In this study a number of chromophores based on boron subphthalocyanines are investigated for use in the future design of organic photovoltaic devices based on molecular triad systems. The computational study is performed at the TD-DFT CAM-B3LYP/6-311G(d) level of theory. The absorption spectra of these chromophores are simulated using TD-DFT and compared to experimental results. All investigated chromophores absorb light in the visible range and thus are suitable for absorption of sunlight in solar cell applications. On the basis of energy-level alignments, suitable combinations of moieties for a molecular triad system are proposed. The molecular triads will be used in future work as the functional part of organic photovoltaic devices, where the chromophore will be used both to absorb the incoming solar radiation and to increase the distance between the separated charges on donor and acceptor units to increase the lifetime of the charge-separated state.

Storm, F.E., Olsen, S.T., Hansen, T., DE VICO, L., Jackson, N.E., Ratner, M.A., et al. (2016). Boron subphthalocyanine based molecular triad systems for the capture of solar energy. JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY, 120(39), 7694-7703 [10.1021/acs.jpca.6b05518].

Boron subphthalocyanine based molecular triad systems for the capture of solar energy

DE VICO, LUCA;
2016-01-01

Abstract

In this study a number of chromophores based on boron subphthalocyanines are investigated for use in the future design of organic photovoltaic devices based on molecular triad systems. The computational study is performed at the TD-DFT CAM-B3LYP/6-311G(d) level of theory. The absorption spectra of these chromophores are simulated using TD-DFT and compared to experimental results. All investigated chromophores absorb light in the visible range and thus are suitable for absorption of sunlight in solar cell applications. On the basis of energy-level alignments, suitable combinations of moieties for a molecular triad system are proposed. The molecular triads will be used in future work as the functional part of organic photovoltaic devices, where the chromophore will be used both to absorb the incoming solar radiation and to increase the distance between the separated charges on donor and acceptor units to increase the lifetime of the charge-separated state.
2016
Storm, F.E., Olsen, S.T., Hansen, T., DE VICO, L., Jackson, N.E., Ratner, M.A., et al. (2016). Boron subphthalocyanine based molecular triad systems for the capture of solar energy. JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY, 120(39), 7694-7703 [10.1021/acs.jpca.6b05518].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1005949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo