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Abstract

Evidence of a chaotic behavioral trend in eye movement dynamics was examined in the case of a 

saccadic temporal series collected from a healthy human subject. Saccades are highvelocity eye 

movements of very short duration, their recording being relatively accessible, so that the resulting 

data series could be studied computationally for understanding the neural processing in a motor 

system. The aim of this study was to assess the complexity degree in the eye movement dynamics. 

To do this we analyzed the saccadic temporal series recorded with an infrared camera eye tracker 

from a healthy human subject in a special experimental arrangement which provides continuous 

records of eye position, both saccades (eye shifting movements) and fixations (focusing over 

regions of interest, with rapid, small fluctuations). The semi-quantitative approach used in this 

paper in studying the eye functioning from the viewpoint of non-linear dynamics was 

accomplished by some computational tests (power spectrum, portrait in the state space and its 

fractal dimension, Hurst exponent and largest Lyapunov exponent) derived from chaos theory. A 

high complexity dynamical trend was found. Lyapunov largest exponent test suggested bi-stability 

of cellular membrane resting potential during saccadic experiment.
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INTRODUCTION

Most of the computational studies on biosignals extracted from excitable tissues and organs 

have been dedicated to the interpretation of electroencephalogram or electrocardiogram data 

recorded from normal subjects and patients with various disorders [3, 7, 8, 9, 10]. In the last 

years, there has been an increasing interest in using the nonlinear dynamics techniques to 
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model oculomotor control and to analyze eye movement time series [12, 13, 14]. The study 

of eye movements is an important source of information on the visual-motor system, first 

because the presence of abnormal eye movements in a patient may help us understand how 

the brain works.

Some researchers focused on the eye movements recorded during reading of normal and 

pathological subjects, searching for evidence of chaotic, nonlinear dynamical behavior [12]. 

Both power spectral density analysis and fractal dimension determination showed evidence 

of nonlinearity as manifest for chaotic behavior. They concluded that the computed fractal 

dimension seemed directly related to qualitative assessment of reading ability. Analysis of 

another type of movement, smooth pursuit of moving targets, gave similar results.

Another study showed that optokinetic nystagmus appears to have some nonlinear and 

deterministic components, along with significant randomness [14]. To indicate the 

possibility of chaotic dynamics in such cases, the correlation dimension of these reflexive 

eye movements was computed, resulting in a noninteger value, signifying a fractal 

dimension [13].

Saccadic eye movements can be defined as rapid eye movements that shift a peripheral 

visual image onto the center of the retina, where it can best be seen. These rapid eye 

movements are designed to move the eyes as quickly as possible to minimize interference 

with vision [6]. Saccades can be better understood as the result of the complex integration of 

both motor and sensory systems. The visual system processes information coming from 

retinal pathways that go to the superior colliculus and visual cortices (e.g., V1 and parietal 

and frontal eye fields). Saccades are initiated by activity in neurons of the frontal and 

parietal eye fields of the cerebral cortex. These signals then follow two pathways projecting 

to the nucleus reticularis tegmenti pontis of the pontine reticular formation and the superior 

colliculus.

In this paper, we present the results of the computational approach carried out for a time 

series extracted during saccadic eye movements, based on chaotic determinism theory, in 

accord with the analysis procedure proposed by Sprott [15] in order to assess the dynamical 

dominant trend – quasi-periodic, chaotic or random.

MATERIAL AND METHODS

SUBJECTS

One healthy, adult male volunteer took part in eye movement research at the Laboratory of 

Sensorimotor Research, National Eye Institute, National Institutes of Health, USA. The 

subject performed a visually-guided saccade task approved by the Institutional Review 

Board and which conformed to the Helsinki guidelines.

APPARATUS AND EYE MOVEMENT RECORDING

The subject executed horizontal saccades in response to two red spots (3 mm diameter) 

acting as visual stimuli – a central fixation point and a target that could be shifted either to 

the left side or to the right side of the fixation point; both red light spots were projected from 
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lasers onto a screen placed frontally at 105 cm from the subject’s eye. Angular eye 

movements were recorded from the right eye using an infrared iView X Hi-Speed camera 

(SMI) eye tracking system (sampling frequency of 1,000/s). The subject response to the 

visual stimulation was recorded in dim light conditions. The brightness (Konica Minolta 

LS-110) of the fixation point and the target was 46.35 cd/m2 and that of the background was 

of 0.009 cd/m2.

EXPERIMENTAL DESIGN

In the experiment, a central spot appeared, acting as the fixation point for the subject. After a 

short time another spot (target) was turned on at an eccentric location (4, 6, 8, 10 or 12 

degrees, leftward or rightward of fixation point). Onset of the target could follow offset of 

the fixation point after a short time, or it could appear synchronously with the offset of the 

fixation point, or it could precede the offset of the fixation point. This stimulus onset 

asynchrony was randomly chosen from 0, 50, 100, 150, 200, 350, or 500 ms.

The subject was asked to look at the central point until the target appeared, and then to 

immediately execute a voluntary saccade to the target. After the disappearance of the target, 

subject returned to the central point. The eye movement recording session took about 25 

minutes.

The sequence chosen for the computational study had 10,000 data points – representing a 

median segment of the recorded signal, when the subject was familiar with the visual task 

but not too tired.

THEORETICAL BACKGROUND

Computational insight into the neural system coordinating eye movements was 

accomplished using saccadic data processing and interpretation according to the strategy 

proposed by Sprott and Rowlands [15] described below. This was designed based on 

graphical and numerical linear as well as nonlinear tests, the latest being developed 

according to chaos theory, especially for complex system investigation, where writing 

differential equations is too difficult, considering the numerous state parameters, and very 

difficult to identify. So, the analysis of data appearance probability, of the data power 

spectrum, the semiquantitative description of the so-called portrait in the state space, the 

evaluation of the system sensitivity to initial conditions, and other computational techniques 

could enable the researcher to gather the basic information for assessing the predictability in 

the system dynamics.

The probability distribution test provides the distribution histogram of data for any kind of 

signal. Periodic data from more linear processes should give a simple histogram with sharp 

edges; a Maxwellian distribution usually results for random data (high noise level) but this 

can also be the case for some so-called chaotic data extracted from very complex systems, 

such as biological ones; some chaotic systems are characterized by a probability distribution 

shape that suggests repetitive symmetry – as in the case of fractal objects.

The fast Fourier transform test involves a spectral decomposition of the recorded biosignal 

that displays the power (mean square amplitude) as a function of frequency (the Nyquist 
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critical frequency, i.e. the reciprocal of twice the interval between the data points). On a log-

linear scale, periodic and quasi-periodic data will provide a few dominant peaks in the 

spectrum. The chaotic and random data series give rise to a broad spectrum; in the chaotic 

series the amplitude decreases rapidly as frequency increases.

The state space test is based on interpretation of the shape of the system attractor [16] – i.e. 

the totality of possible equilibrium points toward which the system is attracted when it 

evolves with respect to the same laws but starts every time from slightly different initial 

conditions. It is an abstract space, often with more than three dimensions, in which the 

system state variables are the n position coordinates (x1, x2, x3, …, xi, xi+1,…, xn) and n 

velocity coordinates (x1’, x2’, x3’, …, xi’, xi+1’,…, xn’). The state space may be re-

constructed from a single measurable variable based on its temporal variation X(t) together 

with its derivative, X’(t).

In the state-space, a periodic system portrait appears as a closed loop, while a quasi-periodic 

system has torus like attractor; for more complex dynamics, strange attractors appear as 

more complicated objects, yet with a discernible shape that can be characterized by a non-

integer dimension, unlike the real geometrical objects having integer Euclidian dimension 

from 0 to 3.

The correlation dimension test involves the calculation and interpretation of the fractal 

dimension of a virtual object equivalent to the system attractor. According to Schmeisser et 

al. [12], the correlation dimension is one member of an infinite family of fractal dimensions 

(generally non-integer), and any one of which might be used to characterize an attractor. The 

correlation dimension (CD) can be calculated [4] from the correlation integral C(r):

(1)

which is the probability that two randomly chosen points on the attractor are separated by a 

distance less than r; then CD is given by:

(2)

According to [2] for data series comprising N points, the embedding dimension (EDmax) that 

still provides reliable correlation dimension is:

(3)

where by embedding dimension the scale of the system observation might be understood 

analogously to the case of visual observation of real bodies with a variable objective 

microscope.

The Hurst exponent test provides a numerical estimate of the predictability of a time series. 

It defines the relative tendency of a time series to either regress to a longer term mean value 

or 'cluster' in a direction – and is directly related to the fractal dimension. The Hurst 

exponent, H, can be estimated [5] by:
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(4)

where T is the duration of the sample data and R/S the corresponding value of the rescaled 

range. The rescaled range is the measure characterizing the divergence of time series defined 

as the range of the mean-centered values (R) for a given duration (T) divided by the standard 

deviation (S) for that duration.

The values of the Hurst exponent range between 0 and 1. A Hurst exponent value close to 

0.5 indicates a random signal (a Brownian time series), i.e. there is a 50% probability that 

future values will either increase or diminish since there is no correlation between any 

element and a future one. Series of this type are hard to predict.

A Hurst exponent value H between 0.5 and 1 indicates “persistent behavior”, that is the time 

series is trending. If there is an increase from time step [t−1] to [t] there will probably be 

also an increase from [t] to [t+1]. The same is true for decreases the larger the H value, the 

stronger the persistence trend. A value of H between 0 and 0.5 exists for time series with 

“anti-persistent behavior” – a decrease (or increase) tendency being followed by an increase 

(or decrease). Persistent dynamical trends are easier to predict than series falling in the other 

two categories.

Lyapunov exponent measures the system predictability by its sensitivity to initial conditions. 

It gives another insight of complex system behavior (in order to accomplish the dynamics 

diagnosis) characterizing highly complex systems by means of the divergence of close 

trajectories traced out during system evolutions in the phase space. So, Lyapunov exponent 

tells us the rate of divergence of nearby trajectories [14] – a key component of chaotic 

dynamics. There are many algorithms for calculating the largest Lyapunov exponent, but the 

most robust approach was introduced by Rosenstein [11] for analyzing biomedical or 

biological datasets, which are inherently noisy and usually short relative to the lengths 

required to yield adequately reliable results from this algorithm.

The basic idea of this approach is that the maximum Lyapunov exponent (λ1) for a 

dynamical system can be defined from:

(5)

where d(t) is the mean Euclidean distance between neighboring trajectories in state space 

after some evolution time t and d0 is the initial separation (or perturbation) between 

neighboring starting points [11].

It is widely accepted that none of these tests could give by itself the answer to the question 

regarding the dynamical trend of a complex system so that at least several consecutive such 

analyses are needed in order to characterize the degree of complexity of system behavior 

and this way the dominant dynamical component. In the results section, the above 

mentioned computational approach was applied to the raw data signal in parallel to the 
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corresponding smoothed data series – the numerical smoothing meaning the replacement of 

every data point with the average value between that data and its two close neighbors.

RESULTS AND DISCUSSION

The next figures describe the results obtained following the application of the analysis 

strategy mentioned above to the eye movement records. In Fig. 1 the raw and smoothed data 

corresponding to the X(t) data series can be seen. The positive values correspond to eye shift 

toward the right side while the negative ones to left side eye saccadic movement.

The saccadic amplitudes were assumed to be no larger than 12 degrees since this is the 

maximum amplitude of the target shift. Sudden and very rapid variations having however 

significantly higher amplitudes (up to 25 degrees) could be recorded when the subject has 

blinked involuntarily; these fluctuations were diminished after smoothing the data (Fig. 1, 

right).

Asymmetric probability distribution was evidenced for the raw data (Fig. 2, black) because 

of the small probability peaks of high negative values corresponding to involuntary eye 

blinking that occurred accidentally during the left side saccades.

For the probability distribution test, the whole interval of the angular shifts was divided in 

22 equal subintervals of two degrees width (the 12 subintervals from −12 to +12 degrees 

corresponding to the planned displacements of the target plus the 10 subintervals covering 

the extreme eye movements, i.e. the blinking leading up to 25 degree shifts during recording 

experiment).

The smoothing procedure has obviously eliminated part of signal fluctuations, as it can be 

seen in the detail of Fig. 2 where high negative amplitude bars vanished.

Power spectrum test revealed that for the raw signal (Fig. 3, left) the logarithm of square 

amplitude, log(P), monotonically decreases for small and medium frequency domains, 

suggesting the presence of high complexity dynamics (deterministic chaotic behavior); the 

broad graph with few peaks in the high frequency domain seems to correspond to the quasi-

periodical dynamical component overlapped onto the chaotic one.

After signal smoothing, the evidence of chaotic dynamical pattern appears extended toward 

higher frequency domain where the large peaks vanished being replaced by the monotone 

slower decrease (Fig. 3, right).

Phase-space portrait test application generated the plots from Fig. 4. For raw data certain 

high amplitude fluctuations of the angular shift shaped large concentrically disposed 

polygons that are very much attenuated for the smoothed data (Fig. 4, right). In this situation 

the strange attractor appears more clearly in the shape of a two asymmetrical lobe object, so 

one can say that this test reveals the same complex dynamical components in both the 

recorded signal and the smoothed one; exception is related to the noise like behavioral trend 

that underlines the large “overall” contours from the negative half-space of the graph 

(corresponding to left side saccades). The CD values that increased over 4, corresponding to 
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embedding dimension (ED) of 9 to 10, may be due to the significant random component of 

raw data series (Fig. 5, black). This could result from unavoidable recording noise or, as 

well, from the intrinsic fluctuations caused by frequent, large involuntary blinks of the 

subject during saccadic movement – and it is most difficult to discriminate between these 

two causes.

Correlation dimension (CD) test allowed numerical evaluation of the strange attractor fractal 

dimension (Fig. 5) for 1 to 10 embedding dimension (ED).

In the smoothed data series, as expected, the fluctuations related to electronic noise or/and to 

the subject blinking reflex being much diminished, in the graph CD(ED) the saturation trend 

resulted (Fig. 5, gray) beginning with ED equal to seven; this is concordant with the fact that 

ED equal to eight is given by relation (2) as highest reliable value for CD calculation (since 

the size of the data series is N = 104 so that log10(104) = 4 and ED = 8).

The Hurst exponent exhibits rather high values for both raw and smoothed data (Fig. 6) as 

can be seen from the alignment parallel to the first bisectrix of the two graphs. It indicates 

rather persistent behavior, which seems to be the hallmark of predictable sequences 

ubiquitous all over the saccadic eye movement recording duration.

Lyapunov exponent test allowed the estimation of divergence of close trajectories described 

by the investigated (visual-motor) system in the phase-space. Small positive values were 

obtained for both raw and smoothed data with considerable reduction of computing errors 

following smoothing procedure application.

Supplementary visualization of the Lyapunov exponent (LE) dependence on the embedding 

dimension (ED) is provided in Fig. 7 where the monotone decrease of LE value can be seen 

up to the ED equal to 4. The small positive LE values the system reached for ED higher than 

4 suggest the system evolution near a bifurcation point, meaning the possible evolution 

toward any of two quasi-stable states that equally attract the studied system – so two 

possible trajectories may evolve from the bifurcation point, each leading toward another 

equilibrium state. Roughly, in the case of the excitable cell behavior, the general issue of 

bifurcated trajectories could be associated with the hypothesis of two resting potential levels 

co-existing with almost equal probabilities. Following each new voluntary saccade 

preparation and triggering, the electrical potential from the neural cell membranes could 

return to the initial resting potential – corresponding to the initial state at the experimental 

test beginning, when the subject was completely relaxed, or, another resting potential could 

characterize the neural membrane dynamics during the saccade recording. This way the two 

resting potential values could define the voluntary saccade development in the condition of 

the described experiment – and the Lyapunov exponent quasi-null values give the signature 

for distinct chaotic dynamics of the visual-motor system. Our further research task will be 

focused on the identification of the specific neural areas responsible for such chaotic 

behavior, based on the below considerations.

One of the major functions of the central nervous system is the generation of movement in 

response to sensory stimulation [1]. The visual guidance of saccadic eye movement 

represents one form of sensory-to-motor transformation that has contributed significantly to 
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the understanding of motor control of saccadic eye movements. From the biophysical 

viewpoint the key segment of the neural pathway that is mainly responsible for complex 

chaotic dynamics would be characterized by voltage gated potassium channels that could 

impede the recovery of the initial resting potential possibly due to their sensitivity 

diminution during repeated saccadic activation. So, the membrane re-polarization could 

occur only partially for some saccades while for others it could be complete – which may 

explain the system oscillation between two stable states, as suggested by near-zero positive 

Lyapunov exponent.

CONCLUSIONS

Following the application of the computational tests based on chaos theory to the analysis of 

saccadic eye movements in the frame of a specific experimental design, a chaotic dynamical 

trend was found. Possible alternation in the functioning of some neural cell potassium 

channels due to repeated voluntary saccades could underlie the observed results.
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Fig. 1. 
The dynamics of angular shift X(t) during saccadic eye movement for raw and smoothed 

data.
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Fig. 2. 
Probability distribution histograms for saccadic eye movements: black – raw data; gray – 

three times smoothed data; (up-right: detail for asymmetric negative value interval).
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Fig. 3. 
Linear logarithmic representation of the power spectrum generated by fast Fourier 

transformation of raw and smoothed data.
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Fig. 4. 
The phase space portrait (X(t) vs. X’(t)) for raw and smoothed data; X(t) is the angular 

recorded shift while X’(t) is its derivative.
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Fig. 5. 
The correlation dimension (CD) versus embedding dimension (ED) for raw (black graph) 

and smoothed data (gray graph) (time delay n = 1).
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Fig. 6. 
Hurst exponent for raw data and smoothed data; DX – the angular shift displacement 

(variation) for every time value within the data series.
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Fig. 7. 
The Lyapunov exponent (LE) versus embedding dimension (ED) for raw data and three 

times smoothed data.
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