Hypoxia is a common and prominent feature of the microenvironment at sites of bacteria-associated inflammation in inflammatory bowel disease. The prolyl-hydroxylases (PHD1/2/3) and the asparaginyl-hydroxylase factor-inhibiting HIF are oxygen-sensing enzymes that regulate adaptive responses to hypoxia through controlling the activity of HIF and NF-κB-dependent transcriptional pathways. Previous studies have demonstrated that the pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) is effective in the alleviation of inflammation in preclinical models of inflammatory bowel disease, at least in part, through suppression of IL-1β-induced NF-κB activity. TLR-dependent signaling in immune cells, such as monocytes, which is important in bacteria-driven inflammation, shares a signaling pathway with IL-1β. In studies into the effect of pharmacologic hydroxylase inhibition on TLR-induced inflammation in monocytes, we found that DMOG selectively triggers cell death in cultured THP-1 cells and primary human monocytes at concentrations well tolerated in other cell types. DMOG-induced apoptosis was independent of increased caspase-3/7 activity but was accompanied by reduced expression of the inhibitor of apoptosis protein 1 (cIAP1). Based on these data, we hypothesize that pharmacologic inhibition of the HIF-hydroxylases selectively targets monocytes for cell death and that this may contribute to the anti-inflammatory activity of HIF-hydroxylase inhibitors.

Crifo, B., Schaible, B., Brown, E., Halligan, D.N., Scholz, C.C., Fitzpatrick, S.F., et al. (2019). Hydroxylase Inhibition Selectively Induces Cell Death in Monocytes. JOURNAL OF IMMUNOLOGY, 202(5), 1521-1530 [10.4049/jimmunol.1800912].

Hydroxylase Inhibition Selectively Induces Cell Death in Monocytes

Criscuoli, M.;Naldini, A.;
2019-01-01

Abstract

Hypoxia is a common and prominent feature of the microenvironment at sites of bacteria-associated inflammation in inflammatory bowel disease. The prolyl-hydroxylases (PHD1/2/3) and the asparaginyl-hydroxylase factor-inhibiting HIF are oxygen-sensing enzymes that regulate adaptive responses to hypoxia through controlling the activity of HIF and NF-κB-dependent transcriptional pathways. Previous studies have demonstrated that the pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) is effective in the alleviation of inflammation in preclinical models of inflammatory bowel disease, at least in part, through suppression of IL-1β-induced NF-κB activity. TLR-dependent signaling in immune cells, such as monocytes, which is important in bacteria-driven inflammation, shares a signaling pathway with IL-1β. In studies into the effect of pharmacologic hydroxylase inhibition on TLR-induced inflammation in monocytes, we found that DMOG selectively triggers cell death in cultured THP-1 cells and primary human monocytes at concentrations well tolerated in other cell types. DMOG-induced apoptosis was independent of increased caspase-3/7 activity but was accompanied by reduced expression of the inhibitor of apoptosis protein 1 (cIAP1). Based on these data, we hypothesize that pharmacologic inhibition of the HIF-hydroxylases selectively targets monocytes for cell death and that this may contribute to the anti-inflammatory activity of HIF-hydroxylase inhibitors.
2019
Crifo, B., Schaible, B., Brown, E., Halligan, D.N., Scholz, C.C., Fitzpatrick, S.F., et al. (2019). Hydroxylase Inhibition Selectively Induces Cell Death in Monocytes. JOURNAL OF IMMUNOLOGY, 202(5), 1521-1530 [10.4049/jimmunol.1800912].
File in questo prodotto:
File Dimensione Formato  
Hydroxylase Inhibition Selectively.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1067893