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Abstract: Land surface temperature (LST) plays a pivotal role in many environmental sectors.
Unfortunately, thermal bands produced by instruments that are onboard satellites have limited
spatial resolutions; this seriously impairs their potential usefulness. In this study, we propose an
automatic procedure for the spatial downscaling of the two 100 m thermal infrared (TIR) bands
of LandSat 8/9, captured by the TIR spectrometer (TIRS), by exploiting the bands of the optical
instrument. The problem of fusion of heterogeneous data is approached as hypersharpening: each
of the two sharpening images is synthesized following data assimilation concepts, with the linear
combination of 30 m optical bands and the 15 m panchromatic (Pan) image that maximizes the
correlation with each thermal channel at its native 100 m scale. The TIR bands resampled at 15 m
are sharpened, each by its own synthetic Pan. On two different scenes of an OLI-TIRS image, the
proposed approach is compared with 100 m to 15 m pansharpening, carried out uniquely by means of
the Pan image of OLI and with the two high-resolution assimilated thermal images that are used for
hypersharpening the two TIRS bands. Besides visual evaluations of the temperature maps, statistical
indexes measuring radiometric and spatial consistencies are provided and discussed. The superiority
of the proposed approach is highlighted: the classical pansharpening approach is radiometrically
accurate but weak in the consistency of spatial enhancement. Conversely, the assimilated TIR bands,
though adequately sharp, lose more than 20% of radiometric consistency. Our proposal trades off the
benefits of its counterparts in a unique method.

Keywords: data assimilation; hypersharpening; LandSat 8/9; land surface temperature; multimodal
fusion; operational land imager (OLI); pansharpening; thermal infrared spectrometer (TIRS);
thermal sharpening

1. Introduction
Land surface temperature (LST) is an important parameter that modulates surface en-

ergy fluxes. Its relevance for environmental remote sensing has been widely recognized [1].
Typical applications of LST concern soil moisture estimation [2], forest fire detection [3],
surface urban heat island monitoring [4], studies of hydrological processes [5], and cli-
mate studies [6]. Before the advent of satellites, it was extremely difficult to obtain LST
in extended areas. Even today, it is difficult, and often impossible, to acquire satellite
LST with high spatial resolution while maintaining a radiometric quality suitable for most
applications. The temporal resolution, crucial for early detection of forest fires [3], is always
accompanied by a reduced spatial resolution due to the height of the geosynchronous
platform. This low spatial resolution results in a thermal mixture in which pixel sizes are
larger than elements with homogeneous thermal properties. Thus, LST downscaling be-
comes a key topic in environmental remote sensing. Whenever the enhancement in spatial
resolution is achieved by means of one or more observations of the same scene capable of
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resolving finer details, the downscaling is approached as a problem of multi-sensor image
fusion. In fact, the fusion of images captured by heterogeneous sensors, a.k.a., multimodal
fusion, is widespread in the field of medical imaging [7]. Multimodal fusion has two
distinct strands in the field of remote sensing: fusion of data taken by optical and active
microwave sensors and fusion of optical and thermal scanner data, as in the present study.

Thermal sensors capture the electromagnetic radiation emitted by the Earth’s surface
depending on its temperature, following Planck’s law and emissivity coefficient. Since the
radiant exitance of the Earth at environmental temperature is low and thermal detectors
are considerably noisy due to large fluctuations of the dark current, the spatial resolution
of thermal infrared (TIR) images is unavoidably scarce for the collection of a sufficient
number of incoming photons. The easiest way to improve the signal-to-noise ratio (SNR)
consists of increasing the elementary area of integration of the detector, thus reducing its
spatial resolution capability. Hence, the usefulness of increasing the spatial resolution of
TIR acquisitions is evident.

The enhancement in spatial resolution for TIR imagery is not trivial. In fact, the TIR
spectral channels do not overlap with those of other bands with higher spatial resolution
that could be exploited for spatial sharpening [8]. Spectral overlap would entail some
cross-correlation between sharpened (master) and sharpening (slave) images, as happens
for multispectral (MS) pansharpening, and cross-correlation is the prerequisite for fusion.
In principle, there is no evidence that TIR and visible and near infrared (VNIR) spectral
radiances are cross-correlated, with the former being emitted and the latter reflected by
Earth’s surface illuminated by sunlight. The imaging mechanism occurs in disjoint spectral
intervals: the wavelengths of TIR are at least 10 times larger than those of VNIR.

To overcome the lack of spectral overlap, several scientists have addressed the problem
of spatial resolution enhancement of TIR images by exploiting physical relationships
between the TIR bands and other bands featuring a higher spatial detail. A notable example
is the relationship observed between vegetation and temperature. A viable strategy is to
calculate the normalized differential vegetation index (NDVI) as a downscaling factor to
infer TIR images at higher spatial resolutions [9]. NDVI is calculated from the red and
NIR bands that are usually available with a spatial resolution better than TIR [10]. This
idea was developed by Kustas et al. [11], improved by Agam et al. [12], and revisited by
Jeganathan [13] and Chen et al. [14]. In detailed urban environments, the coupling of the
NDVI with the surface albedo has also been proposed [15].

Later [16], the problem of resolution enhancement of TIR images was formulated in
terms of disaggregation of remote-sensing LST (DLST). Two subtopics, thermal sharpening
(TSP) [17] and temperature unmixing (TUM) [18], were identified as a dual pair of DLST.
TSP refers to any kind of procedure by which TIR images are spatially enhanced for the
purpose of interpretation using spatially distributed auxiliary data that are statistically
correlated with LST on the basis of pixel, block, or region [19]. Instead, TUM indicates the
procedures by which the temperatures of the elementary components within a pixel are
decomposed on the basis of temporal, spatial, spectral, or angular observations [16]. This
approach has recently been used in a spatio-temporal context to monitor temperature in
urban areas [20].

Several fundamental assumptions are usually adopted in DLST:
1. Pixels are larger than image objects and thus the surface should not be thermally

homogeneous at the pixel scale (heterogeneity);
2. At the object scale, the surface is assumed isothermal (separability) [19];
3. Auxiliary data relating to the physical properties of subpixel elements are avail-

able (connectivity);
4. Aggregation occurring among objects is additive (additivity) [19].

The first assumption implies that a pixel consists of an array of components that
characterize the mixture among multiple elements. The second is unrealistic but is assumed
to be true in most previous studies. The third assumption is necessary to keep the number
of unknowns as small as possible because such auxiliary data can be used to determine
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the fractions of elements or to estimate the physical properties of elements. The last
assumption is mostly reasonable when there is no energy interaction among components,
but the aggregation is generally nonlinear when heterogeneous surfaces have a significant
three-dimensional structure, much larger than the measuring wavelength, which may
cause some intershadows and thus create nonlinear interactions between subfacets [21].
An in-depth insight on DLST methods and a thorough collection of references can be found
in the seminal paper by Zhan et al. [16] and in the up-to-date comprehensive review by
Firozjaei et al. [22].

Upon these premises, our study introduces an original approach that can be adopted
for sharpening TIR data and hence for the downscaling of LST maps. The method belongs
to the TSP family and exploits the presence of a statistical similarity between TIR and some
of the other higher-resolution bands, as originally proposed by Aiazzi et al. [8]. Due to
the interesting spectral characteristics of a recent instrument, including the presence of
multiple TIR bands, a specific case study concerning LandSat 8/9 data will be presented
and discussed. The main novelty consists of the use of the hypersharpening paradigm [23].
Regardless of the existence and uniqueness of a sharpening image, as for pansharpening,
hypersharpening deals with the synthesis of an ideal sharpening image tailored to specific
characteristics of each of the bands that shall be sharpened. In substance, hypersharpening
can be regarded within the context of data assimilation theory, which has been used
for thermal sharpening [24,25]. Extensions to different multi-platform instruments have
recently been proposed within the context of a unimodal fusion, thermal–thermal [26]
or optical–optical [27], between homogeneous datasets. This approach is an alternative
to much more complicated, yet valuable, learning-based approaches that are useful for
spatio-temporal fusion [28]. The versatility of generative adversarial networks (GANs) [29]
has recently been recognized for the synthesis of remote sensing images [30].

The remainder of this article is organized as follows. Section 2 illustrates the thermal
and optical data and analyzes their inter-channel correlation; then, hypersharpening is
introduced and the assimilation procedure of the sharpening bands is described, together
with the sharpening rule, and statistical indexes of thermal and spatial consistency are
reviewed. Section 3 presents the results of two scenes of a large OLI-TIRS image collected
from LandSat 9. Section 4 discusses the results and draws guidelines for the interpretation
of results from a disaggregation perspective. Eventually, the concluding remarks and
possible future developments are outlined in Section 5.

2. Materials and Methods
2.1. LandSat 8/9 OLI and TIRS

The operational land imager OLI, onboard NASA/USGS LandSat 8 and LandSat 9,
provides high-resolution images of our planet in eleven different bands of the electro-
magnetic spectrum, ranging from visible to thermal radiation, the latter thanks to the TIR
spectrometer (TIRS). The resolution, or more precisely the spatial sampling interval (SSI),
of image products ranges between 15 and 100 m. OLI/TIRS data are used to create detailed
maps of surface temperature, emissivity, spectral reflectance, and elevation. Analogous to
LandSat “enhanced thematic mapper plus” (ETM+), OLI features a panchromatic (Pan)
channel, whose spectral coverage has been specifically devised to expedite the sharpening
of the thermal bands, with two instead of one. Figure 1 presents a synoptic comparison of
the two instruments: in addition to the narrow-band Pan of OLI, differences are the coastal
and cirrus bands, suitable for atmosphere studies, and the split of the unique thermal band
of ETM+ to allow for thermal diversity. The bands of OLI, including TIRS, are described
in Table 1. There are three groups of bands in three different spectral ranges, VNIR, short
wave infrared (SWIR), and TIR, with different spatial resolutions.
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Figure 1. Comparison of spectral bands of OLI/TIRS onboard LandSat 8/9 and ETM+ onboard
LandSat 7, with atmospheric transmission window superimposed (available online: https://landsat.
gsfc.nasa.gov/satellites/landsat-8/ (accessed on 19 October 2024)).

Table 1. Characteristics of the eleven spectral bands of OLI and TIRS instruments onboard LandSat 8/9.

Wavelength (µm) Resolution (m)

Band 1-Coastal aerosol 0.43–0.45 30
Band 2-Blue 0.45–0.51 30
Band 3-Green 0.53–0.59 30
Band 4-Red 0.64–0.67 30
Band 5-Near Infrared (NIR) 0.85–0.88 30
Band 6-SWIR 1 1.57–1.65 30
Band 7-SWIR 2 2.11–2.29 30
Band 8-Panchromatic 0.50–0.68 15
Band 9-Cirrus 1.36–1.38 30
Band 10-Thermal Infrared (TIRS) 1 10.60–11.19 100
Band 11-Thermal Infrared (TIRS) 2 11.50–12.51 100

A LandSat 9 scene was acquired near Perugia, in Central Italy, on 22 March 2022.
The geographical position of the test image is shown in Figure 2. Figure 3 displays the
whole scene: 15 m Pan (B8) and true color composition of B4, B3, and B2, interpolated
at 15 m. In addition to the lake, the scene includes a built-up area and a surrounding
vegetated region. As it appears, the optical acquisition is perfectly cloud-free. Figure 4
shows the two thermal bands, B10 and B11, displayed as absolute temperature maps with
the associated color palette. The TIRS data are delivered and displayed in LST format,
with measure unit K. For calculating correlations with the optical bands, and for subse-
quent fusion, they have been converted to surface spectral radiance units [W m�2sr�1µ�1]
by using the file metadata to apply Planck’s law. The conversions of surface radiance to LST
and of LST back to radiance would assume an average emissivity coefficient of the land
surface equal to 0.97 (see https://earthexplorer.usgs.gov, (accessed on 19 October 2024)).
This explains the singular effect that two adjacent TIR bands measure slightly different
LSTs: the conversion coefficients to and from LST assume a constant emissivity equal to
0.97, which is an approximation of its unknown true value.

https://landsat.gsfc.nasa.gov/satellites/landsat-8/
https://landsat.gsfc.nasa.gov/satellites/landsat-8/
https://earthexplorer.usgs.gov
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Figure 2. Geographic map of Central Italy: the 30 km ⇥ 30 km test area is highlighted.

(a) (b)

Figure 3. The 30 km ⇥ 30 km LandSat 9 OLI acquisition: (a) Pan image (B8); (b) 15 m interpolated
true color (B4-B3-B2).

(a) (b)

Figure 4. The 30 km ⇥ 30 km original thermal bands at 100 m resolution: (a) B10; (b) B11.
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The statistical similarity of the images to be merged is crucial for the quality of the
fusion. Table 2 details the correlation matrix of the test image, calculated between the
original TIR bands (B10 and B11), VNIR bands (B1, B2, B3, B4 and B5), SWIR bands (B6 and
B7), panchromatic band (B8), and narrow cirrus band (B9), suitable for detecting ice crystals
in atmosphere. The Pan band has been previously degraded at 30 m and 100 m resolutions
retaining the original 15 m scale, i.e., pixel size, the former for calculating correlations with
the other VNIR bands and the latter for correlations involving the two TIR bands. All
30 m optical bands have been resampled at 15 m scale and degraded at 100 m resolution.
The correlation between two bands is trivially measured at the same spatial scale but also
at the lower resolution, i.e., that of the less resolved band. Therefore, the band with greater
spatial resolution must be spatially degraded by means of proper low-pass filters. As it
appears, the optical bands are somewhat correlated, one with another, with the exception
of the NIR band, which contains the radiation reflected by vegetation. The interpretation is
made difficult by the presence of water pixels in the scene, whose response in the NIR and
SWIR wavelengths is close to zero. This fact artificially increases the correlations of B5, B6,
B7, and B9 towards TIR (B10 and B11) and decreases those of the visible bands, including
B8 (Pan).

Table 2. Correlation coefficients (CC) between LandSat 9 bands for the test image. The values above
the main diagonal are computed for the entire scene, whereas the values below the diagonal are
restricted to non-water pixels.

Band 1 2 3 4 5 6 7 8 9 10 11

1 1 0.988 0.945 0.784 0.016 0.266 0.459 0.912 �0.103 0.256 0.245
2 0.994 1 0.957 0.760 �0.071 0.209 0.409 0.907 �0.140 0.172 0.160
3 0.941 0.956 1 0.820 0.095 0.318 0.489 0.953 �0.076 0.325 0.312
4 0.901 0.934 0.953 1 0.312 0.744 0.877 0.944 0.343 0.688 0.686
5 0.224 0.206 0.358 0.159 1 0.673 0.505 0.198 0.505 0.740 0.746
6 0.645 0.693 0.751 0.827 0.330 1 0.950 0.539 0.718 0.858 0.866
7 0.779 0.822 0.841 0.937 0.129 0.929 1 0.702 0.616 0.820 0.827
8 0.934 0.959 0.982 0.982 0.255 0.790 0.895 1 0.126 0.544 0.536
9 0.061 0.110 0.118 0.216 0.064 0.441 0.340 0.164 1 0.519 0.535
10 0.553 0.562 0.674 0.630 0.441 0.641 0.612 0.665 0.026 1 0.999
11 0.558 0.567 0.679 0.636 0.439 0.644 0.618 0.671 0.032 0.998 1

Given the relatively high correlation values of some bands, the strategy that appears
to be a viable alternative to plain pansharpening would be using the 30 m VNIR/SWIR
bands and the 15 m Pan (B8) for the synthesis of two sharpening bands, each tailored to the
thermal features of a 100 m TIR band. In fact, if the correlation between the sharpening and
the sharpened band is sufficiently high, the results of thermal fusion at 15 m are expected to
be likely. This can be achieved by resorting to concepts of data assimilation to generate the
synthetic bands and to the hypersharpening paradigm, which foresees as many sharpening
images as there are bands that shall be sharpened.

2.2. Hypersharpening of TIRS Data
While pansharpening increases the geometric resolution of a multiband image by

means of a Pan observation of the same scene with greater resolution, whenever the
higher-resolution image is not unique, hypersharpening concerns the synthesis of a unique
image from which the spatial details shall be extracted in order to optimize the products
of fusion [23]. This synthetic Pan is generally different for each band that is enhanced.
The idea is similar to predict the sharpening image through a hard or soft combination
of a series of bands at higher resolution [31]. The combination can be driven by data
assimilation concepts [25]. The wide choice of optical bands of OLI, including 15 m Pan,
and the characteristics of the correlation matrix in Table 2 suggest exploiting the pixel-by-
pixel combination of the optical bands according to the least squares (LS) coefficients of
a multivariate regression of the optical bands towards each of the TIRS bands. Figure 5
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outlines the flow diagram of the OLI/TIRS sharpening procedure: the synthetic high-
resolution sharpening bands of each of the two TIRS bands are assimilated from the optical
bands; the two synthetic Pans at 15 m are used for the hypersharpening of the TIR bands.
Although the Pan image (B8) is unique, there are two different sharpening images, one for
B10, one for B11.

Figure 5. Flowchart ofthe proposed OLI + TIRS sharpening: hypersharpening provides the spatial
enhancement of TIRS bands from 100 m to 15 m by injecting the high-pass spatial frequency compo-
nents extracted from different synthetic sharpening images generated through assimilation of the
optical bands, including the original 15 m Pan, to each of the thermal bands. The two assimilated
bands at 15 m are also available as sharpened TIR bands.

Let {Mk}k=1,...,N denote the more spatially resolved bands, e.g., the eight 30 m VNIR
bands of OLI and the 15 m Pan image, the former resampled at the scale of the latter
(15 m) for homogeneity of notation. Let also {Hi}i=1,...,M indicate the bands having lower
resolution, the TIRS bands, both at 100 m spatial resolution, and R the ratio of spatial
scales of H and M (N = 9, M = 2, and R = 100/15, for OLI/TIRS). The sharpening band
P⇤

i , i = 1, . . . , M, of the ith band with lower resolution, Hi, is synthesized as follows.
First, the Mk bands are low-pass filtered with a frequency cutoff equal to 1/R, to yield

the bands Mk spatially degraded to the resolution of the bands that are being enhanced.
The fractional scale ratio can be easily tackled by resorting to the generalized Laplacian
pyramid [32], widely used for pansharpening [33]. Then, the relationships between the
lower-resolution bands interpolated by R, eHi, and Mk are modeled as a multivariate
linear regression:

eHi = w(i)
0 +

N

Â
k=1

w(i)
k · Mk + ei i = 1, . . . , M (1)

in which ei is the space-varying residue. The set of optimal constant weights, { bw(i)
k }k=0,...,N ,

is calculated as the least squares (LS) solution of Equation (1). The spectral coefficients, bw(i)
k ,

are used to synthesize the set of sharpening bands, {P⇤
i }i=1,...,M:

P⇤
i = bw(i)

0 +
N

Â
k=1

bw(i)
k · Mk i = 1, . . . , M. (2)

The block labeled “assimilation” in the flowchart of Figure 5 performs the operations
described in Equations (1) and (2).
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Finally, the hypersharpened bands, bHi, at a resolution of 15 m, can be computed by
means of a projection-based fusion algorithm [34] between eHi and P⇤

i :

bHi = eHi +
cov(eHi, P⇤

i )

var(P⇤
i )

· (P⇤
i � P⇤

i ), i = 1, . . . , M (3)

in which cov(·, ·) and var(·) denote covariance and variance of random variables, P⇤
i is

low-pass-filtered P⇤
i with 15/100 spatial frequency cutoff, or, equivalently,

P⇤
i = bw(i)

0 +
N

Â
k=1

bw(i)
k · Mk i = 1, . . . , M. (4)

Equations (3) and (4) define the operations carried out by the “hypersharpening” block
in Figure 5.

Different models of detail injection, a contrast-based model [10] or a genetic model [35],
can be adopted. The projection-based injection gain, defined as the ratio of covariance of
source–destination to variance of source, measured at the spatial scale of the fusion product,
15 m, but at the resolution of the destination prior to fusion, that is, 100 m, can be calculated
on a local sliding window in a space-varying fashion [36], instead of being global over the
whole scene. The projection coefficient balances the injection of spatial details to the extent
of correlation between the source of spatial details and the destination of such details. Note
that Equation (3) denotes conventional pansharpening if P⇤

i is replaced with the original
15 m OLI Pan, P, (B8) and P⇤

i with its low-pass version, P.
Very and extremely high-resolution MS scanners, e.g., WorldView-3, in which four in-

struments with three different resolutions are present [37], may exhibit residual shifts due
to uncorrected parallax views. In the case of LandSat 8/9, the negligible residual spatial
shifts between the datasets allow for the use of fusion methods based on separable [38] or
non-separable [39] multiresolution analysis of the sharpening image. Such methods are
also recommended for merging data coming from different platforms [40,41].

The coefficient of determination (CD) of multivariate regression in Equation (1) mea-
sures the success of matching between each of the lower-resolution bands and the sharpen-
ing image synthesized from the higher-resolution VNIR/SWIR/Pan bands [42]. Note that
the use of a multivariate regression to synthesize the sharpening band makes the method
independent of the data format [43]. However, while the math derivation of the sharpening
bands does not depend on the physical format of the data, e.g., top-of-atmosphere (TOA)
spectral radiance or surface reflectance, provided that a linear affine relationship (straight
line with slope and intercept) can be stated between the variables that appear in either the
regression and in the fusion rule [43], the multiplicative injection gain derived from the
radiative transfer model would assume that all band data are in a surface reflectance or a
surface spectral radiance format without offset/intercept between variables due to atmo-
spheric scattering effects. The surface reflectance is a level-two (L2) product and is usually
distributed for global-coverage optical systems, such as OLI and Sentinel-2. The surface
spectral radiance can be derived from the surface temperature format of TIRS data through
the available metadata.

2.3. Assessment of Fusion Products
The empirical quality criteria of fusion products [44], used in the past also for thermal

data [8], have been progressively abandoned in favor of consistency criteria embodied
by several statistical indexes [45,46]. When fusion of heterogeneous data is concerned,
consistency is suitable for quality evaluation. To provide a better view of the problem, we
split the consistency property into two terms, which are given here with reference to the
OLI-TIRS fusion problem:
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- Thermal consistency: the fused TIRS image, once spatially degraded at the original
scale, should be as close as possible to the original TIRS image, i.e., the source of the
thermal information;

- Spatial consistency: the fused TIRS bands should be capable of synthesizing back the
sharpening image.
Thermal and spatial consistencies are separately evaluated by the following metrics.

2.3.1. Normalized Root Mean Square Error (NRMSE)
The first index, named spectral consistency index for multiband images and radiomet-

ric consistency index for a unique band, will be referred to as the thermal consistency index.
It is measured at the original resolution of TIRS but possibly at the scale of fusion products,
i.e., at 100 m or at 15 m. All data, fused and reference, should be absolute temperatures
expressed in K. The assimilated and fused TIRS bands are generated as surface spectral
radiance and must be previously converted to surface temperature using the file metadata
to invert Plank’s law. The consistency reference is the original 100 m TIRS, possibly in-
terpolated at 15 m. The index, which measures a distortion, that is, a loss of consistency,
is defined as the normalized root mean squared error (NRMSE), possibly expressed in
percentage, between the TIRS band fused at 15 m spatially degraded to 100 m and the
original 100 m TIRS band:

NRMSE D
=

||bHL � eH||F
µ eH

(5)

in which µ eH indicates the mean of the (interpolated) thermal band, eH, || · ||F denotes the
Frobenius norm, and bHL the fused TIRS band after low-pass filtering. NRMSE is a distortion
index; hence, its ideal value is zero. The index defined by Equation (5) should be as close to
zero as possible to indicate that fusion does not change the original information [23], which
is thermal in the present case. Instead of percentage NRMSE, the index can be expressed as
RMSE and measured in its native unit, K.

2.3.2. Spatial Distortion D⇤
s

The consistency of the injected detail with the sharpening image in the scale interval
between 100 m and 15 m is measured by the spatial distortion, D⇤

s [45], later inserted into
the Q* index [46]. The rationale of D⇤

s , which applies only to multiband data, is that the
sharpening image should be synthesized by the set of sharpened bands. The CD of the mul-
tivariate regression, bivariate in this case, of the sharpened bands to the sharpening image
measures the extent of success; thus, D⇤

s , 1 � R2. For a fair comparison, the sharpening
image should be identical for the three methods that are compared. In order to maximize
the correlation of the sharpening image to the original thermal bands, the average of the
two synthetic assimilated bands constitutes the reference.

3. Results
From the whole large scene, two sub-scenes, each of size 7.5 ⇥ 7.5 km2 have been cut:

Scene 1 is a hilly vegetated region close to the Trasimeno Lake; Scene 2 is a built-up area
crossed by the Tiber River, including part of the city of Perugia on the left and the vegetated
hilly outskirts on the right. The thermal bands and the Pan images of the two scenes are
displayed in Figures 6a–c and 7a–c, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Some 7.5 ⇥ 7.5 km2 details (500 ⇥ 500 pixels at 15 m spatial scale) of Scene 1 (lake
and hilly area): (a) Interpolated original thermal band B10; (b) interpolated original thermal band
B11; (c) original B8 (Pan); (d) B10 sharpened by B10-assimilated Pan; (e) B11 sharpened by B11-
assimilated B8; (f) B10-assimilated B8; (g) B10 sharpened by original B8 (i.e., pansharpened B10);
(h) B11 sharpened by original B8; (i) B11-assimilated B8.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Some 7.5 ⇥ 7.5 km2 details (500 ⇥ 500 pixels at 15 m spatial scale) of Scene 2 (built-up
and vegetated area): (a) Interpolated original thermal band B10; (b) interpolated original thermal
band B11; (c) original B8 (Pan); (d) B10 sharpened by B10-assimilated Pan; (e) B11 sharpened by
B11-assimilated B8; (f) B10-assimilated B8; (g) B10 sharpened by original B8 (i.e., pansharpened B10);
(h) B11 sharpened by original B8; (i) B11-assimilated B8.
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3.1. Analysis of Correlation
All statistical comparisons and fusion processes must be carried out with band formats

different by a gain and an offset at most [43]. The optical data are expressed as surface
reflectances, which is compatible with the surface radiance format of TIRS data converted
from LST. Tables 3 and 4 report the results of the LS solutions of the multivariate regressions
in Equation (1) for the two TIRS bands, B10 and B11, carried out with the two subscenes.
The extreme variability in weights is a consequence of the correlation among optical bands
and of the presence of anomalous water pixels in Scene 1, anomalous because they affect
the significance of statistics, not because they impair fusion. What immediately stands
out is that R2, which roughly measures the correlation between the thermal band and the
synthesized sharpening image, is considerably greater than the correlation of any individual
band with TIR, reported in the last two rows of Table 2. The last two columns of Table 2 are
unreliable due to the presence of the lake, which approximately behaves like a dark body
in the wavelength intervals spanned by B5, B6, B7, and B9. On correlated spectral intervals,
e.g., B1-B4, the spectral weights may have negative signs, possibly alternate. This would
be surprising if the bands were uncorrelated, which is not true. Interestingly, the cirrus
band B9 is not correlated with any of the other bands, including the thermal ones. This fact
is concealed by the significant presence of pure water pixels in Scene 1 but stands out in
Scene 2, where water pixels are mixed with land pixels. In fact, in Table 3 the weights of B9
are significantly nonzero; in Table 4, they are identically zero to the second digit included.

Table 3. Scene 1: LS coefficients of the multivariate regressions of the VNIR bands that synthesize the
15 m sharpening bands of the two TIRS bands and related values of R2.

bw0 bw1 bw2 bw3 bw4 bw5 bw6 bw7 bw8 bw9 R2

B10 4.33 61.47 �58.11 0.29 �6.66 0.06 5.96 �2.76 20.81 �72.92 0.944
B11 4.38 53.39 �50.07 �0.74 �5.05 0.15 4.58 �1.88 17.73 �53.29 0.950

Table 4. Scene 2: LS coefficients of the multivariate regressions of the VNIR bands that synthesize the
15 m sharpening bands of the two TIRS bands and related values of R2.

bw0 bw1 bw2 bw3 bw4 bw5 bw6 bw7 bw8 bw9 R2

B10 3.95 94.14 �109.18 16.76 �5.02 �0.84 5.25 �2.68 22.84 0.00 0.874
B11 4.20 78.78 �92.00 13.80 �3.84 �0.67 4.18 �2.04 19.20 0.00 0.878

The most important result of this analysis is the following: in a reliable scene, with-
out pure water pixels, R2 attains values greater than 0.87 for both bands. In Scene 1,
the presence of the lake artificially increases the correlation of the “dark” bands and raises
R2 to values up to 0.95. These values are greater than the values of CC of the original Pan
image towards the TIRS bands, namely 0.665 and 0.671, averaged on the whole available
scene. This result entails the use of the synthetic bands assimilated to the thermal bands
to sharpen the TIRS bands according to the hypersharpening paradigm. The synthetic
assimilated images are visible in Figures 6f,i and 7f,i for Scene 1 and Scene 2, respectively.

3.2. Fusion Simulations
Figures 6d,e and 7d,e portray the two TIRS bands B10 and B11 once they have been

hypersharpened by means of the synthetic assimilated images in Figures 6f,i and 7f,i, for the
two sub-scenes. The fusion rule is the projection gain of Equation (3), with the synthetic
Pan calculated as in Equation (2). Fusion of the TIRS bands is accomplished in surface
radiance format and the fused bands are converted back to surface temperature for display,
as in Figure 4, and modeling. Compared to the 100 m originals in Figures 6a,b and 7a,b,
the fused images are extremely detailed and finely textured; they look realistically enhanced,
though nobody knows what the true 15 m images would look like.
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Figures 6g,h and 7g,h present the results of conventional pansharpening using only
the 15 m Pan of OLI (B8), displayed in Figures 6c and 7c. Although rather similar in
appearance, the products of plain pansharpening are less enhanced and present less abrupt
temperature edges.

Fragments extracted from original and sharpened TIRS bands of the two subscenes
have been converted back to absolute temperature and comparatively displayed with the
associated color palette in Figures 8 and 9. In Figure 8c, there are several clues that the
assimilated thermal bands distort the thermal information: in the original (Figure 8a) the
edge of the lake exhibits a gradual variation in temperature due to the increasing depth
toward the center. This is clearly visible in both the sharpened images (Figure 8b,d) but not
in the assimilated images, where the temperature jump is abrupt. Analogously, some
patches in the assimilated image are colder or warmer than in the original and sharpened
TIR bands. The geometry of the assimilated images is noteworthy, the radiometry, or ther-
mal consistency towards the original, somewhat less. Instead, the sharpened images are
geometrically and thermally accurate. In Figure 9, the superior thermal unmixing capability
of the hypersharpened temperature map appears. The presence of the Tiber River is hardly
recognized in the originals because the riverbed is narrower than the pixel size and water is
mixed with vegetation or bare soil, having much lower thermal capacity than water. Thus,
the pixel response is a mixture of water and side pixels. Both the sharpened images and the
assimilated images are capable of unmixing the riverbed from its sides; the hypersharpened
bands seem slightly more accurate because the assimilated image does not outline subtle
temperature gradients across the riverbed. The biased response of the assimilated TIRS
bands is noticeable in the lower right corners of the icons in Figure 9: the assimilated
patches are up to 4 K warmer than the originals and 3 K warmer than the sharpened bands.

(a) (b) (c) (d)

Figure 8. Scene 1: 3 Km ⇥ 3 Km fragments (200 ⇥ 200 pixels at 15 m spatial scale) of original
and sharpened thermal bands, B10 on upper row and B11 on lower row: (a) Interpolated original;
(b) sharpened by original B8; (c) band-assimilated Pan; (d) sharpened by band-assimilated Pan.
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(a) (b) (c) (d)

Figure 9. Scene 2: 3 Km ⇥ 3 Km fragments (200 ⇥ 200 pixels at 15 m spatial scale) of original
and sharpened thermal bands, B10 on upper row and B11 on lower row: (a) Interpolated original;
(b) sharpened by original B8; (c) band-assimilated Pan; (d) sharpened by band-assimilated Pan.

3.3. Statistical Evaluations
In addition to subjective evaluations, an objective quality analysis was carried out

through no-reference statistical indexes that measure the consistency of fusion products
with its components at the different scales: 100 m and 15 m.

Tables 5 and 6 show that both pansharpening and hypersharpening preserve the
original information, the proposed scheme, slightly better. Instead, the assimilation of the
thermal bands from optical data, although highly popular in the literature [25,47], is almost
30% less accurate for what concerns the thermal consistency of the assimilated products
compared to the originals.

Table 5. Scene 1: thermal distortion index calculated between one enhanced TIRS band, spatially
degraded to 100 m scale, and original 100 m TIRS. The index is expressed both as NRMSE% and as
RMSE (K). Ideal case is 0.

NRMSE% Original Pansharpened Hypersharpened Assimilated

B10 0 0.3464 0.3362 0.4128
B11 0 0.3428 0.3356 0.4062

RMSE (K) Original Pansharpened Hypersharpened Assimilated

B10 0 0.9861 0.9654 1.1856
B11 0 0.9841 0.9634 1.1662

Table 6. Scene 2: thermal distortion index calculated between one enhanced TIRS band, spatially
degraded to 100 m scale, and original 100 m TIRS. The index is expressed both as NRMSE% and as
RMSE (K). Ideal case is 0.

NRMSE% Original Pansharpened Hypersharpened Assimilated

B10 0 0.3491 0.3457 0.4566
B11 0 0.3478 0.3444 0.4475

RMSE (K) Original Pansharpened Hypersharpened Assimilated

B10 0 1.0057 0.9960 1.3156
B11 0 1.0015 0.9919 1.2886
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Table 7 highlights that the proposed hypersharpening is better than conventional
pansharpening in terms of spatial consistency. This is an immediate consequence of the
fact that the low-spatial-frequency components of natural Pan (B8) are correlated with
TIRS bands by about 67% on the non-water pixels (54% including the lake and the river).
Conversely, the lower-frequency components of the TIRS-assimilated synthetic Pan are
correlated over 87% with TIRS (over 94% including the lake). Correlation measurements
are likely to be consistent across multiple scales. This explains why the synthetic Pan and
not the natural Pan is the reference of spatial consistency. As a general remark, the spatial
distortions reported for Scene 2 are twice those found for Scene 1 because the latter is
much more textured and detailed than the former and hence more difficult to spatially
enhance. The assimilated TIRS used for hypersharpening attain the ideal score of one,
by definition. However, the price to be paid is the mediocre thermal consistency measured
in Tables 5 and 6. Instead, the original TIRS interpolated at 15 m provides the ideal scores
of thermal consistency in Tables 5 and 6, but here it exhibits less than mediocre spatial
consistency, as one might expect.

Table 7. Spatial distortion index [45] between thermal products and sharpening Pan, defined as
average of the synthetic Pan’s assimilated to B10 and B11, respectively. The index ranges in [0, 1].
Ideal case is 0.

D⇤
s Original Pansharpened Hypersharpened Assimilated

Scene 1 0.202 0.058 0.041 0
Scene 2 0.412 0.127 0.072 0

The radiometric and spatial consistency indexes can be coupled into a unique index,
as it is usually done for assessment of MS pansharpening [46]. To do so, NRMSE, which
ranges in [0, 1] should not be expressed in percentage. The cumulative consistency index
can be defined as Q , (1 � DT)⇥ (1 � Ds), where the thermal distortion, DT , is measured
by NRMSE. We preferred to keep them separate, also because DT is measured from thermal
data, Ds from radiance data.

4. Discussion
At the end of the presentation of the results of downscaling of land surface temperature

maps, a series of considerations can be made.
The synergy between assimilation and pansharpening performed by applying the

hypersharpening paradigm seems to present advantages over both. The assimilation of the
optical bands on the thermal bands exhibits unparalleled spatial detail, even if the spatial
details might sometimes be incompatible with the nature of the thermal image. On the
other hand, the multivariate regression is unable to correctly synthesize some homogeneous
areas, where errors of a non-negligible entity are located.

Pansharpening alone has a good thermal consistency, in the sense that there are no
visibly incorrect patches, good thermal unmixing capabilities, especially to be noted on
the edge of the lake and along the river bed, and a good level of spatial sharpness, quite
compatible with the nature of the thermal scene.

The proposed approach, which could be called “thermally assimilated hypersharp-
ening”, balances the advantages and disadvantages of the methods that originate it: the
thermal consistency is slightly higher than that of pansharpening, which was already con-
siderably higher than that of direct assimilation; the thermal unmixing capacity is similar to
pansharpening. The spatial detail is higher and at the same time quite plausible. The term
plausible indicates that the true temperature map is unknown.

In some cases, one operates at a reduced scale, spatially degrading all the datasets
of the same scale factor in order to use the thermal originals as a reference of the quality
of the fusion. This strategy, widely used for unimodal fusion, may be questionable in the
present case of a multimodal fusion, because at a larger scale the percentage of mixed pixels
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increases on spatially detailed scenes, such as urban areas, with the result that the specificity
of the scene is lost. As the imaging scale gets finer. thermal images become contourless,
because the temperature variable depicted does not have marked discontinuities due to
heat diffusion.

In this sense, the evaluation of full-scale quality, in separate terms of thermal and
geometric consistencies, seems more appropriate, also because in this way the real images
are evaluated and with not low-resolution quicklooks. The methodology that followed,
borrowed from optical data fusion, is also naturally suitable for multimodal fusion. It
should be noted that downscaling procedures and consistency evaluations are based
exclusively on widely established concepts of robust statistics and multiresolution analysis.

One limit of the proposed method would appear if the original thermal images attain
metric resolution. Due to heat diffusion, high-resolution TIR images are almost “contour-
less” and the fused images would be unrealistically overenhanced. For satellite TIR images,
the highest spatial resolution of an upcoming mission planned in 2028 is 60 m. This study
pertains to the downscaling of LST maps, not to the sharpening of generic TIR imagery
produced by thermal cameras in outdoor environments.

5. Conclusions
LandSat 8 was launched in 2013, followed in 2021 by LandSat 9. Both satellites were

equipped with 30 m VNIR/SWIR MS scanners (OLI) and a two-band 100 m thermal
scanner (TIRS). For continuity with the earlier ETM+ onboard LandSat 7, a 15 m Pan image
was included in OLI, but its spectral coverage was limited to the interval (500–680) nm
to expedite the sharpening of the TIRS bands, which are statistically uncorrelated from
the radiance reflected by vegetation in the NIR wavelengths, 700 nm onward. This choice
improves thermal pansharpening but slightly impairs the pansharpening of the NIR band.
So far, TIR pansharpening of LandSat 8/9 data represents the state of the art for downscaling
land temperature maps because the geometrical information of the 15 m Pan resolves the
ambiguities of the 100 m TIRS data due to thermally mixed pixels containing objects of
different temperatures.

In this study, we have shown that the relatively high scale ratio (100:15) for sharpening
the TIRS bands through the optical bands benefits from the hypersharpening paradigm,
which foresees as many sharpening images as there are TIRS bands, instead of the unique
image of pansharpening. The high-resolution sharpening images are synthesized from all
the 30 m optical bands of OLI and also from the 15 m Pan. Each of them is assimilated to a
single TIRS band by means of a multivariate regression of the optical bands, the LS solution
of which yields the best match to the original TIRS band. The advantage of the proposed
hypersharpening is quantified by resorting to statistical consistency indexes, widespread
for pansharpening.

Future developments will concern a possible object-based approach, in which the
multivariate regression and the resulting assimilated synthetic Pan images are computed
in statistically homogeneous segments [47]. Segmentation is trivially carried out on specific
bands that are capable of discriminating different landscapes, e.g., water, vegetation, bare
soil, and built-up areas. The sharpened TIRS bands will still be given by hypersharpening,
which extracts the missing highpass information from the synthetic Pan images, assimilated
to the different original TIRS bands. Another issue that may deserve attention concerns the
assimilation procedure. Now, the color space is linearly mapped onto the thermal space by
multivariate linear regression. The question is whether it is possible to obtain a better match
by means of a nonlinear relationship. This has been found to produce slight improvements
in the case of pansharpening [48], which is the fusion of homogeneous datasets. However,
the inherent heterogeneity of thermal and optical data might be better captured by some
nonlinear transformation of the optical space.
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