paper, we investigate a packet access scheme that is able to support mixed traffics in the presence of high propagation delays. Referring to a Time-Code Division Multiple Access air interface, we propose a Medium Access Control (MAC) protocol based on a random access scheme. A successful attempt grants the use of a slot-code resource. This protocol is named Adaptive Time Code-Packet Reservation Multiple Access (ATC-PRMA), since the access parameters are changed, depending on the traffic load conditions, so as to fulfil Quality of Service requirements. Numerical examples are carried out for the Low Earth Orbit (LEO)-Mobile Satellite System (MSS) scenario, but all these considerations could be applied to High-Altitude Platform Stations (HAPSs) as well. In both cases, high propagation delays prevent an immediate feedback to users. An analytical approach is proposed to study the stability of our MAC scheme. Accordingly, we define a criterion for optimizing system performance. The predicted ATC-PRMA behaviour is supported by simulation results. Finally, we show the performance improvement of ATC-PRMA with respect to a MAC protocol not employing adaptive parameters.
2003
Giambene, G., Zoli, E. (2003). Stability analysis of an adaptive packet access scheme for mobile communication systems with high propagation delays. INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 21, 199-225 [10.1002/sat.750].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/10977
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo