S

S,

UNIVERSITA DI SIENA 1240 U

Uy

, s
Pyt

The smarter, the stronger: Intelligence level correlates with brain resilience to
systematic insults

This is the peer reviewed version of the following article:
Original:

Santarnecchi, E., Rossi, S., Rossi, A. (2015). The smarter, the stronger: Intelligence level correlates with
brain resilience to systematic insults. CORTEX, 64, 293-309 [10.1016/j.cortex.2014.11.005].

Availability:
This version is availablehttp://hdl.handle.net/11365/973755 since 2016-02-04T14:38:01Z

Published:
DOI:10.1016/j.cortex.2014.11.005
Terms of use:

Open Access

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.

For all terms of use and more information see the publisher's website.

(Article begins on next page)

07 January 2025



Accepted Manuscript

The Smarter, the Stronger: Intelligence Level Correlates With Brain Resilience To
Systematic Insults

Emiliano Santarnecchi, Simone Rossi , Alessandro Rossi

PII: S0010-9452(14)00371-2
DOI: 10.1016/j.cortex.2014.11.005
Reference: CORTEX 1333

To appearin:  Cortex

Received Date: 14 May 2014
Revised Date: 14 September 2014
Accepted Date: 11 November 2014

Please cite this article as: Santarnecchi E, Rossi S, Rossi A, The Smarter, the Stronger: Intelligence
Level Correlates With Brain Resilience To Systematic Insults, CORTEX (2015), doi: 10.1016/
j-cortex.2014.11.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.cortex.2014.11.005

The Smarter, the Stronger: Intelligence Level Correlates With Brain
Resilience To Systematic | nsults
Emiliano Santarneccht*, Simone Rossj Alessandro RosSi

! Department of Medicine, Surgery and Neuroscienceyrblogy and Clinical Neurophysiology Section, Brai

Investigation & Neuromodulation Lab, University ®fena, Italy

2Berenson-Allen Center for Non-Invasive Brain Stiatidn, Beth Israel Medical Center, Harvard Medi8ahool,
Boston, MA, USA

Running title: Intelligence and brain resilience

Wordscount: Abstract 182, Legends 998, Introduction 736, Dismrs2339
Figures: 6 figures; 6 supplemental figures.
Tables: 1

Financial disclosures: All authors report no cobflitinterest.

*Corresponding author:
Emiliano Santar necchi
Policlinico “Le Scotte”, Viale Bracci, 2,

Brain Investigation &Neuromodulation Lab., Univeysof Siena, Italy
Siena, 53100, Italy

esantarn@bidmc.harvard.edu

mobile: (ITA) +39.3382149984; (US) +1 (781) 298-207

fax: +39.0577270260



Abstract

Neuroimaging evidences posit human intelligencetightly coupled with several
structural and functional brain properties, alsggasting its potential protective role against
aging and neurodegenerative conditions. Howeveether higher-order cognition might in fact
lead to a more resilient brain has not been qusiviely demonstrated yet. Here we document a
relationship between individual intelligence quoti€lQ) and brain resilience to targeted and
random attacks, as measured through resting-$tié draph-theoretical analysis in 102 healthy
individuals. In this modeling context, enhancedrbrabustness to targeted attacks in individuals
with higher 1Q is supported by an increased disteld processing capacity despite the
systematic loss of the most important node(s) ef slgstem. Moreover, brain resilience in
individuals with higher 1Q is supported by a setr&ocortical regions mainly belonging to
language and memory processing network(s), wheegsens related to emotional processing
are mostly responsible for lower 1Q individuals.sBks suggest intelligence level among the
predictors of post-lesional or neurodegeneratiw®very, also promoting the evolutionary role
of higher order cognition, and simultaneously sstjgg a new framework for brain stimulation

interventions aimed at counteract brain deteriomativer time.

Keywords: intelligence; fMRI; resting state; graph thedbyain connectivity; cognitive reserve;

functional connectivity; robustness.



Highlights

- Intelligence quotient correlates with brain resitie to targeted and random attacks

- Language and memory-related regions are strae¢dyed to brain resilience and 1Q

- Regions related to emotion processing are cri@iaksilience in Low-1Q subjects



1.0 Introduction

Intelligent people live longer (Deary 2008). Thatial surprise about such a linear
relationship between intelligence and life expecyamortality has been replaced byseveral
evidences confirming that health inequality padbpends by the individual intelligence level
(Batty et al. 2009;Batty, Shipley, Gale, Mortensand Deary 2008). Several factors might
account for this interaction, such as the assacidbietween early-life intelligence and higher
levels of education/professional occupations, erténdency to pursue in more healthy habits in
terms of sports, smoking, dietary regime and weigbntrol. Furthermore, the correlation
between intelligence quotient (IQ) and mortalityshheen also considered a reductive
argumentation respect to a broader biological themuwggesting its relationship with the
"overallsystem integrity”, thus implying a "moreetligent” brain to be associated to a likewise
well-functioning body, thereby increasing the prioitity of a longer life (Deary 2008;Deary and

Der 2005).

On the other side, in the last decade the conckpbgnitive reserve (CR) has been
introduced (Stern 2009a;Stern 2009b), as a framewpecifically addressing the individual
variability between expected and actually obse@ghitive capacities across pathological brain
conditions like cerebrovascular disease (Murragle2011), Parkinson’s disease (Poletti, Emre,
and Bonuccelli 2011) and multiple sclerosis (Langd2011), as well as in healthy elderly
subjects with brain atrophy (Stern 2002;Stern 2Q00%Merestingly, the CR model mainly
concerns higher-order cognitive functions whichtgierto the general intelligence factay")
hence promoting the idea of intelligence as a ‘#tiffelping to assure a more favorable disease

outcome in case of brain pathology (Satz, Coledideaind Rassovsky 2011).



Despite the amount of data sustaining the CR maale&ther intelligence should be
considered just as a tool to indirectly achieveoagér life expectancy, or it must be
conceptualized as a functionally relevant phenotytieat is, expression of a cognitively
optimized brain towards ageing itself or intercogrineurological insults- is still a matter of
debate. Consequently, the current study is aimedvastigate the hypothesis that a higher 1Q
translates into a functionally more resilient bragwards physiological aging or pathology-
related loss of regional efficiency, defining "raness” in the context of a graph-topological
analysis already used to characterize complex nmksvbehavior at several biological levels

(Albert, Jeong, and Barabasi 2000a).

Recent neuroimaging evidence has suggested hotwthan brain is a complex system
of interconnected regions spontaneously organiatxddistinct networks (Achard and Bullmore
2007a;Craddock et al. 2013;Fox, Snyder, Vincentrb€ia, Van Essen, and Raichle
2005;Hagmann et al. 2008;Shehzad et al. 2014;Spdoroni, and Edelman 2002), with such
organization being highly correlated with individiudifferences in manifest behaviour, also
including complex phenotypes like intelligence (&anecchi, Galli, Polizzotto, Rossi, and Rossi
2014;van den Heuvel, Stam, Kahn, and Hulshoff BOI92. Moreover, brain modeling based on
graph-theory allowed to describe such complex argdion using indexes referring to notable
complex networks properties (Sporns 2014), likertlvapacity for simultaneous local and
distributed information processing (Eguiluz, Cha@lv Cecchi, Baliki, and Apkarian
2005;Sepulcre, Liu, Talukdar, Martincorena, Yeod &@uckner 2010), their organization into
separate but integrated modules (Achard and Budr2007a;Sporns 2013),and their power-law
distribution of network nodes importance (Achard|v@dor, Whitcher, Suckling, and Bullmore

2006). Notably, this topological organization, "thiby several complex biological systems,
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often corresponds to an increased "robustnesgégéiience) against system failure (i.e. random
error) or deliberated lesioning procedures (tadjetdtacks) (Albert, Jeong, and Barabasi
2000b;Bak and Paczuski 1995;Kitano 2004). By priogichn estimation of the residual network
functionality after complete or partial lesionsfwerk simulations allow to infer the response of
a complex system to both random or targeted attatieseby allowing a quantification of

complex networks’ "goodness" and of their rate ofvieval against unexpected system
malfunctioning. Assuming such network robustnesa &ominant” trait, whether intelligence is

associated with such trait is an unexplored arganoérabsolute interest, including possible

implications as to the evolutionary role of humaghler order cognition.

We therefore estimated brain functional robustriegsrds both random error (RE) and
targeted attacks (TA) in a group of 102 healthyjestts (49 males, average age = 34 yrs, SD =
14, range 20-60), in the attempt to address tHewialg issues: (i) does a higher intelligence
profile level correspond to a more robust brain®df (i) which are the brain regions more or
less susceptible to TA or RE? (iii) Given the diffiet neurobiological meaning of RE and TA,is
there a specific relationship between intelligerscel these two brain robustness indexes?
Finally, (iv) given the theoretical yet practicaffdrences between crystallized ¢Gand fluid
intelligence (@) abilities -respectively representing educatidiate®l and more innate “on the
spot” cognitive abilities (Nisbett et al. 2012) e thoth equally contribute/correspond to such

robustness?

2.0 Materialsand M ethods



Specific details about the cognitive measures fMidl preprocessing are included as
supplemental material and methods. The followingtises cover the details about brain

resilience computation including networks definti¢esioning process and statistical analysis.

2.1 Sample and behavioral measures

Behavioral and neuroimaging data are part of theelyravailable NKI-Rockland
database, belonging to the FCP/INDI sharing inui&at(www.fcon_1000.projects.nitrc.org),
including a phenotypic characterization of 207 tigasubjects (age range 4 to 85 years), as well
as structural (anatomical and Diffusion Tensor Imgg- DTI) and functional (resting-state
fMRI) neuroimaging data. Considering our aim to reloterize a possible link between
individual brain robustness and intellectual leaelfirst concern has been to avoid conditions
where an additional modulation of these two factmight be present. Thus, we decided to
circumscribe our analysis to adult subjects (2058an60 years), limiting the effect of
developmental and ageing-related changes of bajhitbee and cerebral architecture. A further
selection of subjects was performed to engi)ran equal number of males and females, given
the evidence of interactions between gender arellectual abilities (Haier, Jung, Yeo, Head,
and Alkire 2005;Payton 2009jii) an equal distribution of age groups (decades)imwithe
overall group andiii) that all subjects were right-handed. The selea&sulted in a final sample
of 102 right-handed subjects (49 males), with mega of 34 years (range 18-60, SD = 14) and
available 1Q scores representing overall (Fullepd@ as well as verbal and visuospatial 1Q

scores, respectively considered as indexescair@ G.

2.2.1 Network lesioning procedure



Network nodes were defined by parcellating therbiato 90 cortical and subcortical
ROIs according to the Automatic Anatomical Labeliaggs (AAL) (Tzourio-Mazoyer et al.
2002), one of the most commonly employed atlasn&twork analyses (Achard and Bullmore
2007a;Achard, Salvador, Whitcher, Suckling, andIiBate 2006;Liu et al. 2008;Wang, Li,
Metzak, He, and Woodward 2010). Details about tiokeng and sparsity have been included in
the supplemental methods section. For the sakeeadability, all the fMRI preprocessing,
networks definition and thresholding, graph thdoett metrices computation and lesioning

procedures are schematized in Fig.1.

As suggested in the introduction, robustness estmaomprehended two approaches
for network lesioning, based on random or targekedle removal. These procedures involve the
calculation of several topology indices, both foiding the depletion process itself and for the
estimation of network “well-being” after each ddja, whose explanation requires to assume:
(N) as the set of all nodes in the network, (n)hesnumber of nodes, (k) as a specific node, (L)
as the set of all links in the network, (l) as thenber of links, (i, j) as the link between nodes i
and j, (aij) as the connection status between ijgaig=1 when link i, j exists; aij = 0 otherwise)
All the graph properties have been calculated udfaglab functions included in the Brain
Connectivity Toolbox (https://sites.google.com/&itenet/). As suggested in the previous
section, individual functional connectivity matricenave been thresholded by selecting a
progressively larger portion of all possible braonnections, leading to the creation of one
hundred different sparsity matrices for each subjfgonsidering that each lesioning simulation
comprised 90 depletions (see Fig.1B), and thaastibeen performed on each sparsity matrix, the
overall lesioning process resulted in 90 [deplet]dnl00 [sparsity matrices] * 102 [participants]

simulations, separately for TA and RE.



2.2.2 Targeted Attacks and Random Errors

The purpose of targeted attacks (TA) proceduréoisest the specific importance of
certain network nodes for overall network stabiliysually, nodes removal follows a specific
order which reflect the nodal properties of interésr instance its importance for distributed
information processing, local computation or modtyaof the system. Previous studies about
brain robustness have focused on different nodgigaties, suggesting “centrality” measures as
those providing the best robustness estimationt¢#t/|sBreakspear, Hagmann, Cammoun, and
Sporns 2009). Well-known measures of centralitythex(i) degreeD, and the(ii) betweness
centrality,Bc: while theD of a node k is the number of edges connecting dther nodes, so
that largely connected nodes show higher degess expression of the number of shortest
node-to-node paths that pass through a specifie Rpthdicating how such node takes part into
overall brain information processing by supportatger nodes communication through fast (i.e.
short) connections. Even though there are evidesoggestingBc as the best estimate of
centrality for network robustness simulation (AtstBreakspear, Hagmann, Cammoun, and
Sporns 2009), we also computed the results defithie target nodes by using two additional
criteria, i.e. the nodal degree and strength ottional connectivity. Results obtained using

these indexes are reported in figure S6. ThereBoréor the node i has been defined as:

_ 1 Phi()
b = ar2 Z o

h,jON
hj h#i,j#i

wherephj is the number of shortest paths between h aaddphj (i) is the number of shortest
paths between h and j that pass through i. As showigl.B, the lesioning process consisted in

the (i) estimation of centrality values for each node e AAL atlas (sayBc), (ii) sorting of
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nodes based on thdc value,(iii) removal of the node with high&c value. This process is
recursively applied since all the nodes have besetel, leading to the progressive creation of

90 matrices (one for each AAL atlas region).

Differently, random errors (RE) are thought to giate a completely different
phenomenon, which may affect complex network, ile occurrence of a system failure.
Random in nature, this event may cause or not @reeimpairment to system integrity
depending on which nodes is being involved. REcareducted byi) creating a 1*90 vector of
randomly selected regions, and by lesioning thevoit by cutting the node corresponding to
position (1,1) in the vector. A new 1*89 random teeqcontaining all regions except for the
already cut node) is then created and the proaegmaes till all nodes have been removed. To
ensure a more reliable estimation we performecetiige process 100 times for each matrix and

averaged the resulting robustness estimates.

Theoretically, the intrinsic structure of compleatworks following a power-law degree
distribution, like the human brain, guarantees igihdr protection towards RE, by concentrating
the very large part of information processing dimgted number of core regions which, in terms
of probability, are supposed to be more difficoltoe affected by a random attack. On the other
side, TA are thought to be more effective in netsadiollowing such distribution, with even a

few surgically planned resections capable to geedrighly significant network impairment.

2.2.4 Network integrity against attack

Before the overall process, and between each gpdifpletion, several indices of
network integrity are calculated, so that a “tinoeirse” of brain robustness is obtained while all

atlas regions are progressively removed. This altwcaught a drop into robustness level at a
10



certain point along the process, which correspdaadbke specific removal of a single or a small
set of brain regions. We calculated measures dxsgriboth integration and segregation of
functions within the brain, aiming at caughting thgpact of network lesioning ofn) distributed
and(ii) local processing. Regardsstributed processing, two indices were computed, namely the
Largest Connected ComponeritCE and the Global efficiency £. The LCC is the typical
index usually applied for complex networks robustnestimation (Albert, Jeong, and Barabasi
2000b;Alstott, Breakspear, Hagmann, Cammoun, amatnSp2009). Basically, it reflects the
overall network “connectedness”, that is the rdteviich is possible to directly or indirectly
connect each node in the network to each othefe@®r connected networks, where all nodes
are linked to each other forming a unigc@mponent, naturally guarantee a higher level of
information spreading. However, complex networkallsushow a subset of nodes which play a
crucial role for maintaining the network “connectesb that their depletion cause most severe
damage to the overall network integrity by makingrge number of other nodes “unreachable”,
i.e. disconnected from the component. THUSC is defined as the largest number of nodes
constituting a component after each depletion, ealtulated through the estimation of a
distance matrix €d, whoseij values represent the shortest path length (orraisjabetween all
pairs of nodes, computed as:
di= 2 Aw

a.lg, |
with gi«<j representing the shortest path between nodesji @mtonneted pairss). Each cell
within the resulting matrices represents the mimmuumber of steps (node-to-node

connections) required to connect each pairs of sjode that a (i,j) blank cell indicates the

11



impossibility to directly or indirectly connect ned and j. Consequently, higheCC values

represent higher levels of connectedness.

NetworkE is defined as:

E=iYE =3 S

iON iON

At a neurophysiological level, high network is guaranteed by nodes placed at short
distances from each other, a configuration whichbé¥s them to interact more directly, i.e.
faster, consequently promoting high functional gné&tion. In this context, higher values &f
represent better overall brain information proaggsiDespite one of the most used network
integration measures is the average path lengbhesenting the average number of steps along
the shortest paths for all possible pairs of nekwardes, here we preferrdéfl because of its
lower sensitivity to the presence of disconnectedeny weakly connected nodes (Bullmore and

Bassett 2011;Sporns and Zwi 2004).

Differently, local processing is expression of adjacent neuronal population
synchronization, a functional prerequisite for salecognitive functions within the motor,
visual, somatosensory and also memory domains (Sepuiu, Talukdar, Martincorena, Yeo,
and Buckner 2010). Here we characterized brainegagjion using the Local efficiency index —
ELoc, @ measure of the average efficiency within l@digraphs or neighborhods..c has been

calculated as follow:

Eiog = 12 = :%ZZ j,hON, | # iaijajh[djh(Ni)]_l

E iON iON ki(k‘ _1)

12



whereEloc,i is the local efficiency of nodg and djh(Ni) is the length of the shortest path
betweenj and h, that contains only neighbors of Higher level of E . represent better
information processing at local level.

Furthermore, other topological indexes have bemmputed in order to determine the
individual small-worldness window (SW) where théuetness indexes have been extracted.
First of all, SW has been calculated as:

_ CC /CCrand
L / Lrand

where CC-CC,ang and L-L;ang respectively represent the clustering coefficief@€) and the
characteristic path lengthk)(of the actual network and of a random netweylg)( Theaverage

path length, L, is defined as:

_} _:} > JON, j#idij
L—nz L nzin—

iCN iCN

wherelLi is the average distance between node i and & otbdes. It represents the average
number of steps along the shortest paths for asipte pairs of network nodes. As an index of
information processing efficiency, shortervalues usually stand for more efficient networks.

Theclustering coefficient, CC, is defined as:

CC:EZ CG:EZ A '

NioN NicN lQ(K _1)
whereCCi is the clustering coefficient of node IC{€0 for ki<2). CC is expression of each
node’s tendency to cluster with neighboring noded & thus considered a reliable index of
network local connectivity. The individual SW windowas composed by those matrices

showing a Small-world value > 1 (Humphries and @yrn2008). Compatible with what
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previously reported, our sample shows network diessicorresponding to SW ranging, on

average, from 10 to 31% (Fig.2B).

2.3 Statistical analysis

Statistical analyses were carried out over all kogical measuresLCC, E, E o, Bc),
even though the main outcome of interest was coatpbgLCC as a direct expression of brain
integrity after each node removal (Alstott, Breadap Hagmann, Cammoun, and Sporns 2009).
We first conducted a linear regression analysiagsess the relationship between 1Qs (FSIQ,
VIQ, PIQ) and the average topological propertiealbthe matrices corresponding to the small-
worldness window of each subject (Humphries andn@ur2008). Average values for each
network property I(CC, E, E o, Bc) have been inserted as independent variablesge i@
scores have been separately included as dependeables. Furthermore, given the results of
regression analysis, an Analysis of Covariance (BN@) specifically contrasting th&CC
values of High and Low-IQ subjects within the snvatirld window was computed, including
age, Body Mass Index (BMI), total brain volume (TBAhd gender as covariates. An alpha=.05
was chosen as significance level for all the arsypost-hoc comparisons have been computed
using Bonferroni correction (p<.05).

The ANOVA has been also used in order to verify éRestence of significant between-
groups differences in the distribution IOEC values as a function of age and intelligericeC
values computed within the small-world window h&en thus inserted as dependent variables,
with Group (High and Low-IQ) and Decades as indepah variables. Specifically for this
analysis, a subgroup of subjects belonging to th&®/rs decade has been included in the

sample, resulting in 5 decades (21-30yrs, 31-4044s50yrs, 51-60yrs, 61-70yrs). Moreover,

14



given ana priori knowledge about a potential role for brain weakreetions into discriminate
subjects with High and Low IQ (Santarnecchi, Galiplizzotto, Rossi, and Rossi 2014a),
topological measures and robustness indexes harediso computed outside the SW window,
that is along the entire sparsity range (1%-100Phe same regression model has been than
calculated by including progressively weaker cotingies (1% sparsity steps), looking for
potential interactions between intelligence andusthess values derived from connectivity
matrices including strong, other than weak conoesti
2.4 Definition of robustness-related brain regions

Along with the identification of an intelligencedn robustness interaction, we also
aimed at identifying the importance of specific @naical regions for the maintaining of brain
integrity. Consequently, we performed a multivariatiassification procedure to assess the
contribution of each AAL atlas region to the sigraht difference in brain robustness to TA
observed between High and Low-1Q groups. Assuntied.€CC as the primary index of interest,
a vector of the drop in.CC size after each region removal has been creatmligiing on
individual SW windows) for each subject, resultinga 102x90 matrix. Using Weka software
(Frank, Hall, Trigg, Holmes, and Witten 2004), g@gort vector machine (SVM) algorithm was
tested through leave-one-out cross-validationdfot 101), resulting in an estimation of the
overall correct classification percentage (SengytiSpecificity, area under the ROC curve) as
well as to a node specific discriminative weighteapression of each region contribution to the
overall classification process. However, as theéepatobtained through SVM classification is
multivariate, regions above the 95th percentile beldw the 5th percentile have been assumed
as representing, respectively, brain regions mersisve to the lesioning process in the High
and Low-IQ groups - that is those regions whoseoxahstrongly affect brain integrity by

15



significantly decrease the size of th€C (Santarnecchi, Galli, Polizzotto, Rossi, and Rossi
2014). Images were plotted on an inflated threeedsional brain (Fig.3), with this graphical
representation showing only the regions that carogt of the discriminative weight - that is,
those relatively more important to forming the dem boundary.

Furthermore, the identification of the most impott regions for the observed
intelligence-robustness interaction allows for thevestigation of node-specific features
supporting such relationship. Therefore, bf}hpairwise functional connectivity an@) seed-
to-networks analyses have been computed for alhitvementioned regions. Briefly, functional
connectivity has been computed -at the single stibggel- as the Pearson correlation coefficient
between the time series of all the regions incluidethe AAL atlas. Differences in the average
pattern of connectivity at the group level (HighLow-1Q) have been calculated using a False
Discovery Rate (p.=0.05) correction, highlightingcriease and decrease in the strength of

specific connections between each region and steofehe brain.

At the network level, the average time course @LB fluctuations within specific
resting state networks (RSNs) of interest have lmedracted, thus representing the average
connectivity pattern of such networks in individualvith High and Low-1Q scores.
Consequently, correlation values between RSNs timeses and those of the most discriminant
regions have been compared across groups (p.<Bdderroni corrected), highlighting specific
intelligence-related relationship between suchamrgiiand specific networks. RSNs have been
defined as the results of previous investigatioAde( et al. 2011a;Mantini, Perrucci, Del,
Romani, and Corbetta 2007), resulting in the dedéiniof nine well-known networks: default-
mode, fronto-parietal control, frontal attentiomnguage, somatomotor, auditor, visual and

(right-left) working memory networks.
16



3.0 Results

A synthetic scheme of the overall procedure farcfional connectivity estimation and
network lesioning is reported in Figure 1. It igewgorthy that, given the limitation of available
neuroimaging database in terms of sample size bod &ge distribution per decade, our
approach is aimed at identifying a relationshipween intelligence and brain resilience
regardless of age, therefore all analyses have bemputed including age as a covariate.
However, given the potentially relevant role of afpe future investigations about brain
robustness, an additional exploratory analysidefage*intelligence*robustness interaction has
been completed on the available data and includegaat of the supplementary materials.
Moreover, in order to rule out the role of braiseese in such relationship, individual total brain
volume was regressed out from the analysis as weditional details about data preprocessing
and network analysis are included in the experialeptocedures section and supplemental

information.
3.1 Correlation between intelligence and brain resilience

Significant correlations between brain robustreess Full Scale, Verbal and Performance
IQ scores emerged (Fig.2A). Even though these letiwas were present for both resilience
indexes and all IQ scores, a pattern of signifigastronger correlation betweenthe robustness
towards TA -expressed as the size of the largestexded componentCC) (Albert, Jeong, and
Barabasi 2000b)- and FSIQ:fi) =.75, p<.001, R=.57], VIQ [ruo01) =.70, p<.01, R=.50]and PIQ
[raon = .53, p<.01, R=.26]respect to the impact of RE [FSIQof =.45, p<.001 , R=.12; VIQ,
raon = .47, p<.01, R=.14; PIQ, foy= .41, p<.01, R=.15] emerged (results for other indexes of

distributed and local information processing areluded as Supplemental Results). The
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computation of brain robustness as a function d&fvokk sparsity allowed addressing potential
differences in the size of tHeCC across network densities, and thus to evaluatémpact of
such network thresholding-dependent procedure diustoess estimation. As previously
reported (Achard and Bullmore 2007a;Watts and atmo§998;Wu et al. 2013), valid arguments
sustain thea-priori computation of network topology (and robustnes#hiw specific network
density windows, mainly focusing on brain propestiebtained by looking at network
configurations resembling the so-called small-wdBdV) topological organization (Figure 2B)
(Achard and Bullmore 2007b). Therefore, the resoftstatistical models computed within the
SW window have been considered the main outcomentefest. However, TA and RE
simulations produced strongly different estimatioh brain robustness in respect to the
percentage of nodes that were included in the mét(¥og. 2B). Accordingly, panel C highlights
how the intensity of the correlation with intelligge scores fluctuates as a function of network
sparsity, with potential opposite results for TA emhweak brain connections are taken into
account (sparsity 80-100%). Results related toratkévork topological properties are included

as supplemental results.

3.2 ldentification of resilience-related brain regions

By investigating the topological features respblesfor the observed intelligence-related
difference in robustness towards TA, we focusedhenidentification of those regions whose
exclusion from the network lead to the larger loggrain robustness. Therefore, by applying a
median split segmentation of the entire sample btained two groups representing participants
with High (n = 57; mean age = 35+12; mean FSIQ 91¥) and Low (n = 45; mean age =

36x£10; mean FSIQ = 8415) IQ levels (Table 1), withdifferences for age (t=.34p+.534) and
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gender distribution)f =.403, p=.546). The analysis of the regions mostly respmeasior the
intelligence-robustness interaction was carriedbyutneans of a support vector machine (SVM)
classification procedure, leading to a IQ-groupassification accuracy of 82,7% (Cl=.645-
.876;Sensitivity=.712; Specificity=.867; AUC .912)he distribution of the differences in the
average CC drop for each single region of the AAL atlas usednform the SVM algorithm is
included in FigureS3. Control analysis using SVM thiose regions identified as the most
important into separating High and Low IQ particifs(12/90) led to an 1Q-group classification
accuracy of 75,3% (Cl=.612-.798; Sensitivity=.689gcificity=.833; AUC .856). Among High-
IQ subjects, these regions mostly belonged to atdsél network encompassing regions
anatomically and functionally crucial for languageocessing and production, like pars-
opercularis of the inferior frontal gyrus (BA44)dthe middle frontal gyrus (BA46), which
basically compose the Broca’'s area, and the inf@aoietal lobe (BA40), mostly corresponding
to Wernike’s region along with the supramarginalugyand a portion of middle temporal gyrus
(Fig.3A) (Binder, Frost, Hammeke, Cox, Rao, andefril997a;Cappa 2012;Papathanassiou,
Etard, Mellet, Zago, Mazoyer, and Tzourio-Mazoy@0@,Simos et al. 1999). Moreover, regions
associated to memory processing (mid and infedompioral lobe [BA21, BA20], middle frontal
gyrus [BA46], posterior cingulate cortex [BA23]) yea been also identified. Interestingly,
regions being crucial for brain integrity in Low-IQubjects were all, partially or completely,
related to the manipulation of emotional contentrenprecisely left amygdala, right anterior
cingulated cortex (ACC) and left temporal pole (sky, Morrell, and Vogt 1995;Jimura,

Konishi, and Miyashita 2009;Kobayashi 2011;Mortisie 1998)(Fig.3B).

Given such language-related difference, the pddgilmf a gender-related effect was

investigated, resulting in a null difference in thebustness level between female and male
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participants (Fig.4A). Such finding promoted a fant exploration of possible differences in the
functional connectivity profile of these regionsthwrespect to their correlation with intelligence
and brain resilience to lesions. In the contextaofgeneralized difference in the overall
connectivity profile of High and Low IQ subjectsigFB), we consequently investigated for
potential differences in the average regional cotivi¢y of subjects with High and Low 1Qs by
the means of seed-based pairwise connectivity aisalyThe results of between-group
comparisons (p<.05, False Discovery Rate -FDR-eoted) for language network's nodes
(additional regions’ connectivity profiles are inded in Figure S45) and emotion-related
regions are reported in Figure 4C and Figure 5Baetsvely. Finally, in order to get an insight
about the role of such regions in the overall braiganization at rest, we also looked at the
connections between these regions and anatomubafilyed resting-state networks (RSN) (Fox,
Snyder, Vincent, Corbetta, Van Essen, and Raic@R Therefore, average seed-to-network
functional connectivity values have been calculateloloth groups, referring to well known RSN
encompassing the default-mode, fronto-parietal rognt frontal attention, language,
somatomotor, auditor, visual and working memorywoeks (Allen et al. 2011b;Mantini,
Perrucci, Del, Romani, and Corbetta 2007). The li®sof group comparison (all p<.05,
Bonferroni corrected) are presented in Figure 4itiElLow 1Q)and Figure 5A (Low>High IQ)
as the average seed-to-network profile of subjedth High and Low-1Q. Despite region-
specific variations in the differential connectywipatterns, an overall trend for a major
involvement of the fronto-parietal control, fronttention and working memory RSNs emerged
in both groups. Additional details about the afoeationed statistical analyses are included as

supplementary Material and Methods.
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Finally, given the interesting link between CR agk (Bastin et al. 2012;Zihl, Fink,
Pargent, Ziegler, and Buhner 2014), we also lool¢dtheir potential interaction with
intelligence. By contrasting a model including treerageLCC values of High and Low-1Q
subjects in different decades (see supplementahddstand Results), we identifying a trending
to significance interaction between robustness, agg intelligence, possibly forced by an
augmented robustness in High-1Q subjects older Hfayears respect to Low-1Q ones, with data

related to TA being more coherent along the emtiye range (Fig. S4).

4.0 Discussion

Recent advances in brain modeling and neuroimaigiogniques have contributed to a
better understanding of the neurobiological cotesleof intelligence (Haier, Jung, Yeo, Head,
and Alkire 2004;Penke et al. 2012a;Penke et al.2B@hn den Heuvel, Stam, Kahn, and
Hulshoff Pol 2009). Interestingly, the correlatitretween intelligence and epidemiological
factors has been demonstrated as well, with higQepeople being reported as having, for
instance,an higher survival rate and a better b@danomic status (Deary 2008;Gottfredson
2004;Pierce, Miller, Arden, and Gottfredson 200&hile intelligence level has been promoted
as a mediator for more efficient behavior, like noyed decision-making abilities in everyday
life, no evidence has been reported for a morectinek between intelligence level and brain
intrinsic properties related to its ability to copéth the loss of its functional units. Here we
document a correlation between 1Q and brain rolasstas measured through resting-state fMRI
graph-theoretical analysis, with specific subseftscartical and subcortical regions mostly
responsible for such brain feature. This suggegtessible link between the development of

specific cognitive abilities, the consequential mhg of their neuroanatomical and
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neurophysiological substrates, and a resultantwbetal pattern inherently leading to improved
robustness towards brain insults.

Robustness is a ubiquitously observed propertgoofiplex, evolvable systems (Kitano
2004). Given its multidimensional nature, encompassorganic biology, mathematics,
sociology and engineering, our finding allow for series of theoretical and practical
considerations. Therefore, we will summarize ouscdssion focusing orfi) the possible
biological underpinnings of the intelligence-braimbustness interactior(ji) its impact into
determining individual robustness towards acutehwonic brain diseaseji) the investigation
of the role of the specific regions responsibletfe observed correlation and the meaning of the
different interaction with TA and RE, as wé€ll) the potential implications of these results
concerning Non-Invasive Brain Stimulation (NiBSgheiques.

4.1 Robustness and evolvability

Looking at the evolutionary role of "robustnesst biological system, a correlation
between intelligence and brain robustness to darsageds like an oversimplified yet expected
finding. While conceptualized within the framewark different self-organization models, like
the "Highly Optimized Tolerance" (HOT) (Carlson abdyle 1999), the scale-free network by
preferential attachment (Barabasi and Albert 19899) the self-organized criticality ones (Bak
and Paczuski 1995), robustness is generally defasetthe main feature that allows a system to
maintain its functions in case of external and rimié perturbations (Kitano 2004). It indeed
represents a clear example of those fundamenttdragdevel phenomena, self-emerging from
the inherent structure of the system itself andassjble to be fully understood by looking at the
individual components of the network. Interestingfyom the biological point of view,
robustness usually shares the same architectuyaireenents of evolvability, giving reason why
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it is ubiquitously reported in living organisms theave evolved (Kitano 2004). More generally,
two central features of complex systems’ architectuave been proposed as able to facilitate
evolvability and robustness: a highly resilient arwhserved core of processes working as an
interface for diverse inputs and outputs (signalingtrients and products at the molecular
biology level), and a more versatile mechanism,vkmas "weak linkage", that somehow
sustains and facilitate the proper exchange ofrinéion between different units of the main
core (de Visser et al. 2003;Kirschner and Gerh&a8). Interestingly, the human brain is
considered among the most complex system in natuith, some of its structural features
strongly resembling network behaviors ascribedtt®iobiological systems, for instance small-
world configuration (Achard and Bullmore 2007b;Dasnet al. 2012). Furthermore, the very
idea of a stable "central core" has been recendlystated at the brain level as well, with a
"functional backbone" documented as the main compbwf resting and evoked activity in
human and other mammals brains (van den Heuveln K&oni, and Sporns 2012;van den
Heuvel and Sporns 2013). As a complementary findimg previous study we have documented
how the vast majority of intelligence-related indival differences in functional connectivity
falls in the spectrum of the so called "weak tie€', weak connectivities within the left tail of
the distribution (Santarnecchi, Galli, Polizzot®ossi, and Rossi 2014b), a finding which has
been confirmed also in the current study (see $&). This similarity posits the suggestive idea
that, like for robustness and evolvability, alsteiligence might be considered a "dominant”
phenotype whose biological implications are obsalevén terms of a better ability to cope with
unexpected events.

4.2 Robustness and brain pathology
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In fact, our results sustain the idea of intelige as able to explain part of the individual
differences in the robustness towards neurodegiverar suddenly intercurring pathological
conditions, suggesting a possible connection witgh €R model (Stern 2009b).The idea that
"some people appears to be more resilient to lmta@mges than others" (Stern 2012) has opened
a new research field in contemporary neuroscieaiceed at understanding both the underlying
mechanisms and candidate biomarkers for this hufféh evidences also pointing at specific
brain topology configurations which have been prote be altered in pathological conditions.
Interestingly, even though brain robustness hadeen tested in a large number of pathological
conditions, alterations in network metrics highlyrrelated with robustness, such as clustering
coefficient, modularity and small-worldness, haveetp reported in schizophrenia (Bassett,
Bullmore, Verchinski, Mattay, Weinberger, and Mey#mndenberg 2008;He et al. 2012;Yu et al.
2011), Alzheimer’'s disease (Reijmer, Leemans, Qassrghs, Heringa, Koek, and Biessels
2013;Zhao et al. 2012), autism (Belmonte, Allencig#-Mitchener, Boulanger, Carper, and
Webb 2004;Maximo, Keown, Nair, and Muller 2013), IAD (Castellanos, Kelly, and Milham
2009;Castellanos and Proal 2012), and dementiagRiiede, Wu, Seeley, and Frisoni 2011).
Furthermore, our finding suggest topological prdpsr among those related to distributed
information processing -instead of local computatias mostly representative to the robustness-
intelligence correlation, suggesting a potentiadnfework for the ability to successfully
reallocate resources behind the CR model. Intexggti the idea ofa possible correlation
between premorbid brain robustness level and iddalishielding towards pathology also seems
to couple together with recent contributions docaotimg how intelligence level effectively
shapes brain networks dynamics towards a pattesngly supporting the CR concept (Fischer,
Wolf, Scheurich, and Fellgiebel 2014;Stern 2009&Yhile our data provide new interesting
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insights in this direction, also promoting a poksiige-dependent modulation of such interaction
as well as partially excluding potential interantiovith "brain reserve" (Bartres-Faz and
Arenaza-Urquijo 2011;Stern 2002), longitudinal $&gdnvolving both healthy and pathological
subjects across the life span are needed.
4.3 Theintelligence-robustnessinteraction in the brain

The differential interaction between intelligerlegel and the robustness to TA and RE
might reflect the network-structure idea behindsthéwo diverse -basically opposite- types of
robustness indexes. While the former process isthas targeting the most important region(s)
of the brain first, thus theoretically inducing tlaeger disruption to the overall network integrity
in just a few steps, the latter is based on a cetalyl random targeting (Alstott, Breakspear,
Hagmann, Cammoun, and Sporns 2009), leading terdrif network organizations which may
be better shielded against one or the other praeediven an highly centralized system where
the vast majority of the information is handled &ysmall subset of network nodes -like the
human brain-, TA certainly represents the most desgs configuration: stroke is a paradigmatic
example, in which also its sudden occurrence mpdgng a role in overall network dysfunction.
On the other hand, the RE approach relies on thal grobability that the most important
regions (being just a small portion of the entiopylation) are being randomly targeted, making
this procedure less likely to induce a dramatiovoek impairment, unless the lesioning process
is protracted in time as in a slowly progressingirndegenerative disease. The fact that
intelligence, and more significantly FSIQ and VI€yrrelates mostly with robustness to TA
inherently suggests how intelligence may interatshape" - brain network configuration. By
implying intelligence as responsible for a more egpread and efficient brain resource
allocation at rest, our results support previouseotations of a positive spatial correlation
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between intelligence level and brain volumes -nyo®thcompassing frontal, parietal and

occipital lobes (Colom, Jung, and Haier 2006;Colokdgrama, Jung, and Haier 2010),

contrasting the idea of prefrontal cortices as primbrain sites related to intelligence level

(Duncan et al. 2000). Moreover, in the contexth® CR theory, this may give reason of the
better capacity to keep the network working propem the ground a less-centralized system,
where different operations may be successfully etegtalong different paths. However, even
though this implies an increased equality acrossnbregions importance, a small subset of
regions still could play a predominant role in morielligent brains, leading to two interesting

findings.

First of all, identified regions encompassing tednparietal and temporal lobes resemble
those belonging to a widely recognized theory alibat neuroanatomical substrate of human
intelligence, that is the Parieto-Frontal IntegratiTheory (P-FIT) (Jung and Haier 2007) (see
Figure 6). In the last few years the P-FIT hasirez large experimental support using a
number of imaging techniques, such as structurafr(Bt al. 2007), diffusion weighted (Chiang
et al. 2009) and functional MRI (Choi et al. 2008ax, Qin, Wang, Jiang, Zhang, and Yu 2012),
circumscribing the individual variability in intédlence level to the functional coupling between
prefrontal, parietal and temporal lobes regionerity. It is therefore reasonable that the same
regions also contributed to the overall intelligemelated increase in network robustness, which
is in turn dependent on their centrality and gloeficiency (Alstott, Breakspear, Hagmann,
Cammoun, and Sporns 2009). Generally, our resatdirmn the idea of a primary role of
parietal, frontal and temporal regions into expglain intelligence variability, meanwhile
originally suggesting these very regions as alspassible for higher brain robustness in more
intelligent subjects. However, whether the incregsantelligence level do trigger or, on the
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contrary, results from the inherent modulation @it networks organization -which in turn lead
to an increase in robustness- remains obscure. Byopbthesis would require a longitudinal
evaluation or larger cross-sectional studies ineottd look at the interaction between these
factors at different ages. Secondly, the subsetegions showing the higher discriminatory
power between High and Low IQ subjects are integaat of the language processing network,
specifically the pars-opercularis of the inferioorftal gyrus (BA44), the inferior parietal lobe
(BA40) and the middle frontal gyrus (BA46) (Bindémost, Hammeke, Cox, Rao, and Prieto
1997b;Simos et al. 1999). Interestingly, an addaiseed-based functional connectivity analysis
on these language-related regions showed a pediiffarence in the functional connectivity
profile of the two 1Q classes, with High-1Q indiudls reporting decreased within-network and
increased network-rest-of-the-brain connectivitghwiespect to Low-IQ ones. Moreover, these
regions also showed, for instance, significantlgréased and decreased connectivity between
working memory resting-state networks and, respelsti prefrontal and parietal regions. The
interpretation of these results clearly goes beyhedintent of the present study, even though
they suggest how those regions responsible foditbye in theLCC size may represent a core set
of brain areas whose connectivity might play a tolexplain 1Q-related individual differences,
regardless of their role for robustness. Furthediss are required to explore such interaction by
adopting a more in-depth battery of neuropsychckigiests specifically focused on these
cognitive dimensions. Moreover, fluid {Grepresented here as PIQ) and crystallized, (G
represented here as VIQ) components of intelligafidenot show any significant differential
interaction with brain robustness to TA. Even tHowgrbal and performance WASI subscores
can be roughly utilized as estimates df &dd &, such distinction is not entirely part of the
theoretical work behind nor the WASI (Weschler, 9P8either its full-length counterpart WAIS
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(Weschler, 1997). Therefore, such hypothesis shbeldhen tested using specifically tuned
instruments as well (Matzen, Benz, Dixon, Poseydér, and Speed 2010;Santarnecchi et al.
2013).
4.4 Robustness as atesting platform for brain flexibility

Finally, it is noteworthy that the theoretical apgpch described here cannot take into
account that a TA may trigger adaptive mechanigmthé living brain (i.e., brain plasticity),
which usually tends to partly compensate the esfedtthe lesion. However, this opens new
interesting scenarios where the predictive powetthed kind of simulation over the actual
recovery observed in patients may be tested. Rtamge, increasing spatial resolution of the TA
may lead to the identification of fine-grained reess-based biomarker, which may be applied
in early stages of neurodegenerative processesedver, the interaction between intelligence
and brain resilience could also be tested in a miym&ashion using agent-based models(Joyce,
Hayaska, and Laurienti 2012;Joyce, Laurienti, amyddaka 2012), where the reaction of the
network to the injection of a signal in a specificde is tested through time(Joyce, Hayasaka,
and Laurienti 2013). Within the same context, aurmesults also open an original perspective
into the understanding of the mechanisms by whraimbstimulation techniques as Transcranial
Magnetic Stimulation (TMS) (Barker, Jalinous, anedston 1985;Pascual-Leone, Walsh, and
Rothwell 2000;Rossi and Rossini 2004a), transckabieect Current Stimulation (tDCS) or
transcranial Alternate Current Stimulation (tACS8jtéche and Paulus 2011;Paulus 2011) might
exert their actions on brain networks by physicallyucing the targeted (or random) attacks we
have modeled. The field of "perturbation-based imglgis exponentially growing, both for
research and clinical perspectives (Pascual-Lebaé 2011;Rossini and Rossi 2007), based on
the concept that these techniques, at experimémtersands, can allow to both inhibit (i.e.,
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"disconnect” from the system, a process which rése=raur node-depletion approach) oreven
enhance specific brain regions activity (Feurraari8b, Santarnecchi, Del, Rossi, and Rossi
2011;Rossi and Rossini 2004b;Santarnecchi et dl3;2@rney, Chaieb, Moliadze, Antal, and
Paulus 2008), with a cascade of effects over nbeésnging to the same network or even in
remotely interconnected regions (Casali, CasaroRosanova, Mariotti, and Massimini
2010;Massimini, Boly, Casali, Rosanova, and Tor009;Polania, Paulus, Antal, and Nitsche
2011). To correlate connectivity patterns obtainssthg TMS-EEG or TMS-fMRI in individual
with different cognitive profiles could provide ights about the relationship between brain
response (in a sense, an index of "brain flexiBilitvhich might partly account for individual
responsiveness to the external perturbation) andrgecognitive features, thus confirming the
protective role of higher order cognitive functions
5.0 Conclusion

Current results contribute to widen the conceptintélligence from “the substrate
required to solve complex tasks” towards a factgniBcantly influencing several aspects of
human well-being through behavioral and biologicalscade effects, also promoting the
evolutionary role of higher order cognition and ipsotective role against ageing and

neurodegenerative process.
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FIGURESAND TABLESLEGENDS

Fig.1.Functional MRI preprocessing and graph-topological brain reslience analysis
wor kflow. Schematic representation of the major steps fanhesilience estimation, involving
images preprocessing, thresholding procedure base@onnectivity strength and topology
indices computation. Panel A:functional images uweat canonical preprocessing involving
two different approaches for motion correction, ogal of possible confounding factors related
to breathing and cardiac signals, temporal band-gdtering, coregistration and spatial
normalization using the DARTEL module for SPM. TAreatomical Labeling Atlas (AAL) was
used for resting-state parcellation into regionsnérest and consequent BOLD signal time
series extraction. In order to retain only sig@fit connections (Panel B, upper line), a one-
sample t-test was applied over individual connégtimatrices obtained during the thresholding
process (n=100), which has been computed for thieeesparsity range (1-100%) using 1%
sparsity steps. Matrices followed two separatedkflmws for Targeted Attacks (TA) and
Random Error (RE) simulations. In order to normalgraph topology indices (Panel B, lower
line), a Hirschberger-Qi-Steuer algorithm was usedreate transitivity-preserved null networks
based on random correlation matrices matched fgiregedistribution. All steps were performed
at the single subject level. Additional details atbtopology indices estimation and lesioning

procedure are provided in supplemental methods.
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Fig.2. Brain Robustness and I ntelligence correlation. Panel A: correlations between Full-scale
(FSIQ), Verbal (VIQ) and Performance (PIQ) Intedigce Quotients(obtained at the WASI test,
x axis) and brain robustness to TA and RE, expreasdlle average size of the largest connected
component (LCCy axis) in the network after a the lesioning progediHistograms (in grey)
represent data distribution in the overall sampleHASIQ, as well aECC values, for both TA
and RE simulations. Panel B: the lesioning procedcheis been computed within the entire
sparsity windows, by retaining an increasing pei@g® of all possible connections in a
decreasing-strength fashion, thus ranging from absdlute stronger connections) to 10096 (
axis). However, as commonly applied for graph-tb&oal analysis, correlations with IQ scores
have been performed by using connectivity data iwigach subject’'s small-world sparsity
window (group average = 10%-31%). Therefore, sgalties in A and line plots in B refer to the
LCC size calculated within such window, while surfatets in B, as well as data in C and D,
display results for the entire sparsity range. Assble in the surface plot$,CC values for TA
and RE follow different distributions along the sgty windows, showing most of the individual
differences within the low-sparsity range for REd af0-90% window for TA. As shown in C
(data are grouped into sparsity deciles), this peced different correlation patterns for the two
robustness indexes, with an opposite pattern ofretadion (Pearson’s product-moment
correlation coefficient) for the last two sparsigdes during TA simulation, an effect which is
mostly driven by the inclusion of brain weak cori@ts. At a higher resolution level, panel D
shows positive (red) and negative (blue) corretetibetween intelligence quotients dr@C as

a function of sparsity and % of nodes removed ftbennetwork.
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Fig.3. Brain Regions responsible for robustness differences. Panel A shows brain regions
responsible for higher robustness in High- vs L@vparticipants during TA simulation, as
identified by usingsupport vector machine clasaifmn. These regions, mainly represented in
the bilateral frontal, parietal and temporal lobastributed the most in the drop of robustness
(decrease in the size of th€C) after their removal from the network, with an eage drop in
LCC size equal to 14 nodes. Conversely, a smaller seegions was also identified as
responsible for a greater drop in robustness in -l@wparticipants vs High-IQ ones (B).
Moreover, a plot of the average drop (see colorfm@rkeach brain region of the AAL atlas (
axis) across the small-worldness sparsity raggexis) is provided in panel C separately for the
two groups. Accordingly to panel A, regions belomgio frontal, temporal and parietal lobes
(mostly resembling the P-Fit model of intelligencghicle the most important robustness-

related connections in subjects with higher ingelfice quotients.
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Fig.4. Pairwise functional connectivity and seed-to-network analysis results.Panel A shows
no differences in the average size of the LCC irenaamd female participants, ruling out the
hypothesis of a gender-effect as responsible fer rtiajor involvement of language-related
regions (BA40, 44 and 46) into High and Low-IQ wmduals discrimination, while a difference
in the pairwise connectivity profile referring teohtal, limbic and parietal lobes emerged
(B)(colorcode represent differences in functionahrmectivity - FC). A subsequent seed-based
connectivity analysis based on those regions resplenfor the largest drop InCC size in High
and Low-lIQ participants has been performed, wita thsults for language-related regions
reported in panel C. Interestingly, a pattern afrdased between-regions connectivity,as well an
increased long-range, mostly inter-hemispheric estians for participants with higher I1Q were
identified (C, p.<0.05; results for remaining raggoare included in Figure S5). Moreover an
additional connectivity analysis between the regioesponsible for the largest LCC drop in
High-IQ participants and anatomically-defined negtstate networks (RSN) has been tested:
this, showed a region-specific pattern of groufedénces in connectivity, mostly involving left
and right working memory (WM), frontal attention AF and fronto-parietal control (FPC)
networks. ‘indicate statistically significant 1Q-related diféaces in seed-to-RSN correlation

coefficient (p.<0.05, Bonferronicorrected).
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Fig.5 Functional connectivity analysisin regions responsible for greater LCC drop in L ow-

IQ participants. Panel A and B respectively show the results oti4eeRSN and pairwise
functional connectivity analyses for regions shawfigure 1B (i.e. left amygdala, left temporal
pole and right anterior cingulate cortex - ACC)reased connectivity in Low-1Q participants
between amygdala and both DMN and right WM netwweke identified, as well as increased
connectivity between left ACC and the Fronto Patie@ontrol Network (FPCN).indicates
statistically significant IQ-related differences $seed-to-RSN correlation coefficient (p.<0.05,

Bonferroni corrected).

49



Fig. 6. The P-FIT network of human intelligence. The most relevant brain regions
(Broadmann areas) belonging to the Parieto-Frdntagration Theory network are plotted on an
inflated brain surface. The figure shows both tlverall bilateral network and a subsample
composed solely by those regions being presenuahiepn the left hemisphere (left-lateralized
component) and highly resembling the network idgnin High-IQ individuals. Numbers

represent Brodmann areas.
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Overall

dataset High 1Q LowIQ ANOVA main effect
M1z  SDio2 Miz  SDio2 Moo  SDio2 F sg.
FSIQ 14 11 119 7 84 5 156.234  <0.001
VIQ 111 9 116 5 89 9 16.235 <0.01
PIQ 109 11 121 6 86 6 94213  <0.001
BD 54 9 65 4 40 5 129.143  <0.001
VOC 56 9 61 6 52 9 9.552 <0.01
SIM 52 7 58 5 43 9 25.67 <0.01
MAT 51 6 62 5 46 6 50511  <0.001

Table 1. Average values for Full scale (FSIQ), Performance (PIQ) and Verba 1Qs (VIQ) both

for the overal sample and for High and Low-1Q groups. Main effects of between group

ANCOVA arereported (covariates of age and total brain volume), post-hoc comparisons were all

significant (p<.05, Bonferroni

SIM=similarities; MAT=visuo-spatia abstract reasoning matrices.

corrected). Legend: BD=block design; VOC=vocabulary;
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Supplemental materials and methods

1.1 Intelligence scores

Intellectual performance measure included in tidDIl refers to the Wechsler
Abbreviated Scale of Intelligence (WASI) (Weschl2§99). WASI is a shortened version of
both the Wechsler Adult Scale of Intelligence (WAIS (Weschler, 1997), and the Wechsler
Intelligence Scale for Children (WISC-IV) (Weschl@003). Despite the use of one or multiple
scores arising from a scale may oversimplify thenglex concept of intelligence, this
guantification was needed to obtain a standardigetistically reliable estimation of individual
overall cognitive profile to be correlated with braobustness. The WASI consists of four
subscales - Vocabulary, Similarities, Block Desmmd Matrix Reasoning - leading to three
different scores: a standardized, full-scale irgetice quotient (FSIQ); a verbal 1Q score (VIQ)
which indexes word knowledge, verbal reasoning @mtept formation; as well a performance
IQ score (PIQ) representing abstract reasoningsskisual information processing, visual-motor
coordination, simultaneous processing and learalnitities (see Figure S1 for the results of a
principal component analysis computed on the behaal data used in the robustness analysis).
The psychometric properties of the WASI includehhigpncurrent validity, demonstrated by
strong correlations with the WAIS-III FSIQ (r=.921=248), as well as good reliability
coefficients ranging from .92 to .98 for VIQ, .94 197 for PIQ, .96 to .98 for the full FSIQ

(Ryan, Carruthers, Miller, Souheaver, Gontkovsky Zehr 2003).



1.2 fMRI data acquisition

Imaging data were acquired on a 3.0 T Siemens MBGDM TrioTim (Siemens,
Netherlands). A three-dimensional T1-weighted MPRA@age was acquired in the axial plane
(TR/TE 2500/3.5ms; 192 slices; slice thickness 1rflim;angle 8°; voxel size 1.0x1.0x1.0 m).
Resting-state fMRI data was acquired using T2-weigflBOLD images (TR/TE 2500/30ms; 38
interleaved slices; 260 volumes; slice thicknessn3rflip angle 80°; voxel size 3.0x3.0x3.0

mm). Fieldmaps were also available for each paditi fMRI scan.

1.3 fMRI data preprocessing

Neuroimaging data were preprocessed and analyzdtieadepartment of Medicine,
Surgery and Neuroscience of the University of Sidaanctional images preprocessing was
carried out using a custom-made pipeline based AfMIMB scientific computing environment
(http://www.mathworks.com, MathWorks, MA, USA), agrating several script for
preprocessing freely available for SPM8 (WellcomepBrtment of Cognitive Neurology,
Institute of Neurology, University College Londdnttp://www.fil.ion.ucl.ac.uk/spm/). The first
five volumes of functional images were discarded dach subject to allow for steady-state
magnetization. Echo-Planar Images were (i) corced® inhomogeneity using fieldmaps
regression, then (ii) stripped of skull and othen4terebral tissues, (iii) slice-timed using
interleaved descending acquisition, (iv) realigeed (v) resliced to the mean volume for head
motion correction. Two recent studies suggestet Head motion during MRI scanning may
produces significant changes on functional conmiggtestimation and consequently over local

and global topological indexes used for brain rohess quantification (Power, Barnes, Snyder,
3



Schlaggar, and Petersen 2012;Van Dijk, Sabuncu Barnétner 2012). To tackle this issue we
proceeded using the time series interpolation mhaeebased on displacement indexes proposed
by Power and colleagues (2012), i.e. Frame-wisplatiement (FD) and RMS variance of the
temporal derivative (DVARS). Therefore, functiortahe points showing FD > 0.5 mm and
DVARS > 0.5 have been interpolated using a cublimegunction. Structural images were co-
registered to the mean volume of functional imagyed subsequently segmented using routine in
SPMB8. Hidden Markov Random Field model was appinedrder to remove isolated voxels. To
obtain a more accurate spatial normalization weliegpghe SPM8 DARTEL (Diffeomorphic
Anatomical Registration Through Exponentiated L{&shburner 2007) module, creating a
customized gray matter template from all subjestgimented images. A nonlinear normalization
procedure with subsequent affine-only normalizattonthe Montreal Neurological Institute
(MNI) template brain, and voxel resampling to aatrigpic 3x3x3 mm voxel size were then
applied to functional images. Linear trends wemaeed to reduce the influence of the rising
temperature of the MRI scanner and all functionalumes were band-pass filtered at .01
Hz<f<.08 Hz to reduce low-frequency drifts.

Finally, an important issue for brain connectiwatyd topology estimation is related to the
deconvolution of potential confounding signals 4mhaphysiological high frequency respiratory
and cardiac noise - from the grey matter time csi(@iswal et al. 2010). Here we opted to
regress out motion parameters and signal derivad four regions-of-interest (ROIs) placed in
the white matter and cerebro-spinal fluid (CSF)thwthis approach being proved effective in
enhancing within-subject and test-retest reliapilét 45 minutes and 5-16 months) (Liang et al.

2012;Schwarz and McGonigle 2011).



1.4 Overview of network analysis

Network nodes were defined by parcellating thernbmto 90 cortical and subcortical
Regions of Interest (ROIs) according to the Autamainatomical Labeling atlas (AAL)
(Tzourio-Mazoyer et al. 2002), one of the most camiy employed atlas for network analyses
(Achard and Bullmore 2007;Achard, Salvador, Whit¢l8ickling, and Bullmore 2006;Liu et al.
2008;Wang, Li, Metzak, He, and Woodward 2010). Theputation of topological properties
requires the creation of a so-called adjacencyiratthich graphically represents the overall
brain organization in terms of nodes (brain regioasd edges (representing the statistical
dependency between the BOLD time series of eachopdirain regions). Therefore, adjacency
matrices have been obtained for each subject bypgbny the pairwise zero-lag correlation
coefficients (t”) between the mean BOLD time series of all pogsiabxels inside AAL atlas
regions, leading to a 90x90 matrix with 4005 edges,connections. Given the bivariate normal
distribution of correlation coefficients,values have been “normalized” through the Fisherz
transformation, with these normalized edges reptesgthe whole range of possible functional
links between cortical and/or subcortical regiatmyering both strong (r>0.7), weak (r<0.2>0)
and negative ones (r=<0). Graph topology literatsuggests how the human brain shows
specific properties which make feasible to obtainthe same time, high level of both local and
distributed information processing (Sporns 2013ixtlkermore, several studies have shown how
these properties, for instance modularity and smatldness, may be better identified and
reliably quantified by analyzing thresholded vensad the full adjacency matrix, which basically
corresponds to a partial representation of ovdradin connections above a predetermimed
value (Achard, Salvador, Whitcher, Suckling, andllfBare 2006;Bullmore and Bassett

2011;Sporns and Zwi 2004). This thresholding precésplies the creation of several,
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progressive matrices, each comprising an increasingber of connections (Bullmore and
Bassett 2011;He et al. 2009;Sporns and Zwi 20Q4ytieally, a full matrix will be composed by
all the correlation values between each pair oioreg whereas a matrix with a threshold equal
to 5% (sparsity = 5%), will be composed by a fewrgactions representing the 5% of the most
strong connections in the brain. The applicatioswth procedure in a group of individuals leads
to the creation of a series of equi-sparse netwadhled is, networks of the same size retaining the
same fraction of the maximum possible number ofhegtions for each subject (5%) (Achard,
Salvador, Whitcher, Suckling, and Bullmore 200644t Bullmore, Verchinski, Mattay,
Weinberger, and Meyer-Lindenberg 2008;Hayasaka laadienti 2010). Compared to other
thresholding approaches (e.g., equi-threshold isolyt this approach is thought to reduce
between-subject variability in network parameterayasaka and Laurienti 2010), and has
therefore been widely used for complex networksattarization (Bullmore and Bassett 2011).
The distribution of correlation coefficients phylsigically varies between subjects, and
its shape is implicitly responsible of network pedjes organization (Schwarz and McGonigle
2011;Zalesky, Fornito, and Bullmore 2012). Giverattht may affect brain robustness
computation, consequently, we based our analysisdinidual thresholded matrices instead of
group average connection strengths values. More@ermportant issue in network topology
estimation arises with the high dimensionality @sting-state fMRI dataset, that is the
determination of the actual proportion of rea non-significant connections present in
connectivity/adjacency matrix (Zalesky, Cocchi, mity, Murray, and Bullmore 2012). To
ensure that topological features are computed igtatistically reliable connections, a one-

sample t-test has been computed on each matreafdr participant. Only connections surviving



the False Discovery Rate (FDR, p<.05) correctiamfaltiple comparisons entered the network

lesioning process.

1.5 Deter mine the spar sity range for group comparisons

Several studies suggest to restrict the brainléogyoanalysis to a specific subset of
sparsity values, which represent those where braiwork display the SW behavior (Achard,
Salvador, Whitcher, Suckling, and Bullmore 2006;®g0and Zwi 2004). Even though we
computed and report robustness estimates alongntire sparsity window (1-100%) (see Fig. 2
C-D), ANCOVA has been conducted on data referrmgndividual SW window, which at the
group level corresponded to sparsity values ranfyorg 10% to 31% of all possible connections

(see Fig. 2B).

1.6 Networ k topology nor malization

The analysis of complex networks topological orgation requires the comparisons of
properties of interest with those of randomly redirnetworks having the same degree
distribution (Maslov and Sneppen 2002). A recendgtby Zalensky and colleagues (Zalesky,
Fornito, and Bullmore 2012) has suggested how @ioa-based networks, like the one usually
utilized for brain-networks study, show an inherstnticture which leads to an overestimation of
network small-worldness, with these networks beimgerently more clustered than random
networks. This is mostly due to the implicit ovenestion of direct connection between pairs of
nodes where a strong indirect connection invohartpird node is present, a phenomena known

astrangtivity. Correlation-based networks thus show a higheddeay to fall into the small-



world regime, with implicit consequences also foe testimation of other network properties
such as modularity, centrality or motif counts. ddally, random rewiring processes imply a
loss of information about both the intrinsic dataistures and the “transitivity” information hold
by correlation-based networks, which should beemdtpreserved in order to allow a reliable
comparison. We therefore adopted an approach pedpmg Zalensky and colleagues consisting
of creating a set of null networks directly relatedparticipants original correlation matrices. We
therefore used the Hirschberger-Qi-Steuer (H-Q4{8prdahm (Hirschberger et al., 2004) to
randomly generate null correlation matrices matoét the distribution of each matrix. Their
respective topological properties have been cdedlaand applied for empirical data

normalization, recursively for each participant.

1.7 Resting-State Networ ks definition

Resting-state networks were defined using anat@mmtasks as published by (Shirer,
Ryali, Rykhlevskaia, Menon, and Greicius 2012). Tor@inal ROIs have been created by
applying FSL's MELODIC independent component analy#CA) software to the group-level
resting-state data of a cohort of healthy subje®©fsthe 30 components generated, 14 were
selected visually as being Indipendent Componeased on previous reports by several authors
(Fox, Snyder, Vincent, Corbetta, Van Essen, anctiai2005;Greicius, Krasnow, Reiss, and
Menon 2003) (Smith et al. 2009). In order to avoidtapture activity from white matter, CSF or
other not-grey matter tissues, we masked each R81g individual grey matter masks of each
subjects included in our study. Moreover, in ortieravoid the presence of not-overlapping

regions between the two anatomical parcellationesgs (RSNs and AAL) which could



generate unspecific source of correlation, we atssked each RSN map using the AAL atlas

used for robustness analysis.

Supplemental Results
2.1 Correlation between Intelligence and different robustnessindexes

Compared td_CC, other topological propertie&(E .., Bc) showed less significant - as
well not significant- results for both TA and REn& brain robustness towards TA has been
computed usindsc values as the main criteria for target selectiegyession models have been
computed for all the other metrics except Barin order to avoid potential recursiveness: [TA]
(i) E = FSIQ [f101) =.45, p<.05, R=.16], VIQ [ru01 =.40, p<.05, R=.16] and PIQ [fo1) = .34,
p<.05, R=.09], (i) ELoc = [Fao1)=-37, p<.05, R=.09], VIQ [ruo01) =.34, p<.05, R=.09] and PIQ
[Fao = .29, p<.05, B=.08]; [RE] (i) E = FSIQ [t101=.28, n.s.], VIQ [fio) =.19, p<.05, B=.03]
and PIQ [ro1) = .13, n.s.], (ii)ELoc = [fao1=-21, n.s.], VIQ [f01)=.19, n.s.] and PIQ (o = .17,
n.s.]; (iii) Bc = [ruo1) =.34, p<.05, R=.09], VIQ [ruo1) =.33, p<.05, R=.09] and PIQ [to1) = .25,
p<.05, R=.08]. These results confirmed LCC as the mostiteasnetric for the understanding
of network response to TA and RE (Albert, Jeong] &arabasi 2000;Alstott, Breakspear,
Hagmann, Cammoun, and Sporns 2009), therefore L&&Maen exclusively used in subsequent

analyses.

2.2 Agerelated differences
While the analysis of LCC values across decadas F38) confirmed between groups
(1Q, [TA] Fuy = 3.21, p = .013; [RE] (p = 2.13, p = .039) and age related (Decades, [TAF-

2.78, p = .029; [RE] & = 1,98 p = .042) differences in both TA and REadahe interaction
9



between age, intelligence and brain robustnesstdiglach statistical significance for RE data
(F@ = 0.77 p = .276). However, there was a trend iigmiicance for TA ones (g = 1.21, p =
.093). This suggests the need for further investigaon larger, perfectly balanced samples,

possibly including extensive intelligence datadtder subjects (>70yrs)."
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Supplemental figures

Fig. S1. Principal component analysis. Analysis was run on the individual main 1Qs and
subtests scores. As a confirm of behavioural datdity, the solution presented in the figure
clearly resembles the expected factorial structdirgne WASI, showing a three factors solution
which segregated FSIQ, PIQ and VIQ, as well thespective subtests. Values on the axis

represent factor loadings.

Fig. S2. Between-group comparisons of single pairwise connectivities. The figure shows the
Pearson’s correlation between all pairwise conmiiets (n=4005, AAL atlas) in High and Low
IQ participants. A deviation in the connectivitysttibution is evident in the lowest part of the
graph (orange ellipsoid), with High-1Q individuad®owing stronger pairwise connectivities in

the left tail of the distribution with respect t@w-1Q ones. Such difference may be responsible
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for both the increased variability observed in thbustness towards TA shown in Fig. 2B, as
well for the different sets of regions highly respible for robustness in High and Low-IQ

subjects.

Fig.S3. Largest Connected Component drop at the regional level. The distribution of the

average CC drop for all the regions in the AAL atlas is showfalues on the y-axis represents
the number of regions being disconnected from Hrgelst connected component after the
removal of each region displayed on the x-axis.ilBsurfaces show the five lobes and the

regions belonging to them.

Fig. $4. Agerelated differences. Giving the potential interaction between age,brabustness
and intelligence level, the average LCC size okthiafter the complete removal of all nodes
(within the individual SW windows) for different agdecades has been calculated. Panel A:
subjects with higher 1Q showed increased robustle&ds especially at later ages for both TA

and RE (upper and lower row respectively).

Fig. S5. Seed-based connectivity. Regions identified as more responsible for braioustness
drop during TA simulation have been used as seedpforwise functional connectivity
estimation. A comparison between High and Low-IQtipgpants has been consequently
performed (p<.05, FDR corrected). Those regionsvgigpa higher drop in Low-IQ subjects are

reported, except for language-related regions whakre been included in Fig. 4C. Note: BA6=

17



superior frontal gyrus; BA8=superior frontal gyrumedial part; BA11=middle frontal gyrus -
pars orbitalis ; BA20=inferior temporal lobe ; BA2 middle temporal lobe; BA23=posterior

cingulate cortex.

Fig. S6. Robustness to targeted attacks using different nodal metrics. The panels represent
the average size of tHeCC (y axis) during the targeted lesioning procedurehidgirget nodes

being defined using two additional nodal metrickeotthanBc, that are nodal Degree and
Strength. As for the analysis usiBg, brain robustness has been computed within thieeent
sparsity windows, by retaining an increasing pei@g® of all possible connections in a
decreasing-strength fashion, thus ranging from absdlute stronger connections) to 10006 (
axis). As observed foBc, the results confirm the difference in brain rdibess between High

and Low IQ participants across the small-worldregsssity window (~10-30%).
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