Rett syndrome (RTT) is a rare and severe neurodevelopmental disorder, mainly caused (similar to 90-95% of cases) by loss-of-function mutations in the X-linked methyl-CpG-binding protein 2 gene. Recent studies indicate an important role of oxidative stress in damaging the RTT erythrocytes. The present study aims at demonstrating that the abnormal erythrocyte morphology observed in RTT (i.e., leptocytosis) is related to protein expression changes and oxidative posttranslational modifications (PTMs). Furthermore, we evaluated whether protein changes could be rescued following omega-3 polyunsaturated fatty acids (omega-3 PUFAs) supplementation. Erythrocytes from RTT patients, either on or off omega-3 PUFAs, were examined for oxidative PTMs, protein expression, protein-protein interaction and biophysical parameters. Significant (P < 0.05) expression changes and oxidative PTMs for 12 proteins were evidenced in RTT, and related to increased susceptibility of erythrocytes to mechanical stress (i.e., spectrin alpha and beta chains, ankyrin, band 3, protein 4.1, adducin, protein 4.2, 55 kDa protein, beta-actin, tropomodulin, aldolase and glyceraldehyde-3-phosphate dehydrogenase). Half of these proteins were rescued after omega-3 PUFAs supplementation. Our findings indicate the occurrence of a significant disruption in the RTT erythrocyte cytoskeletal-membrane protein network as the result of redox imbalance and protein expression changes, which appear to be partially rescued by omega-3 PUFAs.

Cortelazzo, A., Felice, C.E., Guerranti, R., Leoncini, R., Barducci, A., Leoncini, S., et al. (2015). Erythrocyte Cytoskeletal-plasma Membrane Protein Network in Rett Syndrome: effects of ω-3 Polyunsaturated Fatty Acids. CURRENTS PROTEOMICS, 12(4), 217-226 [10.2174/157016461204160119153511].

Erythrocyte Cytoskeletal-plasma Membrane Protein Network in Rett Syndrome: effects of ω-3 Polyunsaturated Fatty Acids

Cortelazzo, Alessio
;
Guerranti, Roberto;Leoncini, Roberto;Barducci, Alessandro;Signorini, Cinzia;Gagliardi, Assunta;Armini, Alessandro;Paccagnini, Eugenio;Gentile, Mariangela;Bini, Luca;Ciccoli, Lucia;
2015-01-01

Abstract

Rett syndrome (RTT) is a rare and severe neurodevelopmental disorder, mainly caused (similar to 90-95% of cases) by loss-of-function mutations in the X-linked methyl-CpG-binding protein 2 gene. Recent studies indicate an important role of oxidative stress in damaging the RTT erythrocytes. The present study aims at demonstrating that the abnormal erythrocyte morphology observed in RTT (i.e., leptocytosis) is related to protein expression changes and oxidative posttranslational modifications (PTMs). Furthermore, we evaluated whether protein changes could be rescued following omega-3 polyunsaturated fatty acids (omega-3 PUFAs) supplementation. Erythrocytes from RTT patients, either on or off omega-3 PUFAs, were examined for oxidative PTMs, protein expression, protein-protein interaction and biophysical parameters. Significant (P < 0.05) expression changes and oxidative PTMs for 12 proteins were evidenced in RTT, and related to increased susceptibility of erythrocytes to mechanical stress (i.e., spectrin alpha and beta chains, ankyrin, band 3, protein 4.1, adducin, protein 4.2, 55 kDa protein, beta-actin, tropomodulin, aldolase and glyceraldehyde-3-phosphate dehydrogenase). Half of these proteins were rescued after omega-3 PUFAs supplementation. Our findings indicate the occurrence of a significant disruption in the RTT erythrocyte cytoskeletal-membrane protein network as the result of redox imbalance and protein expression changes, which appear to be partially rescued by omega-3 PUFAs.
2015
Cortelazzo, A., Felice, C.E., Guerranti, R., Leoncini, R., Barducci, A., Leoncini, S., et al. (2015). Erythrocyte Cytoskeletal-plasma Membrane Protein Network in Rett Syndrome: effects of ω-3 Polyunsaturated Fatty Acids. CURRENTS PROTEOMICS, 12(4), 217-226 [10.2174/157016461204160119153511].
File in questo prodotto:
File Dimensione Formato  
Cortellazzo1.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1005538