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Abstract  

 Neuroimaging evidences posit human intelligence as tightly coupled with several 

structural and functional brain properties, also suggesting its potential protective role against 

aging and neurodegenerative conditions. However, whether higher-order cognition might in fact 

lead to a more resilient brain has not been quantitatively demonstrated yet. Here we document a 

relationship between individual intelligence quotient (IQ) and brain resilience to targeted and 

random attacks, as measured through resting-state fMRI graph-theoretical analysis in 102 healthy 

individuals. In this modeling context, enhanced brain robustness to targeted attacks in individuals 

with higher IQ is supported by an increased distributed processing capacity despite the 

systematic loss of the most important node(s) of the system. Moreover, brain resilience in 

individuals with higher IQ is supported by a set of neocortical regions mainly belonging to 

language and memory processing network(s), whereas regions related to emotional processing 

are mostly responsible for lower IQ individuals. Results suggest intelligence level among the 

predictors of post-lesional or neurodegenerative recovery, also promoting the evolutionary role 

of higher order cognition, and simultaneously suggesting a new framework for brain stimulation 

interventions aimed at counteract brain deterioration over time. 

 

 

Keywords: intelligence; fMRI; resting state; graph theory; brain connectivity; cognitive reserve; 

functional connectivity; robustness. 
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Highlights 

- Intelligence quotient correlates with brain resilience to targeted and random attacks 

- Language and memory-related regions are strongly related to brain resilience and IQ 

- Regions related to emotion processing are crucial for resilience in Low-IQ subjects 
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1.0 Introduction 

 Intelligent people live longer (Deary 2008). The initial surprise about such a linear 

relationship between intelligence and life expectancy/mortality has been replaced byseveral 

evidences confirming that health inequality partly depends by the individual intelligence level 

(Batty et al. 2009;Batty, Shipley, Gale, Mortensen, and Deary 2008). Several factors might 

account for this interaction, such as the association between early-life intelligence and higher 

levels of education/professional occupations, or the tendency to pursue in more healthy habits in 

terms of sports, smoking, dietary regime and weight control. Furthermore, the correlation 

between intelligence quotient (IQ) and mortality has been also considered a reductive 

argumentation respect to a broader biological theory suggesting its relationship with the 

"overallsystem integrity", thus implying a "more intelligent" brain to be associated to a likewise 

well-functioning body, thereby increasing the probability of a longer life (Deary 2008;Deary and 

Der 2005). 

 On the other side, in the last decade the concept of cognitive reserve (CR) has been 

introduced (Stern 2009a;Stern 2009b), as a framework specifically addressing the individual 

variability between expected and actually observed cognitive capacities across pathological brain 

conditions like cerebrovascular disease (Murray et al. 2011), Parkinson’s disease (Poletti, Emre, 

and Bonuccelli 2011) and multiple sclerosis (Langdon 2011), as well as in healthy elderly 

subjects with brain atrophy (Stern 2002;Stern 2009b). Interestingly, the CR model mainly 

concerns higher-order cognitive functions which pertain to the general intelligence factor "g", 

hence promoting the idea of intelligence as a "buffer"helping to assure a more favorable disease 

outcome in case of brain pathology (Satz, Cole, Hardy, and Rassovsky 2011). 
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Despite the amount of data sustaining the CR model, whether intelligence should be 

considered just as a tool to indirectly achieve a longer life expectancy, or it must be 

conceptualized as a functionally relevant phenotype -that is, expression of a cognitively 

optimized brain towards ageing itself or intercurring neurological insults- is still a matter of 

debate. Consequently, the current study is aimed at investigate the hypothesis that a higher IQ 

translates into a functionally more resilient brain towards physiological aging or pathology-

related loss of regional efficiency, defining "robustness" in the context of a graph-topological 

analysis already used to characterize complex networks behavior at several biological levels 

(Albert, Jeong, and Barabasi 2000a).  

Recent neuroimaging evidence has suggested how the human brain is a complex system 

of interconnected regions spontaneously organized into distinct networks (Achard and Bullmore 

2007a;Craddock et al. 2013;Fox, Snyder, Vincent, Corbetta, Van Essen, and Raichle 

2005;Hagmann et al. 2008;Shehzad et al. 2014;Sporns, Tononi, and Edelman 2002), with such 

organization being highly correlated with individual differences in manifest behaviour, also 

including complex phenotypes like intelligence (Santarnecchi, Galli, Polizzotto, Rossi, and Rossi 

2014;van den Heuvel, Stam, Kahn, and Hulshoff Pol 2009). Moreover, brain modeling based on 

graph-theory allowed to describe such complex organization using indexes referring to notable 

complex networks properties (Sporns 2014), like their capacity for simultaneous local and 

distributed information processing (Eguiluz, Chialvo, Cecchi, Baliki, and Apkarian 

2005;Sepulcre, Liu, Talukdar, Martincorena, Yeo, and Buckner 2010), their organization into 

separate but integrated modules (Achard and Bullmore 2007a;Sporns 2013),and their power-law 

distribution of network nodes importance (Achard, Salvador, Whitcher, Suckling, and Bullmore 

2006). Notably, this topological organization, shared by several complex biological systems, 
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often corresponds to an increased "robustness" (or resilience) against system failure (i.e. random 

error) or deliberated lesioning procedures (targeted attacks) (Albert, Jeong, and Barabasi 

2000b;Bak and Paczuski 1995;Kitano 2004). By providing an estimation of the residual network 

functionality after complete or partial lesions, network simulations allow to infer the response of 

a complex system to both random or targeted attacks, thereby allowing a quantification of 

complex networks’ "goodness" and of their rate of survival against unexpected system 

malfunctioning. Assuming such network robustness as a "dominant" trait, whether intelligence is 

associated with such trait is an unexplored argument of absolute interest, including possible 

implications as to the evolutionary role of human higher order cognition. 

We therefore estimated brain functional robustness towards both random error (RE) and 

targeted attacks (TA) in a group of 102 healthy subjects (49 males, average age = 34 yrs, SD = 

14, range 20-60), in the attempt to address the following issues: (i) does a higher intelligence 

profile level correspond to a more robust brain? If so, (ii) which are the brain regions more or 

less susceptible to TA or RE? (iii) Given the different neurobiological meaning of RE and TA,is 

there a specific relationship between intelligence and these two brain robustness indexes? 

Finally, (iv) given the theoretical yet practical differences between crystallized (Gc) and fluid 

intelligence (Gf) abilities -respectively representing education-related and more innate “on the 

spot” cognitive abilities (Nisbett et al. 2012) - do both equally contribute/correspond to such 

robustness? 

2.0 Materials and Methods 
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 Specific details about the cognitive measures and fMRI preprocessing are included as 

supplemental material and methods. The following sections cover the details about brain 

resilience computation including networks definition, lesioning process and statistical analysis. 

2.1 Sample and behavioral measures 

 Behavioral and neuroimaging data are part of the freely-available NKI-Rockland 

database, belonging to the FCP/INDI sharing initiative (www.fcon_1000.projects.nitrc.org), 

including a phenotypic characterization of 207 healthy subjects (age range 4 to 85 years), as well 

as structural (anatomical and Diffusion Tensor Imaging - DTI) and functional (resting-state 

fMRI) neuroimaging data. Considering our aim to characterize a possible link between 

individual brain robustness and intellectual level, a first concern has been to avoid conditions 

where an additional modulation of these two factors might be present. Thus, we decided to 

circumscribe our analysis to adult subjects (20>sample<60 years), limiting the effect of 

developmental and ageing-related changes of both cognitive and cerebral architecture. A further 

selection of subjects was performed to ensure (i) an equal number of males and females, given 

the evidence of interactions between gender and intellectual abilities (Haier, Jung, Yeo, Head, 

and Alkire 2005;Payton 2009), (ii) an equal distribution of age groups (decades) within the 

overall group and (iii) that all subjects were right-handed. The selection resulted in a final sample 

of 102 right-handed subjects (49 males), with mean age of 34 years (range 18-60, SD = 14) and 

available IQ scores representing overall (Full-scale) IQ as well as verbal and visuospatial IQ 

scores, respectively considered as indexes of Gc and Gf. 

2.2.1 Network lesioning procedure 
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Network nodes were defined by parcellating the brain into 90 cortical and subcortical 

ROIs according to the Automatic Anatomical Labeling atlas (AAL) (Tzourio-Mazoyer et al. 

2002), one of the most commonly employed atlas for network analyses (Achard and Bullmore 

2007a;Achard, Salvador, Whitcher, Suckling, and Bullmore 2006;Liu et al. 2008;Wang, Li, 

Metzak, He, and Woodward 2010). Details about thresholding and sparsity have been included in 

the supplemental methods section. For the sake of readability, all the fMRI preprocessing, 

networks definition and thresholding, graph theoretical metrices computation and lesioning 

procedures are schematized in Fig.1. 

As suggested in the introduction, robustness estimation comprehended two approaches 

for network lesioning, based on random or targeted node removal. These procedures involve the 

calculation of several topology indices, both for guiding the depletion process itself and for the 

estimation of network “well-being” after each depletion, whose explanation requires to assume: 

(N) as the set of all nodes in the network, (n) as the number of nodes, (k) as a specific node, (L) 

as the set of all links in the network, (l) as the number of links, (i, j) as the link between nodes i 

and j, (aij) as the connection status between i and j (aij=1 when link i, j exists; aij = 0 otherwise). 

All the graph properties have been calculated using Matlab functions included in the Brain 

Connectivity Toolbox (https://sites.google.com/site/bctnet/). As suggested in the previous 

section, individual functional connectivity matrices have been thresholded by selecting a 

progressively larger portion of all possible brain connections, leading to the creation of one 

hundred different sparsity matrices for each subject. Considering that each lesioning simulation 

comprised 90 depletions (see Fig.1B), and that it has been performed on each sparsity matrix, the 

overall lesioning process resulted in 90 [depletions] * 100 [sparsity matrices] * 102 [participants] 

simulations, separately for TA and RE.  
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2.2.2 Targeted Attacks and Random Errors 

 The purpose of targeted attacks (TA) procedure is to test the specific importance of 

certain network nodes for overall network stability. Usually, nodes removal follows a specific 

order which reflect the nodal properties of interest, for instance its importance for distributed 

information processing, local computation or modularity of the system. Previous studies about 

brain robustness have focused on different nodal properties, suggesting  “centrality” measures as 

those providing the best robustness estimation (Alstott, Breakspear, Hagmann, Cammoun, and 

Sporns 2009). Well-known measures of centrality are the (i) degree, D, and the (ii) betweness 

centrality, Bc:  while the D of a node k is the number of edges connecting it to other nodes, so 

that largely connected nodes show higher degrees, Bc is expression of the number of shortest 

node-to-node paths that pass through a specific node k, indicating how such node takes part into 

overall brain information processing by supporting other nodes communication through fast (i.e. 

short) connections. Even though there are evidences suggesting Bc as the best estimate of 

centrality for network robustness simulation (Alstott, Breakspear, Hagmann, Cammoun, and 

Sporns 2009), we also computed  the results defining the target nodes by using two additional 

criteria, i.e. the nodal degree and strength of functional connectivity. Results obtained using 

these indexes are reported in figure S6. Therefore, Bc for the node i has been defined as: 

ρ

ρ

'
)(

)2)(1(

1

,,

,
hj

ihj

nni

ijihjh

Njh

bc ∑
≠≠≠

∈
−−=  

whereρhj is the number of shortest paths between h and j, and ρhj (i) is the number of shortest 

paths between h and j that pass through i. As shown in Fig1.B, the lesioning process consisted in 

the (i) estimation of centrality values for each node of the AAL atlas (say Bc), (ii) sorting of 
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nodes based on their Bc value, (iii) removal of the node with higher Bc value. This process is 

recursively applied since all the nodes have been deleted, leading to the progressive creation of 

90 matrices (one for each AAL atlas region).  

 Differently, random errors (RE) are thought to simulate a completely different 

phenomenon, which may affect complex network, i.e. the occurrence of a system failure. 

Random in nature, this event may cause or not a severe impairment to system integrity 

depending on which nodes is being involved. RE are conducted by (i) creating a 1*90 vector of 

randomly selected regions, and by lesioning the network by cutting the node corresponding to 

position (1,1) in the vector. A new 1*89 random vector (containing all regions except for the 

already cut node) is then created and the process continues till all nodes have been removed. To 

ensure a more reliable estimation we performed the entire process 100 times for each matrix and 

averaged the resulting robustness estimates.    

 Theoretically, the intrinsic structure of complex networks following a power-law degree 

distribution, like the human brain, guarantees an higher protection towards RE, by concentrating 

the very large part of information processing on a limited number of core regions which, in terms 

of probability, are supposed to be more difficult to be affected by a random attack. On the other 

side, TA are thought to be more effective in networks following such distribution, with even a 

few surgically planned resections capable to generate highly significant network impairment.  

2.2.4 Network integrity against attack 

 Before the overall process, and between each node(s) depletion, several indices of 

network integrity are calculated, so that a “time course” of brain robustness is obtained while all 

atlas regions are progressively removed. This allows to caught a drop into robustness level at a 
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certain point along the process, which corresponds to the specific removal of a single or a small 

set of brain regions. We calculated measures describing both integration and segregation of 

functions within the brain, aiming at caughting the impact of network lesioning on (i) distributed 

and (ii) local processing. Regards distributed processing, two indices were computed, namely the 

Largest Connected Component –LCC and the Global efficiency – E. The LCC is the typical 

index usually applied for complex networks robustness estimation (Albert, Jeong, and Barabasi 

2000b;Alstott, Breakspear, Hagmann, Cammoun, and Sporns 2009). Basically, it reflects the 

overall network “connectedness”, that is the rate at which is possible to directly or indirectly 

connect each node in the network to each other. Perfectly connected networks, where all nodes 

are linked to each other forming a unique component, naturally guarantee a higher level of 

information spreading. However, complex network usually show a subset of nodes which play a 

crucial role for maintaining the network “connected”, so that their depletion cause most severe 

damage to the overall network integrity by making a large number of other nodes “unreachable”, 

i.e. disconnected from the component. Thus, LCC is defined as the largest number of nodes 

constituting a component after each depletion, and calculated through the estimation of a 

distance matrix - d, whose ij values represent the shortest path length (or distance) between all 

pairs of nodes, computed as: 

auvij

ga
d

jiuv

'∑
∈

=
→←

 

with ��↔� representing the shortest path between nodes i and j (disconneted pairs=∞). Each cell 

within the resulting matrices represents the minimum number of steps (node-to-node 

connections) required to connect each pairs of nodes, so that a (i,j) blank cell indicates the 
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impossibility to directly or indirectly connect node i and j. Consequently, higher LCC values 

represent higher levels of connectedness.  

Network E is defined as:  

,
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 At a neurophysiological level, high E network is guaranteed by nodes placed at short 

distances from each other, a configuration which enables them to interact more directly, i.e. 

faster, consequently promoting high functional integration. In this context, higher values of E 

represent better overall brain information processing. Despite one of the most used network 

integration measures is the average path length, representing the average number of steps along 

the shortest paths for all possible pairs of network nodes, here we preferred E because of its 

lower sensitivity to the presence of disconnected or very weakly connected nodes (Bullmore and 

Bassett 2011;Sporns and Zwi 2004).  

 Differently, local processing is expression of adjacent neuronal population 

synchronization, a functional prerequisite for several cognitive functions within the motor, 

visual, somatosensory and also memory domains (Sepulcre, Liu, Talukdar, Martincorena, Yeo, 

and Buckner 2010). Here we characterized brain segregation using the Local efficiency index – 

ELoc, a measure of the average efficiency within local subgraphs or neighborhood. ELoc has been 

calculated as follow:  
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where�loc,� is the local efficiency of node �, and ��h(��) is the length of the shortest path 

between � and h, that contains only neighbors of �. Higher level of ELoc represent better 

information processing at local level.  

 Furthermore, other topological indexes have been computed in order to determine the 

individual small-worldness window (SW) where the robustness indexes have been extracted. 

First of all, SW has been calculated as: 

rand

rand

LL

CCCC
S

/

/=  

where CC-CCrand and L-Lrand respectively represent the clustering coefficients (CC) and the 

characteristic path lengths (L) of the actual network and of a random network (rand). The average 

path length, L, is defined as: 
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where Li is the average distance between node i and all other nodes. It represents the average 

number of steps along the shortest paths for all possible pairs of network nodes. As an index of 

information processing efficiency, shorter L values usually stand for more efficient networks. 

The clustering coefficient, CC, is defined as: 
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whereCCi is the clustering coefficient of node i (CCi=0 for ki<2). CC is expression of each 

node’s tendency to cluster with neighboring nodes and is thus considered a reliable index of 

network local connectivity. The individual SW window was composed by those matrices 

showing a Small-world value > 1 (Humphries and Gurney, 2008). Compatible with what 
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previously reported, our sample shows network densities corresponding to SW ranging, on 

average, from 10 to 31% (Fig.2B). 

2.3 Statistical analysis 

Statistical analyses were carried out over all topological measures (LCC, E, ELoc, Bc), 

even though the main outcome of interest was composed by LCC as a direct expression of brain 

integrity after each node removal (Alstott, Breakspear, Hagmann, Cammoun, and Sporns 2009). 

We first conducted a linear regression analysis to assess the relationship between IQs (FSIQ, 

VIQ, PIQ) and the average topological properties of all the matrices corresponding to the small-

worldness window of each subject (Humphries and Gurney 2008). Average values for each 

network property (LCC, E, ELoc, Bc) have been inserted as independent variables, while IQs 

scores have been separately included as dependent variables. Furthermore, given the results of 

regression analysis, an Analysis of Covariance (ANCOVA) specifically contrasting the LCC 

values of High and Low-IQ subjects within the small-world window was computed, including 

age, Body Mass Index (BMI), total brain volume (TBV) and gender as covariates. An alpha=.05 

was chosen as significance level for all the analyses, post-hoc comparisons have been computed 

using Bonferroni correction (p<.05).  

The ANOVA has been also used in order to verify the existence of significant between-

groups differences in the distribution of LCC values as a function of age and intelligence. LCC 

values computed within the small-world window have been thus inserted as dependent variables, 

with Group (High and Low-IQ) and Decades as independent variables. Specifically for this 

analysis, a subgroup of subjects belonging to the 61-70yrs decade has been included in the 

sample, resulting in 5 decades (21-30yrs, 31-40yrs, 41-50yrs, 51-60yrs, 61-70yrs). Moreover, 
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given an a priori knowledge about a potential role for brain weak connections into discriminate 

subjects with High and Low IQ (Santarnecchi, Galli, Polizzotto, Rossi, and Rossi 2014a), 

topological measures and robustness indexes have been also computed outside the SW window, 

that is along the entire sparsity range (1%-100%). The same regression model has been than 

calculated by including progressively weaker connectivities (1% sparsity steps), looking for 

potential interactions between intelligence and robustness values derived from connectivity 

matrices including strong, other than weak connections.    

2.4 Definition of robustness-related brain regions 

Along with the identification of an intelligence-brain robustness interaction, we also 

aimed at identifying the importance of specific anatomical regions for the maintaining of brain 

integrity. Consequently, we performed a multivariate classification procedure to assess the 

contribution of each AAL atlas region to the significant difference in brain robustness to TA 

observed between High and Low-IQ groups. Assuming the LCC as the primary index of interest, 

a vector of the drop in LCC size after each region removal has been created (focusing on 

individual SW windows) for each subject, resulting in a 102x90 matrix. Using Weka software 

(Frank, Hall, Trigg, Holmes, and Witten 2004), a support vector machine (SVM) algorithm was 

tested  through leave-one-out cross-validation (folds = 101), resulting in an estimation of the 

overall correct classification percentage (Sensitivity, Specificity, area under the ROC curve) as 

well as to a node specific discriminative weight as expression of each region contribution to the 

overall classification process. However, as the pattern obtained through SVM classification is 

multivariate, regions above the 95th percentile and below the 5th percentile have been assumed 

as representing, respectively, brain regions more sensitive to the lesioning process in the High 

and Low-IQ groups - that is those regions whose removal strongly affect brain integrity by 
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significantly decrease the size of the LCC (Santarnecchi, Galli, Polizzotto, Rossi, and Rossi 

2014). Images were plotted on an inflated three-dimensional brain (Fig.3), with this graphical 

representation showing only the regions that carry most of the discriminative weight - that is, 

those relatively more important to forming the decision boundary. 

 Furthermore, the identification of the most important regions for the observed 

intelligence-robustness interaction allows for the investigation of node-specific features 

supporting such relationship. Therefore, both (i) pairwise functional connectivity and (ii) seed-

to-networks analyses have been computed for all the aforementioned regions. Briefly, functional 

connectivity has been computed -at the single subject level- as the Pearson correlation coefficient 

between the time series of all the regions included in the AAL atlas. Differences in the average 

pattern of connectivity at the group level (High vs Low-IQ) have been calculated using a False 

Discovery Rate (p.=0.05) correction, highlighting increase and decrease in the strength of 

specific connections between each region and the rest of the brain.  

 At the network level, the average time course of BOLD fluctuations within specific 

resting state networks (RSNs) of interest have been extracted, thus representing the average 

connectivity pattern of such networks in individuals with High and Low-IQ scores. 

Consequently, correlation values between RSNs time courses and those of the most discriminant 

regions have been compared across groups (p.<0.05, Bonferroni corrected), highlighting specific 

intelligence-related relationship between such regions and specific networks. RSNs have been 

defined as the results of previous investigations (Allen et al. 2011a;Mantini, Perrucci, Del, 

Romani, and Corbetta 2007), resulting in the definition of nine well-known networks: default-

mode, fronto-parietal control, frontal attention, language, somatomotor, auditor, visual and 

(right-left) working memory networks.     
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3.0 Results 

 A synthetic scheme of the overall procedure for functional connectivity estimation and 

network lesioning is reported in Figure 1. It is noteworthy that, given the limitation of available 

neuroimaging database in terms of sample size and thus age distribution per decade, our 

approach is aimed at identifying a relationship between intelligence and brain resilience 

regardless of age, therefore all analyses have been computed including age as a covariate. 

However, given the potentially relevant role of age for future investigations about brain 

robustness, an additional exploratory analysis of the age*intelligence*robustness interaction has 

been completed on the available data and included as part of the supplementary materials. 

Moreover, in order to rule out the role of brain reserve in such relationship, individual total brain 

volume was regressed out from the analysis as well. Additional details about data preprocessing 

and network analysis are included in the experimental procedures section and supplemental 

information. 

3.1 Correlation between intelligence and brain resilience 

 Significant correlations between brain robustness and Full Scale, Verbal and Performance 

IQ scores emerged (Fig.2A). Even though these correlations were present for both resilience 

indexes and all IQ scores, a pattern of significantly stronger correlation betweenthe robustness 

towards TA -expressed as the size of the largest connected component (LCC) (Albert, Jeong, and 

Barabasi 2000b)- and FSIQ [r(101) =.75, p<.001, R2=.57], VIQ [r(101) =.70, p<.01, R2=.50]and PIQ 

[r(101) = .53, p<.01, R2=.26]respect to the impact of RE [FSIQ, r(101) =.45, p<.001 , R2=.12; VIQ, 

r(101) = .47, p<.01, R2=.14; PIQ, r(101) = .41, p<.01, R2=.15] emerged (results for other indexes of 

distributed and local information processing are included as Supplemental Results). The 
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computation of brain robustness as a function of network sparsity allowed addressing potential 

differences in the size of the LCC across network densities, and thus to evaluate the impact of 

such network thresholding-dependent procedure on robustness estimation. As previously 

reported (Achard and Bullmore 2007a;Watts and Strogatz 1998;Wu et al. 2013), valid arguments 

sustain the a-priori computation of network topology (and robustness) within specific network 

density windows, mainly focusing on brain properties obtained by looking at network 

configurations resembling the so-called small-world (SW) topological organization (Figure 2B) 

(Achard and Bullmore 2007b). Therefore, the results of statistical models computed within the 

SW window have been considered the main outcome of interest. However, TA and RE 

simulations produced strongly different estimation of brain robustness in respect to the 

percentage of nodes that were included in the network (Fig. 2B). Accordingly, panel C highlights 

how the intensity of the correlation with intelligence scores fluctuates as a function of network 

sparsity, with potential opposite results for TA when weak brain connections are taken into 

account (sparsity 80-100%). Results related to other network topological properties are included 

as supplemental results.  

3.2 Identification of resilience-related brain regions 

 By investigating the topological features responsible for the observed intelligence-related 

difference in robustness towards TA, we focused on the identification of those regions whose 

exclusion from the network lead to the larger loss of brain robustness. Therefore, by applying a 

median split segmentation of the entire sample we obtained two groups representing participants 

with High (n = 57; mean age = 35±12; mean FSIQ = 119±7) and Low (n = 45; mean age = 

36±10; mean FSIQ = 84±5) IQ levels (Table 1), with no differences for age (t=.345, p=.534) and 
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gender distribution (χ2 =.403, p=.546). The analysis of the regions mostly responsible for the 

intelligence-robustness interaction was carried out by means of a support vector machine (SVM) 

classification procedure, leading to a IQ-groups classification accuracy of 82,7% (CI=.645-

.876;Sensitivity=.712; Specificity=.867; AUC .912). The distribution of the differences in the 

average LCC drop for each single region of the AAL atlas used to inform the SVM algorithm is 

included in FigureS3. Control analysis using SVM on those regions identified as the most 

important into separating High and Low IQ participants (12/90) led to an IQ-group classification 

accuracy of 75,3% (CI=.612-.798; Sensitivity=.689; Specificity=.833; AUC .856). Among High-

IQ subjects, these regions mostly belonged to a bilateral network encompassing regions 

anatomically and functionally crucial for language processing and production, like pars-

opercularis of the inferior frontal gyrus (BA44) and the middle frontal gyrus (BA46), which 

basically compose the Broca’s area, and the inferior parietal lobe (BA40), mostly corresponding 

to Wernike’s region along with the supramarginal gyrus and a portion of middle temporal gyrus 

(Fig.3A) (Binder, Frost, Hammeke, Cox, Rao, and Prieto 1997a;Cappa 2012;Papathanassiou, 

Etard, Mellet, Zago, Mazoyer, and Tzourio-Mazoyer 2000;Simos et al. 1999). Moreover, regions 

associated to memory processing (mid and inferior temporal lobe [BA21, BA20], middle frontal 

gyrus [BA46], posterior cingulate cortex [BA23]) have been also identified. Interestingly, 

regions being crucial for brain integrity in Low-IQ subjects were all, partially or completely, 

related to the manipulation of emotional content, more precisely left amygdala, right anterior 

cingulated cortex (ACC) and left temporal pole (Devinsky, Morrell, and Vogt 1995;Jimura, 

Konishi, and Miyashita 2009;Kobayashi 2011;Morris et al. 1998)(Fig.3B). 

Given such language-related difference, the possibility of a gender-related effect was 

investigated, resulting in a null difference in the robustness level between female and male 
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participants (Fig.4A). Such finding promoted a further exploration of possible differences in the 

functional connectivity profile of these regions with respect to their correlation with intelligence 

and brain resilience to lesions. In the context of a generalized difference in the overall 

connectivity profile of High and Low IQ subjects (Fig.4B), we consequently investigated for 

potential differences in the average regional connectivity of subjects with High and Low IQs by 

the means of seed-based pairwise connectivity analysis. The results of between-group 

comparisons (p<.05, False Discovery Rate -FDR- corrected) for language network's nodes 

(additional regions’ connectivity profiles are included in Figure S45) and emotion-related 

regions are reported in Figure 4C and Figure 5B respectively. Finally, in order to get an insight 

about the role of such regions in the overall brain organization at rest, we also looked at the 

connections between these regions and anatomically defined resting-state networks (RSN) (Fox, 

Snyder, Vincent, Corbetta, Van Essen, and Raichle 2005). Therefore, average seed-to-network 

functional connectivity values have been calculated in both groups, referring to well known RSN 

encompassing the default-mode, fronto-parietal control, frontal attention, language, 

somatomotor, auditor, visual and working memory networks (Allen et al. 2011b;Mantini, 

Perrucci, Del, Romani, and Corbetta 2007). The results of group comparison (all p<.05, 

Bonferroni corrected) are presented in Figure 4D (High>Low IQ)and Figure 5A (Low>High IQ) 

as the average seed-to-network profile of subjects with High and Low-IQ. Despite region-

specific variations in the differential connectivity patterns, an overall trend for a major 

involvement of the fronto-parietal control, frontal attention and working memory RSNs emerged 

in both groups. Additional details about the aforementioned statistical analyses are included as 

supplementary Material and Methods. 
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 Finally, given the interesting link between CR and age (Bastin et al. 2012;Zihl, Fink, 

Pargent, Ziegler, and Buhner 2014), we also looked at their potential interaction with 

intelligence. By contrasting a model including the average LCC values of High and Low-IQ 

subjects in different decades (see supplemental Methods and Results), we identifying a trending 

to significance interaction between robustness, age and intelligence, possibly forced by an 

augmented robustness in High-IQ subjects older than 50 years respect to Low-IQ ones, with data 

related to TA being more coherent along the entire age range (Fig. S4).  

 

4.0 Discussion 

 Recent advances in brain modeling and neuroimaging techniques have contributed to a 

better understanding of the neurobiological correlates of intelligence (Haier, Jung, Yeo, Head, 

and Alkire 2004;Penke et al. 2012a;Penke et al. 2012b;van den Heuvel, Stam, Kahn, and 

Hulshoff Pol 2009). Interestingly, the correlation between intelligence and epidemiological 

factors has been demonstrated as well, with higher IQ people being reported as having, for 

instance,an higher survival rate and a better social economic status (Deary 2008;Gottfredson 

2004;Pierce, Miller, Arden, and Gottfredson 2009). While intelligence level has been promoted 

as a mediator for more efficient behavior, like improved decision-making abilities in everyday 

life, no evidence has been reported for a more direct link between intelligence level and brain 

intrinsic properties related to its ability to cope with the loss of its functional units. Here we 

document a correlation between IQ and brain robustness as measured through resting-state fMRI 

graph-theoretical analysis, with specific subsets of cortical and subcortical regions mostly 

responsible for such brain feature. This suggests a possible link between the development of 

specific cognitive abilities, the consequential shaping of their neuroanatomical and 
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neurophysiological substrates, and a resultant behavioural pattern inherently leading to improved 

robustness towards brain insults. 

 Robustness is a ubiquitously observed property of complex, evolvable systems (Kitano 

2004). Given its multidimensional nature, encompassing organic biology, mathematics, 

sociology and engineering, our finding allow for a series of theoretical and practical 

considerations. Therefore, we will summarize our discussion focusing on (i) the possible 

biological underpinnings of the intelligence-brain robustness interaction, (ii) its impact into 

determining individual robustness towards acute or chronic brain diseases, (iii) the investigation 

of the role of the specific regions responsible for the observed correlation and the meaning of the 

different interaction with TA and RE, as well (iv) the potential implications of these results 

concerning Non-Invasive Brain Stimulation (NiBS) techniques.  

4.1 Robustness and evolvability 

 Looking at the evolutionary role of "robustness" for biological system, a correlation 

between intelligence and brain robustness to damage sounds like an oversimplified yet expected 

finding. While conceptualized within the framework of different self-organization models, like 

the "Highly Optimized Tolerance" (HOT) (Carlson and Doyle 1999), the scale-free network by 

preferential attachment (Barabasi and Albert 1999) and the self-organized criticality ones (Bak 

and Paczuski 1995), robustness is generally defined as the main feature that allows a system to 

maintain its functions in case of external and internal perturbations (Kitano 2004). It indeed 

represents a clear example of those fundamental systems-level phenomena, self-emerging from 

the inherent structure of the system itself and impossible to be fully understood by looking at the 

individual components of the network. Interestingly, from the biological point of view, 

robustness usually shares the same architectural requirements of evolvability, giving reason why 
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it is ubiquitously reported in living organisms that have evolved (Kitano 2004). More generally, 

two central features of complex systems’ architecture have been proposed as able to facilitate 

evolvability and robustness: a highly resilient and conserved core of processes working as an 

interface for diverse inputs and outputs (signaling, nutrients and products at the molecular 

biology level), and a more versatile mechanism, known as "weak linkage", that somehow 

sustains and facilitate the proper exchange of information between different units of the main 

core (de Visser et al. 2003;Kirschner and Gerhart 1998). Interestingly, the human brain is 

considered among the most complex system in nature, with some of its structural features 

strongly resembling network behaviors ascribed to other biological systems, for instance small-

world configuration (Achard and Bullmore 2007b;Downes et al. 2012). Furthermore, the very 

idea of a stable "central core" has been recently translated at the brain level as well, with a 

"functional backbone" documented as the main component of resting and evoked activity in 

human and other mammals brains (van den Heuvel, Kahn, Goni, and Sporns 2012;van den 

Heuvel and Sporns 2013). As a complementary finding, in a previous study we have documented 

how the vast majority of intelligence-related individual differences in functional connectivity 

falls in the spectrum of the so called "weak ties", i.e. weak connectivities within the left tail of 

the distribution (Santarnecchi, Galli, Polizzotto, Rossi, and Rossi 2014b), a finding which has 

been confirmed also in the current study (see Fig. S2). This similarity posits the suggestive idea 

that, like for robustness and evolvability, also intelligence might be considered a "dominant" 

phenotype whose biological implications are observable in terms of a better ability to cope with 

unexpected events. 

4.2 Robustness and brain pathology 
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 In fact, our results sustain the idea of intelligence as able to explain part of the individual 

differences in the robustness towards neurodegenerative or suddenly intercurring pathological 

conditions, suggesting a possible connection with the CR model (Stern 2009b).The idea that 

"some people appears to be more resilient to brain changes than others" (Stern 2012) has opened 

a new research field in contemporary neuroscience, aimed at understanding both the underlying 

mechanisms and candidate biomarkers for this buffer, with evidences also pointing at specific 

brain topology configurations which have been proven to be altered in pathological conditions. 

Interestingly, even though brain robustness has not been tested in a large number of pathological 

conditions, alterations in network metrics highly correlated with robustness, such as clustering 

coefficient, modularity and small-worldness, have been reported in schizophrenia (Bassett, 

Bullmore, Verchinski, Mattay, Weinberger, and Meyer-Lindenberg 2008;He et al. 2012;Yu et al. 

2011), Alzheimer’s disease (Reijmer, Leemans, Caeyenberghs, Heringa, Koek, and Biessels 

2013;Zhao et al. 2012), autism (Belmonte, Allen, Beckel-Mitchener, Boulanger, Carper, and 

Webb 2004;Maximo, Keown, Nair, and Muller 2013), ADHD (Castellanos, Kelly, and Milham 

2009;Castellanos and Proal 2012), and dementia (Pievani, de, Wu, Seeley, and Frisoni 2011). 

Furthermore, our finding suggest topological properties among those related to distributed 

information processing -instead of local computation- as mostly representative to the robustness-

intelligence correlation, suggesting a potential framework for the ability to successfully 

reallocate resources behind the CR model. Interestingly, the idea ofa possible correlation 

between premorbid brain robustness level and individual shielding towards pathology also seems 

to couple together with recent contributions documenting how intelligence level effectively 

shapes brain networks dynamics towards a pattern strongly supporting the CR concept (Fischer, 

Wolf, Scheurich, and Fellgiebel 2014;Stern 2009a).  While our data provide new interesting 
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insights in this direction, also promoting a possible age-dependent modulation of such interaction 

as well as partially excluding potential interaction with "brain reserve" (Bartres-Faz and 

Arenaza-Urquijo 2011;Stern 2002), longitudinal studies involving both healthy and pathological 

subjects across the life span are needed. 

4.3 The intelligence-robustness interaction in the brain 

 The differential interaction between intelligence level and the robustness to TA and RE 

might reflect the network-structure idea behind these two diverse -basically opposite- types of 

robustness indexes. While the former process is based on targeting the most important region(s) 

of the brain first, thus theoretically inducing the larger disruption to the overall network integrity 

in just a few steps, the latter is based on a completely random targeting (Alstott, Breakspear, 

Hagmann, Cammoun, and Sporns 2009), leading to different network organizations which may 

be better shielded against one or the other procedure. Given an highly centralized system where 

the vast majority of the information is handled by a small subset of network nodes -like the 

human brain-, TA certainly represents the most dangerous configuration: stroke is a paradigmatic 

example, in which also its sudden occurrence might play a role in overall network dysfunction. 

On the other hand, the RE approach relies on the small probability that the most important 

regions (being just a small portion of the entire population) are being randomly targeted, making 

this procedure less likely to induce a dramatic network impairment, unless the lesioning process 

is protracted in time as in a slowly progressing neurodegenerative disease. The fact that 

intelligence, and more significantly FSIQ and VIQ, correlates mostly with robustness to TA 

inherently suggests how intelligence may interact - "shape" - brain network configuration. By 

implying intelligence as responsible for a more widespread and efficient brain resource 

allocation at rest, our results support previous observations of a positive spatial correlation 
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between intelligence level and brain volumes -mostly encompassing frontal, parietal and 

occipital lobes (Colom, Jung, and Haier 2006;Colom, Karama, Jung, and Haier 2010), 

contrasting the idea of prefrontal cortices as primary brain sites related to intelligence level 

(Duncan et al. 2000). Moreover, in the context of the CR theory, this may give reason of the 

better capacity to keep the network working properly on the ground a less-centralized system, 

where different operations may be successfully executed along different paths. However, even 

though this implies an increased equality across brain regions importance, a small subset of 

regions still could play a predominant role in more intelligent brains, leading to two interesting 

findings. 

 First of all, identified regions encompassing frontal, parietal and temporal lobes resemble 

those belonging to a widely recognized theory about the neuroanatomical substrate of human 

intelligence, that is the Parieto-Frontal Integration Theory (P-FIT) (Jung and Haier 2007) (see 

Figure  6). In the last few years the P-FIT has received large experimental support using a 

number of imaging techniques, such as structural (Narr et al. 2007), diffusion weighted (Chiang 

et al. 2009) and functional MRI (Choi et al. 2008;Yuan, Qin, Wang, Jiang, Zhang, and Yu 2012), 

circumscribing the individual variability in intelligence level to the functional coupling between 

prefrontal, parietal and temporal lobes regions interplay. It is therefore reasonable that the same 

regions also contributed to the overall intelligence-related increase in network robustness, which 

is in turn dependent on their centrality and global efficiency (Alstott, Breakspear, Hagmann, 

Cammoun, and Sporns 2009). Generally, our results confirm the idea of a primary role of 

parietal, frontal and temporal regions into explaining intelligence variability, meanwhile 

originally suggesting these very regions as also responsible for higher brain robustness in more 

intelligent subjects. However, whether the increase in intelligence level do trigger or, on the 
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contrary, results from the inherent modulation of brain networks organization -which in turn lead 

to an increase in robustness- remains obscure. Such hypothesis would require a longitudinal 

evaluation or larger cross-sectional studies in order to look at the interaction between these 

factors at different ages. Secondly, the subset of regions showing the higher discriminatory 

power between High and Low IQ subjects are integral part of the language processing network, 

specifically the pars-opercularis of the inferior frontal gyrus (BA44), the inferior parietal lobe 

(BA40) and the middle frontal gyrus (BA46) (Binder, Frost, Hammeke, Cox, Rao, and Prieto 

1997b;Simos et al. 1999). Interestingly, an additional seed-based functional connectivity analysis 

on these language-related regions showed a peculiar difference in the functional connectivity 

profile of the two IQ classes, with High-IQ individuals reporting decreased within-network and 

increased network-rest-of-the-brain connectivity with respect to Low-IQ ones. Moreover, these 

regions also showed, for instance, significantly increased and decreased connectivity between 

working memory resting-state networks and, respectively, prefrontal and parietal regions. The 

interpretation of these results clearly goes beyond the intent of the present study, even though 

they suggest how those regions responsible for the drop in the LCC size may represent a core set 

of brain areas whose connectivity might play a role to explain IQ-related individual differences, 

regardless of their role for robustness. Further studies are required to explore such interaction by 

adopting a more in-depth battery of neuropsychological tests specifically focused on these 

cognitive dimensions. Moreover, fluid (Gf, represented here as PIQ) and crystallized (Gc, 

represented here as VIQ) components of intelligence did not show any significant differential 

interaction with brain robustness to TA. Even though verbal and performance WASI subscores 

can be roughly utilized as estimates of Gf and Gc, such distinction is not entirely part of the 

theoretical work behind nor the WASI (Weschler, 1999) neither its full-length counterpart WAIS 
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(Weschler, 1997). Therefore, such hypothesis should be then tested using specifically tuned 

instruments as well (Matzen, Benz, Dixon, Posey, Kroger, and Speed 2010;Santarnecchi et al. 

2013).    

4.4 Robustness as a testing platform for brain flexibility 

 Finally, it is noteworthy that the theoretical approach described here cannot take into 

account that a TA may trigger adaptive mechanisms in the living brain (i.e., brain plasticity), 

which usually tends to partly compensate the effects of the lesion. However, this opens new 

interesting scenarios where the predictive power of this kind of simulation over the actual 

recovery observed in patients may be tested. For instance, increasing spatial resolution of the TA 

may lead to the identification of fine-grained robustness-based biomarker, which may be applied 

in early stages of neurodegenerative processes. Moreover, the interaction between intelligence 

and brain resilience could also be tested in a dynamic fashion using agent-based models(Joyce, 

Hayaska, and Laurienti 2012;Joyce, Laurienti, and Hayasaka 2012), where the reaction of the 

network to the injection of a signal in a specific node is tested through time(Joyce, Hayasaka, 

and Laurienti 2013). Within the same context, current results also open an original perspective 

into the understanding of the mechanisms by which brain stimulation techniques as Transcranial 

Magnetic Stimulation (TMS) (Barker, Jalinous, and Freeston 1985;Pascual-Leone, Walsh, and 

Rothwell 2000;Rossi and Rossini 2004a), transcranial Direct Current Stimulation (tDCS) or 

transcranial Alternate Current Stimulation (tACS) (Nitsche and Paulus 2011;Paulus 2011) might 

exert their actions on brain networks by physically inducing the targeted (or random) attacks we 

have modeled. The field of "perturbation-based imaging" is exponentially growing, both for 

research and clinical perspectives (Pascual-Leone et al. 2011;Rossini and Rossi 2007), based on 

the concept that these techniques, at experimenters’ demands, can allow to both inhibit (i.e., 
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"disconnect" from the system, a process which resemble our node-depletion approach) oreven 

enhance specific brain regions activity (Feurra, Bianco, Santarnecchi, Del, Rossi, and Rossi 

2011;Rossi and Rossini 2004b;Santarnecchi et al. 2013;Terney, Chaieb, Moliadze, Antal, and 

Paulus 2008), with a cascade of effects over nodes belonging to the same network or even in 

remotely interconnected regions (Casali, Casarotto, Rosanova, Mariotti, and Massimini 

2010;Massimini, Boly, Casali, Rosanova, and Tononi 2009;Polania, Paulus, Antal, and Nitsche 

2011). To correlate connectivity patterns obtained using TMS-EEG or TMS-fMRI in individual 

with different cognitive profiles could provide insights about the relationship between brain 

response (in a sense, an index of "brain flexibility", which might partly account for individual 

responsiveness to the external perturbation) and general cognitive features, thus confirming the 

protective role of higher order cognitive functions. 

5.0 Conclusion 

 Current results contribute to widen the concept of intelligence from “the substrate 

required to solve complex tasks” towards a factor significantly influencing several aspects of 

human well-being through behavioral and biological cascade effects, also promoting the 

evolutionary role of higher order cognition and its protective role against ageing and 

neurodegenerative process. 
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FIGURES AND TABLES LEGENDS 

 

Fig.1.Functional MRI preprocessing and graph-topological brain resilience analysis 

workflow. Schematic representation of the major steps for brain resilience estimation, involving 

images preprocessing, thresholding procedure based on connectivity strength and topology 

indices computation. Panel A:functional images underwent canonical preprocessing involving 

two different approaches for motion correction, removal of possible confounding factors related 

to breathing and cardiac signals, temporal band-pass filtering, coregistration and spatial 

normalization using the DARTEL module for SPM. The Anatomical Labeling Atlas (AAL) was 

used for resting-state parcellation into regions of interest and consequent BOLD signal time 

series extraction. In order to retain only significant connections (Panel B, upper line), a one-

sample t-test was applied over individual connectivity matrices obtained during the thresholding 

process (n=100), which has been computed for the entire sparsity range (1-100%) using 1% 

sparsity steps. Matrices followed two separated workflows for Targeted Attacks (TA) and 

Random Error (RE) simulations. In order to normalize graph topology indices (Panel B, lower 

line), a Hirschberger-Qi-Steuer algorithm was used to create transitivity-preserved null networks 

based on random correlation matrices matched for degree-distribution. All steps were performed 

at the single subject level. Additional details about topology indices estimation and lesioning 

procedure are provided in supplemental methods.  
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Fig.2. Brain Robustness and Intelligence correlation. Panel A: correlations between Full-scale 

(FSIQ), Verbal (VIQ) and Performance (PIQ) Intelligence Quotients(obtained at the WASI test, 

x axis) and brain robustness to TA and RE, expressed as the average size of the largest connected 

component (LCC, y axis) in the network after a the lesioning procedure. Histograms (in grey) 

represent data distribution in the overall sample for FSIQ, as well as LCC values, for both TA 

and RE simulations. Panel B: the lesioning procedure has been computed within the entire 

sparsity windows, by retaining an increasing percentage of all possible connections in a 

decreasing-strength fashion, thus ranging from 1% (absolute stronger connections) to 100% (x 

axis). However, as commonly applied for graph-theoretical analysis, correlations with IQ scores 

have been performed by using connectivity data within each subject’s small-world sparsity 

window (group average = 10%-31%). Therefore, scatterplots in A and line plots in B refer to the 

LCC size calculated within such window, while surface plots in B, as well as data in C and D, 

display results for the entire sparsity range. As visible in the surface plots, LCC values for TA 

and RE follow different distributions along the sparsity windows, showing most of the individual 

differences within the low-sparsity range for RE and 70-90% window for TA. As shown in C 

(data are grouped into sparsity deciles), this produces different correlation patterns for the two 

robustness indexes, with an opposite pattern of correlation (Pearson’s product-moment 

correlation coefficient) for the last two sparsitydeciles during TA simulation, an effect which is 

mostly driven by the inclusion of brain weak connections. At a higher resolution level, panel D 

shows positive (red) and negative (blue) correlations between intelligence quotients and LCC as 

a function of sparsity and % of nodes removed from the network. 
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Fig.3. Brain Regions responsible for robustness differences. Panel A shows brain regions 

responsible for higher robustness in High- vs Low-IQ participants during TA simulation, as 

identified by usingsupport vector machine classification. These regions, mainly represented in 

the bilateral frontal, parietal and temporal lobes, contributed the most in the drop of robustness 

(decrease in the size of the LCC) after their removal from the network, with an average drop in 

LCC size equal to 14 nodes. Conversely, a smaller set of regions was also identified as 

responsible for a greater drop in robustness in Low-IQ participants vs High-IQ ones (B). 

Moreover, a plot of the average drop (see colorbar) for each brain region of the AAL atlas (x 

axis) across the small-worldness sparsity range (y axis) is provided in panel C separately for the 

two groups. Accordingly to panel A, regions belonging to frontal, temporal and parietal lobes 

(mostly resembling the P-Fit model of intelligence) vehicle the most important robustness-

related connections in subjects with higher intelligence quotients. 
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Fig.4. Pairwise functional connectivity and seed-to-network analysis results.Panel A shows 

no differences in the average size of the LCC in male and female participants, ruling out the 

hypothesis of a gender-effect as responsible for the major involvement of language-related 

regions (BA40, 44 and 46) into High and Low-IQ individuals discrimination, while a difference 

in the pairwise connectivity profile referring to frontal, limbic and parietal lobes emerged 

(B)(colorcode represent differences in functional connectivity - FC). A subsequent seed-based 

connectivity analysis based on those regions responsible for the largest drop in LCC size in High 

and Low-IQ participants has been performed, with the results for language-related regions 

reported in panel C. Interestingly, a pattern of decreased between-regions connectivity,as well an 

increased long-range, mostly inter-hemispheric connections for participants with higher IQ were 

identified (C, p.<0.05; results for remaining regions are included in Figure S5). Moreover an 

additional connectivity analysis between the regions responsible for the largest LCC drop in 

High-IQ participants and anatomically-defined resting-state networks (RSN) has been tested: 

this, showed a region-specific pattern of group differences in connectivity, mostly involving left 

and right working memory (WM), frontal attention (FA) and fronto-parietal control (FPC) 

networks. * indicate statistically significant IQ-related differences in seed-to-RSN correlation 

coefficient (p.<0.05, Bonferronicorrected). 
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Fig.5 Functional connectivity analysis in regions responsible for greater LCC drop in Low-

IQ participants. Panel A and B respectively show the results of seed-to-RSN and pairwise 

functional connectivity analyses for regions shown in Figure 1B (i.e. left amygdala, left temporal 

pole and right anterior cingulate cortex - ACC).Increased connectivity in Low-IQ participants 

between amygdala and both DMN and right WM network were identified, as well as increased 

connectivity between left ACC and the Fronto Parietal Control Network (FPCN). * indicates 

statistically significant IQ-related differences in seed-to-RSN correlation coefficient (p.<0.05, 

Bonferroni corrected). 
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Fig. 6. The P-FIT network of human intelligence. The most relevant brain regions 

(Broadmann areas) belonging to the Parieto-Frontal Integration Theory network are plotted on an 

inflated brain surface. The figure shows both the overall bilateral network and a subsample 

composed solely by those regions being present uniquely on the left hemisphere (left-lateralized 

component) and highly resembling the network identify in High-IQ individuals. Numbers 

represent Brodmann areas. 
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Overall 
dataset   High IQ   Low IQ   ANOVA main effect 

  
M102 SD102  

M102 SD102  
M102 SD102  

F sig. 

FSIQ 114 11 119 7 84 5 156.234 <0.001 

VIQ 111 9 116 5 89 9 16.235 <0.01 

PIQ 109 11 121 6 86 6 94.213 <0.001 

BD 54 9 65 4 40 5 129.143 <0.001 

VOC 56 9 61 6 52 9 9.552 <0.01 

SIM 52 7 58 5 43 9 25.67 <0.01 

MAT 51 6 62 5 46 6 59.511 <0.001 
                        

    
 

Table 1. Average values for Full scale (FSIQ), Performance (PIQ) and Verbal IQs (VIQ) both 

for the overall sample and for High and Low-IQ groups. Main effects of between group 

ANCOVA are reported (covariates of age and total brain volume), post-hoc comparisons were all 

significant (p<.05, Bonferroni corrected). Legend: BD=block design; VOC=vocabulary; 

SIM=similarities; MAT=visuo-spatial abstract reasoning matrices. 
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Supplemental materials and methods 

1.1 Intelligence scores 

 Intellectual performance measure included in the INDI refers to the Wechsler 

Abbreviated Scale of Intelligence (WASI) (Weschler, 1999). WASI is a shortened version of 

both the Wechsler Adult Scale of Intelligence (WAIS-III) (Weschler, 1997), and the Wechsler 

Intelligence Scale for Children (WISC-IV) (Weschler, 2003). Despite the use of one or multiple 

scores arising from a scale may oversimplify the complex concept of intelligence, this 

quantification was needed to obtain a standardized, statistically reliable estimation of individual 

overall cognitive profile to be correlated with brain robustness. The WASI consists of four 

subscales - Vocabulary, Similarities, Block Design and Matrix Reasoning - leading to three 

different scores: a standardized, full-scale intelligence quotient (FSIQ); a verbal IQ score (VIQ) 

which indexes word knowledge, verbal reasoning and concept formation; as well a performance 

IQ score (PIQ) representing abstract reasoning skills, visual information processing, visual-motor 

coordination, simultaneous processing and learning abilities (see Figure S1 for the results of a 

principal component analysis computed on the behavioural data used in the robustness analysis). 

The psychometric properties of the WASI include high concurrent validity, demonstrated by 

strong correlations with the WAIS-III FSIQ (r=.92; n=248), as well as good reliability 

coefficients ranging from .92 to .98 for VIQ, .94 to .97 for PIQ, .96 to .98 for the full FSIQ 

(Ryan, Carruthers, Miller, Souheaver, Gontkovsky, and Zehr 2003).  
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1.2 fMRI data acquisition 

 Imaging data were acquired on a 3.0 T Siemens MAGNETOM TrioTim (Siemens, 

Netherlands). A three-dimensional T1-weighted MPRAGE image was acquired in the axial plane 

(TR/TE 2500/3.5ms; 192 slices; slice thickness 1mm; flip angle 8°; voxel size 1.0×1.0×1.0 m). 

Resting-state fMRI data was acquired using T2-weighted BOLD images (TR/TE 2500/30ms; 38 

interleaved slices; 260 volumes; slice thickness 3mm; flip angle 80°; voxel size 3.0×3.0×3.0 

mm). Fieldmaps were also available for each participant fMRI scan.  

 

1.3 fMRI data preprocessing 

 Neuroimaging data were preprocessed and analyzed at the department of Medicine, 

Surgery and Neuroscience of the University of Siena. Functional images preprocessing was 

carried out using a custom-made pipeline based on MATLAB scientific computing environment 

(http://www.mathworks.com, MathWorks, MA, USA), integrating several script for 

preprocessing freely available for SPM8 (Wellcome Department of Cognitive Neurology, 

Institute of Neurology, University College London; http://www.fil.ion.ucl.ac.uk/spm/). The first 

five volumes of functional images were discarded for each subject to allow for steady-state 

magnetization. Echo-Planar Images were (i) corrected for inhomogeneity using fieldmaps 

regression, then (ii) stripped of skull and other non-cerebral tissues, (iii) slice-timed using 

interleaved descending acquisition, (iv) realigned and (v) resliced to the mean volume for head 

motion correction. Two recent studies suggested that head motion during MRI scanning may 

produces significant changes on functional connectivity estimation and consequently over local 

and global topological indexes used for brain robustness quantification (Power, Barnes, Snyder, 
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Schlaggar, and Petersen 2012;Van Dijk, Sabuncu, and Buckner 2012). To tackle this issue we 

proceeded using the time series interpolation procedure based on displacement indexes proposed 

by Power and colleagues (2012), i.e. Frame-wise displacement (FD) and RMS variance of the 

temporal derivative (DVARS). Therefore, functional time points showing FD > 0.5 mm and 

DVARS > 0.5 have been interpolated using a cubic spline function. Structural images were co-

registered to the mean volume of functional images and subsequently segmented using routine in 

SPM8. Hidden Markov Random Field model was applied in order to remove isolated voxels. To 

obtain a more accurate spatial normalization we applied the SPM8 DARTEL (Diffeomorphic 

Anatomical Registration Through Exponentiated Lie) (Ashburner 2007) module, creating a 

customized gray matter template from all subjects’ segmented images. A nonlinear normalization 

procedure with subsequent affine-only normalization to the Montreal Neurological Institute 

(MNI) template brain, and voxel resampling to an isotropic 3x3x3 mm voxel size were then 

applied to functional images. Linear trends were removed to reduce the influence of the rising 

temperature of the MRI scanner and all functional volumes were band-pass filtered at .01 

Hz<f<.08 Hz to reduce low-frequency drifts.  

Finally, an important issue for brain connectivity and topology estimation is related to the 

deconvolution of potential confounding signals - mainly physiological high frequency respiratory 

and cardiac noise - from the grey matter time courses (Biswal et al. 2010). Here we opted to 

regress out motion parameters and signal derived from four regions-of-interest (ROIs) placed in 

the white matter and cerebro-spinal fluid (CSF), with this approach being proved effective in 

enhancing within-subject and test-retest reliability (at 45 minutes and 5-16 months) (Liang et al. 

2012;Schwarz and McGonigle 2011).  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

 

1.4 Overview of network analysis 

 Network nodes were defined by parcellating the brain into 90 cortical and subcortical 

Regions of Interest (ROIs) according to the Automatic Anatomical Labeling atlas (AAL) 

(Tzourio-Mazoyer et al. 2002), one of the most commonly employed atlas for network analyses 

(Achard and Bullmore 2007;Achard, Salvador, Whitcher, Suckling, and Bullmore 2006;Liu et al. 

2008;Wang, Li, Metzak, He, and Woodward 2010). The computation of topological properties 

requires the creation of a so-called adjacency matrix, which graphically represents the overall 

brain organization in terms of nodes (brain regions) and edges (representing the statistical 

dependency between the BOLD time series of each pair of brain regions). Therefore, adjacency 

matrices have been obtained for each subject by computing the pairwise zero-lag correlation 

coefficients (“r”) between the mean BOLD time series of all possible voxels inside AAL atlas 

regions, leading to a 90x90 matrix with 4005 edges, i.e. connections. Given the bivariate normal 

distribution of correlation coefficients, r values have been “normalized” through the Fisher r to z 

transformation, with these normalized edges representing the whole range of possible functional 

links between cortical and/or subcortical regions, covering both strong (r>0.7), weak (r<0.2>0) 

and negative ones (r=<0). Graph topology literature suggests how the human brain shows 

specific properties which make feasible to obtain, at the same time, high level of both local and 

distributed information processing (Sporns 2013). Furthermore, several studies have shown how 

these properties, for instance modularity and small-worldness, may be better identified and 

reliably quantified by analyzing thresholded version of the full adjacency matrix, which basically 

corresponds to a partial representation of overall brain connections above a predetermined r 

value (Achard, Salvador, Whitcher, Suckling, and Bullmore 2006;Bullmore and Bassett 

2011;Sporns and Zwi 2004). This thresholding process implies the creation of several, 
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progressive matrices, each comprising an increasing number of connections (Bullmore and 

Bassett 2011;He et al. 2009;Sporns and Zwi 2004). Practically, a full matrix will be composed by 

all the correlation values between each pair of regions, whereas a matrix with a threshold equal 

to 5% (sparsity = 5%), will be composed by a few connections representing the 5% of the most 

strong connections in the brain. The application of such procedure in a group of individuals leads 

to the creation of a series of equi-sparse networks, that is, networks of the same size retaining the 

same fraction of the maximum possible number of connections for each subject (5%) (Achard, 

Salvador, Whitcher, Suckling, and Bullmore 2006;Bassett, Bullmore, Verchinski, Mattay, 

Weinberger, and Meyer-Lindenberg 2008;Hayasaka and Laurienti 2010). Compared to other 

thresholding approaches (e.g., equi-threshold solution), this approach is thought to reduce 

between-subject variability in network parameters (Hayasaka and Laurienti 2010), and has 

therefore been widely used for complex networks characterization (Bullmore and Bassett 2011).  

The distribution of correlation coefficients physiologically varies between subjects, and 

its shape is implicitly responsible of network properties organization (Schwarz and McGonigle 

2011;Zalesky, Fornito, and Bullmore 2012). Given that it may affect brain robustness 

computation, consequently, we based our analysis on individual thresholded matrices instead of 

group average connection strengths values. Moreover, an important issue in network topology 

estimation arises with the high dimensionality of resting-state fMRI dataset, that is the 

determination of the actual proportion of real vs non-significant connections present in 

connectivity/adjacency matrix (Zalesky, Cocchi, Fornito, Murray, and Bullmore 2012). To 

ensure that topological features are computed upon statistically reliable connections, a one-

sample t-test has been computed on each matrix for each participant. Only connections surviving 
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the False Discovery Rate (FDR, p<.05) correction for multiple comparisons entered the network 

lesioning process.  

1.5 Determine the sparsity range for group comparisons 

 Several studies suggest to restrict the brain topology analysis to a specific subset of 

sparsity values, which represent those where brain network display the SW behavior (Achard, 

Salvador, Whitcher, Suckling, and Bullmore 2006;Sporns and Zwi 2004). Even though we 

computed and report robustness estimates along the entire sparsity window (1-100%) (see Fig. 2 

C-D), ANCOVA has been conducted on data referring to individual SW window, which at the 

group level corresponded to sparsity values ranging from 10% to 31% of all possible connections 

(see Fig. 2B).  

   

1.6 Network topology normalization 

 The analysis of complex networks topological organization requires the comparisons of 

properties of interest with those of randomly rewired networks having the same degree 

distribution (Maslov and Sneppen 2002). A recent study by Zalensky and colleagues (Zalesky, 

Fornito, and Bullmore 2012) has suggested how correlation-based networks, like the one usually 

utilized for brain-networks study, show an inherent structure which leads to an overestimation of 

network small-worldness, with these networks being inherently more clustered than random 

networks. This is mostly due to the implicit overestimation of direct connection between pairs of 

nodes where a strong indirect connection involving a third node is present, a phenomena known 

as transitivity. Correlation-based networks thus show a higher tendency to fall into the small-
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world regime, with implicit consequences also for the estimation of other network properties 

such as modularity, centrality or motif counts. Practically, random rewiring processes imply a 

loss of information about both the intrinsic data structures and the “transitivity” information hold 

by correlation-based networks, which should be instead preserved in order to allow a reliable 

comparison. We therefore adopted an approach proposed by Zalensky and colleagues consisting 

of creating a set of null networks directly related to participants original correlation matrices. We 

therefore used the Hirschberger-Qi-Steuer (H-Q-S) algorithm (Hirschberger et al., 2004) to 

randomly generate null correlation matrices matched with the distribution of each matrix. Their 

respective topological properties have been calculated and applied for empirical data 

normalization, recursively for each participant.  

 

1.7 Resting-State Networks definition 

 Resting-state networks were defined using anatomical masks as published by (Shirer, 

Ryali, Rykhlevskaia, Menon, and Greicius 2012). The original ROIs have been created by 

applying FSL’s MELODIC independent component analysis (ICA) software to the group-level 

resting-state data of a cohort of healthy subjects. Of the 30 components generated, 14 were 

selected visually as being Indipendent Components based on previous reports by several authors 

(Fox, Snyder, Vincent, Corbetta, Van Essen, and Raichle 2005;Greicius, Krasnow, Reiss, and 

Menon 2003) (Smith et al. 2009). In order to avoid to capture activity from white matter, CSF or 

other not-grey matter tissues, we masked each RSN using individual grey matter masks of each 

subjects included in our study. Moreover, in order to avoid the presence of not-overlapping 

regions between the two anatomical parcellation schemes (RSNs and AAL) which could 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

generate unspecific source of correlation, we also masked each RSN map using the AAL atlas 

used for robustness analysis. 

 

Supplemental Results 

2.1 Correlation between Intelligence and different robustness indexes 

Compared to LCC, other topological properties (E, ELoc, Bc) showed less significant - as 

well not significant- results for both TA and RE. Since brain robustness towards TA has been 

computed using Bc values as the main criteria for target selection, regression models have been 

computed for all the other metrics except for Bc in order to avoid potential recursiveness: [TA] 

(i) E = FSIQ [r(101) =.45, p<.05, R2=.16], VIQ [r(101) =.40, p<.05, R2=.16] and PIQ [r(101) = .34, 

p<.05, R2=.09], (ii) ELoc =  [r(101) =.37, p<.05, R2=.09], VIQ [r(101) =.34, p<.05, R2=.09] and PIQ 

[r(101) = .29, p<.05, R2=.08]; [RE] (i) E = FSIQ [r(101) =.28, n.s.], VIQ [r(101) =.19, p<.05, R2=.03] 

and PIQ [r(101) = .13, n.s.], (ii) ELoc =  [r(101) =.21, n.s.], VIQ [r(101) =.19, n.s.] and PIQ [r(101) = .17, 

n.s.]; (iii) Bc =  [r(101) =.34, p<.05, R2=.09], VIQ [r(101) =.33, p<.05, R2=.09] and PIQ [r(101) = .25, 

p<.05, R2=.08]. These results confirmed LCC as the most sensitive metric for the understanding 

of network response to TA and RE (Albert, Jeong, and Barabasi 2000;Alstott, Breakspear, 

Hagmann, Cammoun, and Sporns 2009), therefore LCC has been exclusively used in subsequent 

analyses.   

 

2.2 Age related differences 

While the analysis of LCC values across decades (Fig. S3) confirmed between groups 

(IQ, [TA] F(1) = 3.21, p = .013; [RE] F(1) = 2.13, p = .039) and age related (Decades, [TA] F(4) = 

2.78, p = .029; [RE] F(4) = 1,98 p = .042) differences in both TA and RE data, the interaction 
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between age, intelligence and brain robustness didn't reach statistical significance for RE data 

(F(3) = 0.77 p = .276). However, there was a trend for significance for TA ones (F(3) = 1.21, p = 

.093). This suggests the need for further investigation on larger, perfectly balanced samples, 

possibly including extensive intelligence data for older subjects (>70yrs)." 
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Supplemental figures 

Fig. S1. Principal component analysis. Analysis was run on the individual main IQs and 

subtests scores. As a confirm of behavioural data quality, the solution presented in the figure 

clearly resembles the expected factorial structure of the WASI, showing a three factors solution 

which segregated FSIQ, PIQ and VIQ, as well their respective subtests. Values on the axis 

represent factor loadings. 

 

Fig. S2. Between-group comparisons of single pairwise connectivities. The figure shows the 

Pearson’s correlation between all pairwise connectivities (n=4005, AAL atlas) in High and Low 

IQ participants. A deviation in the connectivity distribution is evident in the lowest part of the 

graph (orange ellipsoid), with High-IQ individuals showing stronger pairwise connectivities in 

the left tail of the distribution with respect to Low-IQ ones. Such difference may be responsible 
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for both the increased variability observed in the robustness towards TA shown in Fig. 2B, as 

well for the different sets of regions highly responsible for robustness in High and Low-IQ 

subjects.    

 

Fig.S3. Largest Connected Component drop at the regional level. The distribution of the 

average LCC drop for all the regions in the AAL atlas is shown. Values on the y-axis represents 

the number of regions being disconnected from the largest connected component after the 

removal of each region displayed on the x-axis. Brain surfaces show the five lobes and the 

regions belonging to them.   

 

Fig. S4. Age-related differences. Giving the potential interaction between age, brain robustness 

and intelligence level, the average LCC size obtained after the complete removal of all nodes 

(within the individual SW windows) for different age decades has been calculated. Panel A: 

subjects with higher IQ showed increased robustness levels especially at later ages for both TA 

and RE (upper and lower row respectively).  

 

Fig. S5. Seed-based connectivity. Regions identified as more responsible for brain robustness 

drop during TA simulation have been used as seed for pairwise functional connectivity 

estimation. A comparison between High and Low-IQ participants has been consequently 

performed (p<.05, FDR corrected). Those regions showing a higher drop in Low-IQ subjects are 

reported, except for language-related regions which have been included in Fig. 4C. Note: BA6= 
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superior frontal gyrus;  BA8=superior frontal gyrus - medial part; BA11=middle frontal gyrus - 

pars orbitalis ; BA20=inferior temporal lobe ;  BA21= middle temporal lobe; BA23=posterior 

cingulate cortex. 

 

Fig. S6. Robustness to targeted attacks using different nodal metrics. The panels represent 

the average size of the LCC (y axis) during the targeted lesioning procedure, with target nodes 

being defined using two additional nodal metrics other than Bc, that are nodal Degree and 

Strength. As for the analysis using Bc, brain robustness has been computed within the entire 

sparsity windows, by retaining an increasing percentage of all possible connections in a 

decreasing-strength fashion, thus ranging from 1% (absolute stronger connections) to 100% (x 

axis). As observed for Bc, the results confirm the difference in brain robustness between High 

and Low IQ participants across the small-worldness sparsity window (~10-30%). 
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