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Orally administered nano-polystyrene caused vitellogenin alteration and
oxidative stress in the red swamp crayfish (Procambarus clarkii)
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• Crayfish did not exceed generic physio-
logical stress thresholds.

• Few key differentially expressed genes
were found in hemocytes and hepato-
pancreas.

• NPs induced oxidative stress in the
hepatopancreas of P. clarkii.

• Vitellogenin expression was downregu-
lated in female crayfish.

• RNA-Seq is a powerful tool in ecotoxico-
logical studies.
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Nanoplastics (≤100nm) represent the smallest fraction of plastic litter andmay result in the aquatic environment
as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and
nanoplasticswith freshwaterDecapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive
species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be
susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of
100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated
approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physio-
logical responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein con-
centration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to
evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepato-
pancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological
level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The
RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative
stress, gene transcription and translation, protein degradation, lipidmetabolism, oxygen demand, and reproduc-
tion after PS NPs exposure. This study suggests that a low concentration of PS NPsmay inducemild stress in cray-
fish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
apanni),
denti.units.it (N. Tomasi),
Manfrin).
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1. Introduction

In 2019, global plastics production almost reached 370 million tons
(PlasticsEurope, 2020). Plastic pollution has been recognized as a severe
human pressure on aquatic ecosystems and amajor water quality prob-
lem (Koelmans et al., 2015; Rochman et al., 2013; Wagner et al., 2014).
To date, the bulk of micro- (MP) and nanoplastic (NP) research efforts
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have been focused on the marine environment, with global oceans
considered as the ultimate sink for contamination (Eerkes-Medrano
et al., 2015; Lambert and Wagner, 2018; Wagner et al., 2014).

In this study, common biochemical and cellular measures of crusta-
cean condition, including hemolymph glycemia (Lorenzon, 2005;
Manfrin et al., 2016) and total protein content, total hemocyte count
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Nevertheless, given that most of the plastic is used and disposed of on
land, both terrestrial and freshwater environments can be subject to
plastic pollution, including then act as long-term reservoirs (Horton
et al., 2017). Horton and colleagues assessed that in the EU between
473,000 and 910,000 metric tons of plastic waste are released and
retained annually within continental environments, which is 4 to 23
times the amount estimated to be released to the ocean (Horton et al.,
2017). Several recent monitoring studies have established that MPs are
ubiquitously found in waters and shore sediments of rivers and lakes all
over the world (Atwood et al., 2019; Hurley et al., 2018; Lambert and
Wagner, 2018; Lebreton et al., 2017; Leslie et al., 2017; Mani et al.,
2015; Piehl et al., 2019; Sighicelli et al., 2018). Therefore, understanding
MPs and NPs dynamics in terrestrial and freshwater systems seems of
critical importance to allow for amore comprehensive assessment of haz-
ards and risks posed by these pollutants to ecosystems (Hurley and
Nizzetto, 2018; Ter Halle et al., 2017). NPs represent the smallest fraction
of plastic litter and are referred to as particles under 1 μm (da Costa et al.,
2016; Gigault et al., 2018) or 100 nm (Alimi et al., 2018; Besseling et al.,
2019; EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food
Chain), 2016; Koelmans et al., 2015) in size. NPs may be directly released
in the environment from domestic products (Hernandez et al., 2019,
2017), as well as from the breakdown of larger plastic items (Ekvall
et al., 2019; Gigault et al., 2016; Lambert and Wagner, 2016; Wahl et al.,
2021). To date, no established protocols for the quantification of NPs in
wild environmental samples are available (Pinto da Costa et al., 2019;
Renner et al., 2018). Nonetheless, NPs numeric abundance is predicted
to potentially become 17 orders of magnitude higher than microplastic
particle concentrations (Besseling et al., 2019). These discoveries caused
concern about the impacts of plastic particles on freshwater biota. Ecolog-
ical effects of NPs on freshwater organisms have been evaluated across
several levels of organization, from infra-organismic responses, such as
oxidative stress (Jeong et al., 2016), altered lipid metabolism (Cedervall
et al., 2012; Li et al., 2020b), and mobilization (Auclair et al., 2020) and
glucosemetabolism (Brun et al., 2019), to organismic endpoints likemor-
tality, impaired reproductive capacity (Jeong et al., 2016; W. Zhang et al.,
2020), histopathological and behavioral changes (Brun et al., 2019;
Cedervall et al., 2012; Chae et al., 2018),which thenpotentially affect pop-
ulationdynamics. A rapidly growing body of “omics”data onMPs andNPs
is available in literature, aiming at providing a detailed description of the
cellular pathways underlying plastic particles detoxification (Gu et al.,
2020; W. Liu et al., 2020; Liu et al., 2021; Magni et al., 2019; W. Zhang
et al., 2020). To date, only few studies focused on decapod crustaceans,
despite their ecological and economic relevance. These investigations
suggested that decapods may be able to fragment MPs into nanosized
particles through digestion, and highlighted NP effects on survival,
growth, molting, nutrition values and energy metabolism, immunity
and antioxidant defense (Bergami et al., 2020; Dawson et al., 2018; Li
et al., 2020b, 2020a; P. Yu et al., 2018).

The red swamp crayfish Procambarus clarkii (Girard, 1852) is a benthic
freshwater crustacean widely distributed all over the world. Native to
Mexico and South-Central America, this species has been extensively har-
vested since the 1950s and successfully translocated all over theworld for
aquaculture purposes (Gherardi, 2006; Hobbs et al., 2008; Manfrin et al.,
2019). As a result of these translocations, today P. clarkii is the most cos-
mopolitan crayfish (Gherardi, 2006). Because of its high environmental
tolerance, this species has been used for a long time as a bioindicator
of environmental pollution from heavy metals (Fernández-Cisnal
et al., 2018, 2017; Gherardi et al., 2002; Goretti et al., 2016; Osuna-
Jiménez et al., 2014; Y. Zhang et al., 2019), cyanotoxins (Tricarico
et al., 2008) and organic compounds (Vioque-Fernández et al.,
2007a). Being a benthic opportunistic feeder, showing a pronounced
borrowing activity this species may be susceptible to plastic inges-
tion from soil (Lv et al., 2019; D. Zhang et al., 2020).
(THC, Giulianini et al., 2007), as well as immune-related enzymes
(prophenoloxidase proPO, and phenoloxidase PO) activities (Cerenius
and Söderhäll, 2004) were assayed to estimate the immunological tox-
icity of polystyrene (PS) NPs on P. clarkii. Furthermore, transcriptome
sequencing was performed on crayfish hemocyte and hepatopancreas
samples following NP exposure for 72 h. This integrated approach
allowed us to figure out at the same time if crayfish were able to main-
tain homeostasis and which specific pathways were involved in the
compensatory mechanisms. This study will be useful to shed light on
the potential effects of plastic nanoparticles on crayfish.

2. Materials and methods

2.1. Animal collection and housing conditions

Adult crayfish Procambarus clarkii (wet weight: 32.2 ± 15.5 g; total
length, from the tip of the rostrum to the tip of telson: 102.2 ± 13.9
mm, N= 38) were sampled in Brancolo Channel (“Brancolo's reclama-
tion area”, 45°46′N, 13°30′E, GO, Italy) inOctober 2018. Theywere accli-
matized for one month in three 120 L glass aquaria (120 × 40 × 50 cm)
provided with closed-circuit filtered and thoroughly aerated tap water
(pH 8.35 ± 0.1, electric conductivity 305 ± 2.1 μS, and temperature
21.0 ± 1.0 °C). Polyvinyl chloride tubings were placed within each
tank as shelters. The photoperiodwas set to 12:12 (L:D) and individuals
were fed daily ad libitumwith commercial food (Sera granular, Heisen-
berg, Germany). Water was completely changed twice a week. Only ap-
parently healthy crayfish were selected for the experiment. Specimens
were starved for 24 h prior to the start of the experiment to empty
their digestive systems.

2.2. Polystyrene nanoplastics characterization

Yellow-Green fluorescent polystyrene nanoparticles (Fluoresbrite®
YG Carboxylate Microspheres, 0.10 μm) with a density of 1.05 g/cm3

were purchased from Polysciences (Polysciences Inc., Warrington, PA),
supplied as a 2.5% aqueous suspension with a concentration of 4.55 ×
1013 particles/mL. For particle characterization, a 2mg/L solution inMilliQ
water was prepared. Primary particle diameter identification was
achieved by transmission electron microscopy (TEM, EM 208, Philips,
Eindhoven, The Netherlands). Intensity-weighted size distribution and
hydrodynamic diameter (Z-average), as well as polydispersity index
(PdI), were acquired by Dynamic Light Scattering (DLS) using a Malvern
Zetasizer nano ZS (Malvern Instruments Ltd., Worcestershire, UK). Mea-
surements were conducted at 26.5 °C and performed in triplicate.

2.3. Nanoplastic-supplemented food

Artificial agar-based food was prepared with a specified amount of
artificial food (Sera granular, Heisenberg, Germany) and a supplement
of nanoparticles. The standard food preparation contained one regular
granule (6.3 ± 0.7 mg) of artificial food, which was suspended in 400
μL of MilliQ water in a 1.5 Eppendorf tube. After vortexing, the superna-
tant was removed. 4 μL of nanoplastic solution 2.5% solids (1.82e11

particles) were added to the rehydrated granules, which correspond
to 100 μg PS NPs accounting for a 1.6 ± 0.2% of food dry weight (the
agar content was not considered part of the diet). A solution of agar
3× (25–30 μL for each feeding unit, Amresco, Solon, OH, USA) was
added as a thickener. The mixture was then dried at room temperature
overnight to obtain small pellets. One single artificial granule was
administered to each exposed crayfish at the beginning of the experi-
ment. The dose of 100 μg (equivalent to 1.4 × 1011 particles/L) was
selected considering a polluted freshwater environment scenario, that
possibly record microplastic concentrations up to 102 particles/L



(Triebskorn et al., 2019). As suggested by Besseling et al. (2019),
nanofragmentation ofMPs can ultimately result in nanoparticle concen-
trations of 14 orders of magnitude higher. Additionally, the relatively

point (0, 24 h, 48 h, 72 h), all crayfish were checked. The number of he-
mocytes was determined using a Bürker counting chamber placed
under an Olympus BX50 microscope (Olympus, Tokyo, Japan). Each
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low tested dose of 100 μg was chosen to evaluate the sub-lethal effects
of PS NPs on P. clarkii, based on acute toxicity thresholds available in lit-
erature on other crustacean species (Heinlaan et al., 2020; Li et al.,
2020a; Liu et al., 2019b).

2.4. Feeding assay

A total of 24 intact P. clarkii (12 females and 12males)with an average
body weight of 32.2 ± 11.0 g and a mean total length of 106 ± 10.5 mm
were selected for the experiment. Crayfish were randomly divided into
exposed (N = 12) and control (N = 12) groups. Two custom-made
glass thanks filled with 4 L tap water were used for the experiment, one
for each group (Fig. S1). Aquariawere providedwith three almost entirely
separated cells (12×14×15 cm) to keep individuals isolated andprevent
aggressive behaviors. During the 72 h experiment, water recirculated in a
closed loop but was not replaced, and the experimental conditions were
kept stable with a photoperiod of 12:12 (L:D) and a temperature of 21
°C. Crayfish were fed once at T0 (0 h) with one pellet of normal (control
group) or nanoplastic spiked (exposed group) food, with no additional
feeding provided for the rest of the trial. After 72 h crayfishwere anesthe-
tized by hypothermia and sacrificed. Four replicates of the experiment
were conducted. Four individuals (2 control and 2 exposed animals)
from the fourth replica were excluded from subsequent analysis, as they
escaped from exposure tanks.

2.5. Samples collection

Hemolymph was withdrawn from exposed and control animals by
pericardial cavity puncture with a 1-ml syringe (26-gauge needle) be-
fore the exposure (as baseline sample, T0) and also at 24 (T1), 48
(T2), 72 (T3) hours after the food pellets provision. Hemolymph sam-
ples were taken between 10 and 12 AM at about the same time each
day to compare the same circadian status for all the experimental cray-
fish. Approximately 200 μL of hemolymph from each animal were col-
lected in a sterile Eppendorf tube without using anticoagulant and
promptly placed on ice. Plasma was isolated from hemolymph through
centrifugation (10,000 ×g for 1 min at 4 °C) and immediately stored at
−20 °C for subsequent analysis. For transcriptomic analysis, the remain-
ing hemocyte pellet after plasma isolation at T3 sampling time was
saved and stored at−80 °C in 200–500 μL of TRIzol RNA isolation solu-
tion (Invitrogen, Thermo Fisher Scientific, Inc.). At the end of the exper-
iment, crayfish were dissected, hepatopancreas samples were collected
and immediately stored in 300 μL of TRIzol at−80 °C for RNA extraction.

2.6. General stress parameters

2.6.1. Glycemia
Plasma glucose was determined using the Glucose Colorimetric Assay

Kit (Catalog No. 10009582; Cayman Chemical, Ann Arbor, MI, USA). Stan-
dard curveswereprepared at concentrations of 0, 2.5, 5, 7.5, 10, 15, 20 and
25 mg/dL of glucose following manufacturer's instructions. Standard
curves R2 values were of 0.9985 or greater. Standard and sample
absorbances were measured at 510 nm in an Infinite® 200 PRO micro-
plate reader (Tecan, Männedorf, Switzerland) equipped with the
software Tecan i-control (version 1.7.1.12). Absorbance values were
corrected by subtracting measurements from control reactions
without sample. Glucose levels were interpolated from standard curves
and reported as mg/dL. All standards and samples were assayed in
duplicate.

2.6.2. Total hemocyte count
After collection, a drop of hemolymph was immediately placed on a

hemocytometer for total hemocyte count (THC) assay. For each time
sample was photographed at 10× magnification using an Olympus
DP12 camera (Olympus, Tokyo, Japan). The pictures were then
uploaded in the free software ImageJ (more information available at
http://rsb.info.nih.gov/ij/) implemented with the Cell Counter plug-in
allowing for the manual cell counting and hemocyte quantification.

2.6.3. Basal and total plasmatic phenoloxidase activities
Phenoloxidase (PO) activity was monitored spectrophotometrically

as the formation of dopachrome from 3,4-dihydroxyDL-phenylalanine
(DL-DOPA, Sigma-Aldrich) as reported previously by Giglio et al.
(2018), with minor modifications. Briefly, 20 μL of plasma were mixed
with either 180 μL of DL-DOPA (3mg/mL in PBS) or 180 μL of a solution
of DL-DOPA (3 mg/mL in PBS) and SDS (1 mg/mL) in a microtiter plate
(Biorad), for the determination of basal and total plasmatic PO (proPO)
enzyme activity, respectively. SDS has been described as a good chemi-
cal activator of PO from its inactive zymogen, prophenoloxidase (proPO,
Radha et al., 2013). Absorbance was measured kinetically at 25 °C at
492 nm over 60 min at 5-min intervals in an Infinite® 200 PRO micro-
plate reader (Tecan, Männedorf, Switzerland) equipped with the soft-
ware Tecan i-control (version 1.7.1.12). Four technical repetitions
were performed for each plasma sample. The enzyme activity wasmea-
sured as the slope (absorbance vs time) of the reaction curve during the
linear phase of the reaction. Absorbance values were blank (reagents)
subtracted. The slope of the reaction curve at Vmax was plotted as absor-
bance per μL of hemolymph per min.

2.6.4. Hemolymph protein concentration
Total Protein content was assessed in plasma samples. The analysis

was performed by measuring samples absorbance at 280 nm following
the Protein A280 method for NanoDrop™ 2000 (Thermo Fisher Scien-
tific, Wilmington, DE, USA).

2.7. Transcriptomic analysis

2.7.1. Total RNA isolation
Total RNA was extracted from P. clarkii hemocytes and hepatopan-

creas. Tissues in TRIzol weremechanically homogenized using a Dremel
homogenizer (Dremel® 300-1/55, USA) for about 2–3 min or a Mini-
Beadbeater (BioSpec Products, Bartlesville, Oklahoma) using glass
beads (0.5 mm diameter, Scientific Industries Inc., Bohemia, New
York) for hepatopancreas and hemocyte samples, respectively. RNA pu-
rification was performed using a Direct-zol™ RNA MiniPrep (Catalog
No. R2052; ZymoResearch, Irvine, CA, USA) spin column systemaccord-
ing to the manufacturer instructions with minor modifications. RNA
quality and concentration were assessed with NanoDrop™ 2000
Spectrophotometer (Thermo Scientific; Thermo Fisher Scientific Inc.),
agarose gel electrophoresis and Qubit® 2.0 Fluorometer (Life Technolo-
gies, Carlsbad, CA, USA) using the Qubit® RNAHS Assay Kit (Catalog No.
Q32852; Invitrogen; Thermo Fisher Scientific, Inc.). RNA was success-
fully extracted from 18 out of 19 hepatopancreas samples (18 digestive
glands from 7 males and 11 females). However, extracted RNA from
female hemocytes showed inadequate quality standards for library
preparation, therefore onlymale hemocyte sampleswere used (N=7).

2.7.2. Library generation, Illumina de novo sequencing
Illumina librarieswere constructed from 25 (18 hepatopancreas and

7 hemocyte) samples using QuantSeq™ 3′ mRNA-Seq Library Prep Kit
FWD (Catalog No. 15; Lexogen GmbH, Vienna, Austria) according to
the manufacturer's instructions using 65–525 ng of total RNA for each
sample as input. The quality of purified librarieswas evaluated by exam-
ining the size distribution and the absence of primer species using an
Agilent High Sensitivity DNA Kit (Catalog No. 5067-4626 and 5067-
4627; Agilent Technologies, Palo Alto, CA, USA) for the 2100 Bioanalyzer

http://rsb.info.nih.gov/ij/


System. Libraries concentrations ranged from 1.9 to 8.2ng/μL, with a
typical size of 200–600 base pairs (bp). High-throughput sequencing
was performed as single-end 100 bp sequencing using a NovaSeq™

(Zuur et al., 2009). Model assumptions, in terms of linearity, normality,
and homogeneity of variances, were evaluated by visual inspection of
residuals' plots, and verified by Shapiro and Fligner-Killeens tests.

3.1. Particle characterization

3.2.1. Glycemia
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6000 platform (Illumina, San Diego, CA, USA) at CBM S.c.r.l. (Area Sci-
ence Park, Trieste, Italy) based on standard protocols. The RNA sequenc-
ing data are available online at NCBI sequence read archive (SRA) under
the BioProject ID: PRJNA691574.

2.7.3. Raw data analysis
The raw demultiplexed reads in FASTQ format provided by the se-

quencing center were quality assessed and trimmed using the Software
CLC Genomics Workbench v20.0.03, developed by QIAGEN (Hilden,
Germany). The trimmingprocedure included the removal of adaptor se-
quences, low-quality bases (quality score threshold=0.05), ambiguous
nucleotides, poly(A) and poly(G) sequence stretches and short reads
(read length < 75 nucleotides). Additionally, 2 and 15 nucleotides at
the 3′ and 5′ terminus of the reads, respectively, were discarded to re-
move a compositional nucleotide bias observed in a preliminary screen-
ing. Finally, trimmed reads underwent an additional filtering procedure
to remove residual non-mRNA contamination through a workflow set
up ad-hoc using the Workflow tool (CLC Genomics Workbench
v12.0.3). For a detailed description see Appendix 1.2.

2.7.4. Differential gene expression analysis
Clean reads from each library were aligned to a reference tran-

scriptomepreviously assembled in our laboratory, the Laboratory of Ap-
plied and Comparative Genomics at the University of Trieste, from
Illumina RNA-sequencing data (depth 2 × 100 bp) from 12 tissues of
P. clarkii (brain, eyestalk, green glands, ventral ganglia, heart, hepato-
pancreas, gills, hemocytes, muscle, Y-organ and epidermis, ovary and
testis) (Unpublished results), with the RNA-seq analysis tool included
in the CLC Genomics Workbench. The mapping parameters were set
as follows: mismatch cost = 2, insertion cost = 3, deletion cost = 3,
length fraction = 0.5, similarity fraction = 0.9. Mapping outcomes, as
read counts per gene per sequencing library, were analyzed via the Dif-
ferential expression for RNA-seq tool (CLC Genomics Workbench), con-
sidering three separated groups of samples (i.e., hemocytes, male
hepatopancreas and female hepatopancreas) and thus comparing each
experimental condition with the paired control. To identify significant
differentially expressed genes (DEGs) the adjusted p-value (false dis-
covery rate - FDR) and absolute fold change cutoffs were set at 0.05
and 2, respectively. Finally, a functional gene ontology (GO) enrichment
analysis of DEGs was performed through a hypergeometric test to iden-
tify significantly enriched features.

2.8. Statistical analysis

All statistical data analyses were performed using R version 4.0.2
software (R Core Team, 2020). The significance of treatment effects
was assessed for each physiological variable (hemolymph plasmatic
PO and proPO activity, glucose concentration, protein concentration,
THC) using Linear Mixed effects Models (LMM). LMM assuming Gauss-
ian distributions of residual error were fitted using lmer function from
the lmerTest package (v. 3.1.2, Kuznetsova et al., 2017) in R. The analysis
tested 3 fixed factors: “Sex” (2 levels, males and females), “Treatment”
(2 levels, exposed and control) and “Time” (4 levels, T0, T24 h, T48 h,
T72 h). To avoid pseudo-replication due to repeated sampling of cray-
fish fromdifferent trials over time, “Individual” (19 levels)was incorpo-
rated as a random factor (random intercept) nested in “Trial” (Replicate
1, 2, 3, or 4) in the model designs. Fully models comprising all fixed ef-
fects, together with their interactions and random effects, were first
tested. The goodness-of-fit of all the models was assessed using maxi-
mum likelihood for model fits (Zuur et al., 2009). Final models were ob-
tained by backward elimination of non-significant variables from the
full model using the step function from the lmerTest package
(Kuznetsova et al., 2017) and were presented using REML estimation
Hypothesis testing was conducted by performing a type III Wald chi-
squared test using the Anova function from the car package (v. 3.0.9,
Fox andWeisberg, 2019). Post hoc Tukey tests for pairwise comparisons
were conducted using the function pairs, after the least-square means
were calculated using the function lsmeans (from the R package
lsmeans v. 2.30.0, Lenth, 2016). The conditional coefficients of determi-
nation were calculated for all the models using the function r.
squaredGLMM implemented in the package MuMIn (v. 1.43.17,
Barton, 2020). An alpha level of 0.05 was used for all statistical tests.

3. Results
TEM images showed well-distributed particles with uniform size
and spherical morphology (Fig. S2). Primary particles' nominal size of
100 nm was confirmed by TEM imaging with an average diameter of
103± 3.18 nm (average± S.D.,N=440). PS NP particle hydrodynamic
diameter (Dh), and heterogeneity (polydispersity index, pdi)were char-
acterized by Dynamic Light Scattering (DLS) at a concentration of 2
mg/L in MilliQ water, resulting in a Z-average diameter size (±S.D.) of
113.9 ± 0.91 nm (Fig. S2) and an average polydispersity index (±
S.D.) of 0.02 ± 0.01.

3.2. Physiological biomarkers
The best-fit model for plasma glucose included Treatment and Time
as fixed explanatory variables and id nested in Trail as a random
intercept. Glycemia levels did not differ between treatments (χ2 =
0.97, df = 1, 69, P > 0.05; Table S3), neither was found a significant in-
teraction between treatment and exposure time when comparing glu-
cose concentrations over all time points (i.e., T0, T24 h, T48 h, and
T72 h post-exposure) among control and exposed groups. The model
revealed only a significant main effect of time (χ2 = 11.25, df = 3, 69,
P = 0.01; Table S3), with a general reduction of glycemia from T0 to
T72 h and a significant decline between T0 and T24 h (Mean ± S.D.;
T0: 11.7 ± 7.13 mg/dL; T24 h: 7.95 ± 5.57 mg/dL; post hoc test
P = 0.027, Fig. 1A). A full description of the results can be found in the
Appendix (Tables S1, S2, and S3).

3.2.2. Total hemocyte counts
The final mixed model for THC comprised Treatment, Time and Sex

as fixed effects, and included Treatment:Time and Time:Sex as signifi-
cant interactions (χ2 = 9.77, df = 3, 72, P = 0.021; χ2 = 9.53, df = 3,
72, P = 0.023; Table S6). A random intercept for id was also taken
into account. Despite a moderate inter-individual variability, PS NP ex-
posure was followed by an increase of THC (Fig. 1B). At 48 h, exposed
crayfish showed statistically significant higher THC levels compared to
controls (Mean ± S.D.; ctrl: 3.34 ± 1.5 × 106 cells/mL; exposed:
5.01 ± 0.89 × 106 cells/mL; post hoc test P = 0.023; Table S4, Fig. 1B).
At 72 h, PS NP exposed individuals demonstrated a different behavior
based on sex: free hemocytes' concentration remained stable in males,
while markedly decrease in females (post hoc test P = 0.021, Fig. 1D).
Thence, 3 days post-administration males showed statistically higher
THC levels than females (Mean ± S.D.; females: 2.71 ± 1.35 × 106

cells/mL; males: 4.87 ± 1.90 × 106 cells/mL; post hoc test P = 0.020,
Fig. 1C, D). Total hemocyte count mean values for control and exposed
individuals are summarized in Table S4; model estimates, 95% confi-
dence intervals, and p-values, as well as the outputs of the analysis of
deviance, are reported in Tables S5 and S6.



3.2.3. Basal and total plasmatic phenoloxidase activities
The results showed no significant differences in either basal PO (χ2

= 2.70, df = 1, 65, P > 0.05; Table S9) or total plasmatic PO (χ2 =

exposed groups, despite significant overall variation over time was
found for both phenoloxidase (χ2 = 16.2, df = 3, 65, P = 0.001,
Table S9) and prophenoloxidase (χ2 = 23.2, df = 3, 64, P < 0.001,

Fig. 1. Effects of PS NP exposure on physiological parameters of P. clarkii. Data are presented for all individuals (N= 19) as mean ± S.D., over all time points (T0, T24 h, T48 h, and T72 h
post-exposure). When mixed models revealed a statistical significance for sex, data are also showed for males (N = 8) and females (N = 11) separately. Asterisks represent significant
differences between groups (*P < 0.05).
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0.11, df = 1, 64, P > 0.05; Table S12) activities among control and
 Table S12) activities. Although a high inter-individual variability was



observed, PO activity appeared to slightly decrease in all specimens over
time (Fig. 1E).Meanwhile, total phenoloxidase activitywas significantly
determined by sex (χ2=6.95, df=1, 64, P=0.008; Table S12), with an

total of 12, 98, and 32 DEGs in Hem, Hep_F, and Hep_M groups, respec-
tively. Overall, the NP treatment mostly resulted in upregulation, as ev-
idenced by the disproportion between positively and negatively

crea

pan

Fig. 2.Multidimensional scaling (MDS) plot of P. clarkii samples with total counts used as
expression value parameter. Distances correspond to leading log-fold-changes, i.e., the av-
erage (root-mean-square) of the largest absolute log-fold-changes, between each pair of
samples. Different colors correspond to different experimental groups (Control, yellow;
PSNP exposed, blue). Shapes define different groups of samples: hemocytes (Hem, circle),
hepatopancreas of male specimens (Hep_M, empty triangle), and hepatopancreas of fe-
male specimens (Hep_F, full triangle). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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enzyme activity higher in females than inmales (Mean± S.D.; females:
4.93± 4.29 × 10−4 abs/μL/min; males: 3.26 ± 4.05 × 10−4 abs/μL/min;
post hoc test P = 0.018, Fig. 1G, H). Although non-significant, a minor
proPO activity increase after 48 h was recorded both in males and in fe-
males. Phenoloxidase and prophenoloxidase enzyme activity summary
statistics can be found in Tables S7 and S10, while mixed models and
ANOVAsummaries are reported in Tables S8, S9 and S11, S12,
respectively.

3.2.4. Hemolymph protein concentration
Aswith glycemia and phenoloxidase enzyme activity, no clear effect

of Treatment was found in protein concentration after 72 h of exposure
(χ2 = 1.25, df = 1, 73, P > 0.05; Table S15, Fig. 1I). A full description of
protein concentration statistics is given in the Appendix (Tables S13,
S14, S15).

3.3. Transcriptomic responses of Procambarus clarkii to nanoplastic
exposure

3.3.1. Illumina sequencing
A total of 126,179,823 raw reads were obtained from Illumina-based

RNA-seq (Table 1), with a mean of 5,047,193 raw reads per sample and
an average length of 97.5 ± 1.23 bp (Mean ± S.D.). After trimming,
1,078,492 to 6,572,996 clean reads per sample (mean length of 83.1 ±
0.07 bp) were generated. The Q30 (Q score ≥ 30) was 98.2% and mean
GC contents was 40.8% (Table 1). Clean reads were mapped back to
the reference transcriptome and the read counts for each genewere ob-
tained from the mapping results. A total of 48 million reads (80.2%)
mapped to the reference transcriptome (Table 1). Detailed information
on sequencing outputs and mapping results are available in the Appen-
dix (Table S16).

3.3.2. Analysis of differentially expressed genes (DEGs)
A preliminary Multidimensional Scaling (MDS) analysis was per-

formed to visualize the level of similarity between samples based on
gene expression profiles (Fig. 2). MDS revealed a clear separation of
samples by tissue type along the first dimension (Dim1), as expected.
Although not as clearly marked, further segregation between the two
sexes in hepatopancreas samples was visible along the second dimen-
sion (Dim2). A weak clustering effect due to treatment was observable
for females in the hepatopancreas, while no evident segregation by
treatment was observable within other groups of samples (Fig. 2). Dif-
ferential expression analysis was performed between PS NP exposed
crayfish and control counterparts in hemocytes (Hem,N=7) and hepa-
topancreas samples according to sex (Hep_F, N = 10; Hep_M, N = 7).
One sample, belonging to the female hepatopancreas group (R3T3),
was excluded from DEG analysis because it was considered an outlier
as its gene expression pattern greatly differed from other specimens of
the same group, possibly because of an undetermined individual pecu-
liarity. In general, the alterations induced by PS NPs were of a limited
entity, both in terms of up- and down-regulation, even though a
tissue-dependent effect was detectable. DEG analysis highlighted a

Table 1
General information on RNA-Seq output and mapping rates for hemocytes and hepatopan

Terms Hemocytes Hepato
Number of libraries 7 7
Number of raw sequencing reads 43,763,356 32,742,172
Number of clean sequencing reads 19,895,749 16,021,331
% GC content 39.7 41
Q20 100 100
Q30 97.8 98
Mapping rate (%) 67.4% 86
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regulated genes (8 vs 4 in Hem, 65 vs 33 in Hep_F, and 25 vs 7 in
Hep_M). A complete list of DEGs, including the fold ratio, the adjusted
p-value, and annotation information can be found in the Appendix
(Table S17), while they are visually displayed by volcano plots and
heatmaps in Fig. 3. Only 3 transcripts, cytochrome P450 49a1 alongside
two unknown genes, were differentially expressed in both sexes in
the hepatopancreas, even though their regulation patterns differed be-
tween sexes (Fig. S3). A functional Gene Ontology (GO) enrichment
analysis was performed by hypergeometric test for all different groups
of DEGs but was inconclusive, likely due to the low number of genes
and relatively low rate of annotated genes as a consequence of dealing
with a non-model organism.

4. Discussion

4.1. Physiological biomarkers

Numerous studies have reported hyperglycemia mediated by CHH
release following exposure to several stressors in crustaceans
(Bonvillain et al., 2012; Celi et al., 2013; El-Bakary and Sayed, 2011;
Lorenzon et al., 2004; Manfrin et al., 2016), although to the best of our
knowledge, the effects of NPs have never been investigated in this
species. MPs and NPs have been described to induce different glycemic
responses in fish. Brun and colleagues reported a significant reduction
in whole-body glucose levels in zebrafish (Danio rerio) larvae following

s libraries.

creas – males Hepatopancreas – females All
11 25
49,674,295 126,179,823
24,550,051 60,467,131

.0 41.3 40.8
100 100

.4 98.3 98.2

.6% 84.3% 80.2%



a 2-day exposure to 20 mg/L of PS NPs (Brun et al., 2019). Differently, a
significant hyperglycemic response was recorded in Nile tilapia
(Oreochromis niloticus) after exposure to microplastics (1–100 mg/L)

et al., 2013; Johnson et al., 2011; Lorenzon et al., 2008; Wei et al.,
2020). In this study, PS NP exposure did not cause hemocytopenia but
conversely was followed by a significant increase of THC 48 h after ex-

Fig. 3. Visual identification of DEGs (FDR ≤ 0.05 and |fold change| > 2) identified in P. clarkii exposed to PS NPs, relative to the controls, for each sample group analyzed: hemocytes (A, a),
female hepatopancreas (B, b), andmale hepatopancreas (C, c). The hierarchical clustering is based on Euclidean distance and complete linkage of normalized expression values (log CPM -
counts per million -). Clustering indicates similar expression patterns among the samples of the control group (C, yellow) or nanoplastic-exposed group (NP, blue) (columns) and among
genes (rows). Colors represent the normalized gene expression levels from light blue (low) to red (high). In the volcano plots, red (upregulation) and blue (downregulation) dots indicate
DEG transcripts in the nanoplastic-exposed group, respectively, and dots in grey color showno significant differential expression. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

F. Capanni, S. Greco, N. Tomasi et al. Science of the Total Environment 791 (2021) 147984

7

for 15 days in a dose-dependent manner (Hamed et al., 2019). In this
study, the lack of a significant glycemic response to plastic exposure
could either be due to the moderate physiologic stress induced by the
relatively low dose (100 μg) of PS NPs administered or to the recovery
of the animals to glycemia homeostatic levelswithin 24h after ingestion
(Lorenzon et al., 2004).

Crustaceans' hemocytes are crucial players in the host immune re-
sponse. THC is sensitive to various environmental pressures, and a re-
duction in circulating hemocytes, termed hemocytopenia, has been
reported in several crustacean species under stress conditions (Celi
posure. A similar increase in total hemocyte count was previously ob-
served by Giulianini et al. in Pontastacus leptodactylus injected with
200 μL of 0.9 μm carboxylated polystyrene latex beads after 24 h
(Giulianini et al., 2007). The authors reported that maximum THC in-
creases were registered at 1–2 h after injection and clearly showed
phagocytic activity of crayfish hemocytes against exogenous particles.
Nanoparticles, particularly metal-based NPs, have recently gained
great interest as antimicrobials, drug delivery vehicles, and
immunostimulants in aquaculture (Shaalan et al., 2016; Swain et al.,
2014). Several peer-reviewed papers have reported the enhancement



of crayfish and shrimp immune responses as a result of nanoparticles
mediated supplementary diets (Ishwarya et al., 2019, 2018; Juarez-
Moreno et al., 2017; Kandasamy et al., 2013; Muralisankar et al., 2016,

In previous studies, MP exposure induced upregulation of genes asso-
ciated with translation, ribosomal and spliceosomal functions in the ma-
rine copepod Tigriopus japonicus (6 μm PS MPs; 0.23 mg/L for two-
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2014; Sivaramasamy et al., 2016; Sun et al., 2016; Tello-Olea et al.,
2019). Authors addressed that Au, Cu, Zn and Ag-based and chitosan
NPs, within a certain range of doses, were all able to increase THC,
phenoloxidase enzyme activity, nutritional indices, and development
and to raise survival rate after virus infection in decapod species, with-
out causing toxicity in terms ofmortality, antioxidant andmetabolic en-
zymes activity or lipid peroxidation. Even though this study relied on a
relatively small sample number, these results may suggest that a low
dose of PS NPs promotes immune stimulation but do not cause toxicity
in crayfish after 72 h of exposure,withminor differences between sexes.

Phenoloxidase, primary involved in the melanization cascade, is one
of the most common measures of invertebrate immunity. Overall,
elevated PO levels identify a stress response, while low levels are
associated with immunocompromised animals (Coates and Söderhäll,
2020). To cope with MP and NP-induced stress, PO activity initially
increased under short time and low concentration exposure in decapod
crustaceans (Li et al., 2020a; Liu et al., 2019a). Prophenoloxidase
expression was also enhanced by low doses of NPs (Li et al., 2020a).
However, higher concentrations of particles over long time exposure
caused a decrease in PO activity and proPO expression, showing an
exceed capacity of the immune defense system (Li et al., 2020a; Liu
et al., 2019a). The lack of a clear enzyme response in P. clarkii may be
due to the lower exposure time and dose of PS NPs administered to
crayfish, compared to the mentioned studies (5–40 mg/L for 28 d, Li
et al., 2020a; 0.04–40 mg/L for 21 d, Liu et al., 2019a).

The assessment of hemolymph protein levels is a useful tool for
monitoring the physiological status of crustaceans exposed to different
environmental conditions or stressors (Coates and Söderhäll, 2020;
Lorenzon et al., 2011). We did not find significant alterations of total
protein content in P. clarkii after PS NP exposure. Our findings agree
with other laboratory studies that tested acute stress on crustaceans
(Celi et al., 2013; El-Bakary and Sayed, 2011), and may confirm the
idea that hemolymph protein concentration can be considered a
chronic, rather than an acute response, biomarker as previously re-
ported by Bonvillain et al. (2012), who evidenced that fluctuations in
protein concentrations in P. clarkii were associated with chronic stress
in different laboratory and field studies (Bonvillain et al., 2012).

This poor response could be explained in the light of the relatively
low concentration of PS NPs (100 μg) used for this study in comparison
to PSNP toxicity thresholds available in literature for crustacean species.
Indeed, a 96 h half-lethal concentration (LC50) value of 396 mg/L (95%
CI, 26.0–638 mg/L) was calculated for 75 nm PS NPs in juvenile shrimp
Macrobrachium nipponense (Li et al., 2020a). InDaphnia species, Liu and
colleagues reported a 48 h LC50 of approximately 77 mg/L for 75 nm PS
NPs (95% CI, 32.4–127mg/L, Liu et al., 2019b). Moreover, Heinlaan et al.
determined an effective concentration for 50% immobilization (EC50) of
22.0 ± 0.7 mg/L and 13± 1.4 mg/L for 26 nm and 100 nm non dialyzed
carboxylated PS NPs, respectively, which further rose to >100 mg/L for
dialyzed (removal of antimicrobial additive sodium azide) particles
(Heinlaan et al., 2020).

4.2. Transcriptomic analysis

4.2.1. Hemocytes
The differential gene expression analysis in hemocyte samples re-

vealed that just a little number of genes underwent significant expres-
sion shifts in response to PS NP exposure. Three out of 8 upregulated
DEGs in hemocytes (i.e., transcription factor btf3, pre-mRNA-splicing fac-
tor ATP-dependent RNA helicase PRP16, and putative ribosomal protein
S23e) were involved in gene transcription and translation (Table S17).
Since proteins catalyzed most cellular processes, the regulation of
their levels through changes in gene expression is fundamental to
respond to stress stimuli (Holcik and Sonenberg, 2005).
generation exposure, C. Zhang et al., 2019) and in developing zebrafish
(10–45 μm PEMPs; 5 mg/L for 48 h, LeMoine et al., 2018). Besides, prote-
omic analysis of the zebramussel (Dreissena polymorpha) gills revealed an
upregulation of protein involved in ribosomal structure and function (in-
cluding 40S ribosomal protein S23) after 6 days of MP exposure (1–10
μm; 4 × 106 MP/L, Magni et al., 2019). Interestingly, the authors related
the over-production of this class of proteins with their involvement in
the formation of stress granules (SG), given the concurrent alteration of
other RNA-binding proteins (i.e., eukaryotic translation initiation factors).
Here, as we did not find a significant difference in the expression of
other specific proteins involved in the formation of SG, (e.g., eukaryotic
translation initiation factors, translational silencers, polysome-associated
proteins, and cytoplasmic polyadenylation element-binding protein,
Anderson and Kedersha, 2009) we assumed that the upregulation of
these genesmust be traced back to an overall higher protein biosynthesis.

In response to PS NP toxicity, two cytoskeleton-associated DEGs
were also identified in hemocytes. The genes annotated as dystonin-
like and integrin beta-4-likewere upregulated in PS NP exposed crayfish,
suggesting a primary involvement of hemocytes in the immune
response (Table S17). Indeed, dystonins can interact with the
hemidesmosomal transmembrane β-integrins to form cell-
extracellular matrix junctions (Jefferson et al., 2004; Koster et al.,
2003). In turn, hemocyte-surface associated integrins, and specifically
the integrin β subunit, have been suggested to have a role in many
cell-mediated innate immune responses, such as microbial agglutina-
tion (Huang et al., 2015; Zhang et al., 2012), hemocytes degranulation,
activation of proPO activating system and phagocytosis (Chai et al.,
2018; Lin et al., 2013; Wang et al., 2014; Xu et al., 2018). In accordance
with these results, Gu and colleagues observed an alteration of
phagosome processes and integrin-mediated signaling pathway in
phagocytes of zebrafish exposed to nano-sized polystyrene (Gu et al.,
2020). Furthermore, altered cytoskeletal dynamics have been previ-
ously revealed by proteomic analysis in gills of the zebra mussel
(Magni et al., 2019) and oocytes of female oysters (Crassostrea gigas)
(Sussarellu et al., 2016) after MP exposure.

4.2.2. Hepatopancreas

4.2.2.1. Acute phase and inflammation-related genes. In the hepatopan-
creas of P. clarkii, a group of DEGs coding for acute phase and inflamma-
tory response proteins was identified. Specifically, the expression of
serum amyloid A-5 protein-like, activating transcription factor 4, hemocyte
homeostasis-associated protein, and the antimicrobial peptide anti-
lipopolysaccharide factor ALF9 were significantly upregulated after PS
NP exposure in females (Table S17). Similarly, C-type lectin-2, macro-
phage mannose receptor 1-like, and the anti-lipopolysaccharide factor
ALF4were over-expressed in males (Table S17).

C-type lectins (CTLs), including mannose receptors (Man et al.,
2018), are pattern recognition receptors (PRRs) responsible for patho-
gen detection and immune system activation (Cerenius and Söderhäll,
2018). In P. clarkii, CTLs have been described tomediate hemocyte bind-
ing (opsonization), to promote encapsulation (Zhang et al., 2011) and
phagocytosis of bacteria (Chen et al., 2013; Zhang et al., 2016, 2013)
and to trigger the proPO activating system (Wang et al., 2011). CTLs
have been also reported to influence the expression of antimicrobial
peptides (Bi et al., 2020; Sun et al., 2017) and other immune effector
genes (Luo et al., 2019). Here, an up-regulation of antimicrobial pep-
tides (AMPs) ALF4 and ALF9 was observed in PS NP-group. The pro-
moted expression of AMPs by carboxy-modified PS NPs has been
earlier described by Bergami and colleagues in Antarctic sea urchin
(Sterechinus neumayeri) coelomocytes, under in vitro conditions
(Bergami et al., 2019). AMPs are regulated by Toll-like receptors (TLR)
signaling pathway and may involve ATF4, a member of the ATF/CREB



(activating transcription factor/cyclic AMP response element binding
protein) transcription factor family (Huang et al., 2017; Lan et al.,
2016). Previous proteomic analysis revealed that CTLs were signifi-

10, ubiquitin carboxyl-terminal hydrolase, and aminopeptidase N resulted
upregulated (Table S17). Besides, the upregulation of the activating
transcription factor 4 (ATF4) (Table S17), illustrated in Section 4.2.2.1,

F. Capanni, S. Greco, N. Tomasi et al. Science of the Total Environment 791 (2021) 147984

9

cantly upregulated by MP exposure in T. japonicus (C. Zhang et al.,
2019) and Litopenaeus vannamei (Duan et al., 2020), in accordance
with our findings (Rosa et al., 2013; Smith and Dyrynda, 2015). Several
other studies conducted on the Mediterranean mussel Mytilus
galloprovincialis, indicated an antimicrobial response to micro- and
nanoplastics in hemocytes and hepatopancreas (Auguste et al., 2020;
Détrée and Gallardo-Escárate, 2018, 2017; Sendra et al., 2020). Our re-
sults, in accordance with literature, suggest that NPs may be perceived
as non-self by crayfish immune system in the hepatopancreas, and
through different pattern recognition receptor signaling pathways,
they can trigger inflammatory response.

4.2.2.2. Detoxification-related genes. In this study, four genes involved in
xenobiotic detoxification pathways were modulated in the hepatopan-
creas of male and female crayfish exposed to PS NPs compared to the
control. Among them, cytochrome P450 49a1 was significantly upregu-
lated in females, while it resulted downregulated inmales. Additionally,
glutathione S-transferase, carboxylesterase 4A-like, and thiopurine S-
methyltransferase-likewere over-expressed in males (Table S17).

Cytochrome P450 monooxygenases (P450), glutathione S-
transferase (GST), and carboxylesterases (CES) are widely used bio-
markers of phase I and II detoxification of endogenous and exogenous
lipophilic compounds in environmental toxicology studies (Barata
et al., 2004; Fernandes et al., 2002; Han et al., 2017; Porte and
Escartín, 1998; Vioque-Fernández et al., 2007b). A recent RNA-Seq anal-
ysis revealed a significant alteration of cytochrome P450 and glutathi-
one metabolism KEGG pathways in D. pulex exposed to PS NPs (70
nm; 1 mg/L for 96 h, Liu et al., 2021). Furthermore, P450 enzymes
have been reported to respond to NP insult both in vitro and in vivo
(Fröhlich et al., 2010; Wu et al., 2019). A study by Fröhlich and col-
leagues reported that carboxyl PS NPs (20–60 nm) were able to reach
high intracellular concentrations inhibiting the catalytic activity of
P450 isoenzymes and increasing the effect of known P450s inhibitors
in vitro (Fröhlich et al., 2010). A comprehensive in vivo study demon-
strated that the expression levels of P450s resulted in a two-phasemod-
ulation after chronic exposure of Daphnia pulex to 75 nm PS NPs: P450s
were induced by low concentrations (0.1–0.5 mg/L) and inhibited at
high concentrations (1–2mg/L) of NPs (Wu et al., 2019). An antioxidant
response mediated by GST and other antioxidant enzymes triggered by
MPs and NPs is widely reported in literature in several crustacean spe-
cies (Chae et al., 2019; Jeong et al., 2017, 2016; Z. Liu et al., 2020). In
this study, NP exposure induced the over-expression of several genes
involved in detoxification, with a more marked response in male cray-
fish as compared to females. Our results further support the hypothesis
that P450 system may play a role in detoxification from NPs, even
though the molecular pathway underlying cytochrome's response re-
mains unclear. The distinct expression of cytochrome P450 49a1 may
indicate a different response of the two sexes to PS NP exposure. Even
though P450s mode of action in NP response has not been yet clarified,
GST triggering is likely to be linked to the detoxification of reactive and
oxygen radicals. Concerning CES4 and TPMT, no additional literature
has been found to hypothesize their direct involvement in PS NP
detoxification.

4.2.2.3. Oxidative stress-related genes. Oxidative stress is one of the most
common hurdles encountered by cells and organisms (Lushchak, 2011).
The removal of non-functional oxidized cytosolic proteins is an essential
part of the antioxidant defenses of cells (Grune, 2000). The ubiquitin-
proteasome system (UPS) and autophagy are the two major degrada-
tion pathways maintaining cellular protein homeostasis (Kwon and
Ciechanover, 2017). In the hepatopancreas of female crayfish, the UPS
was altered by PS NP exposure. Indeed, six transcripts annotated as E3
ubiquitin-protein ligase, 26S proteasome non-ATPase regulatory subunit
may be linked to the promotion of transcription of genes involved in au-
tophagy (B'Chir et al., 2013), and the resistance to oxidative stress in the
unfolded protein response (UPR) directed by PERK (Fusakio et al., 2016;
Harding et al., 2003). The alteration of the intracellular protein degrada-
tion system has been reported in crustaceans exposed to several
stressors (Götze et al., 2017; Hansen et al., 2008; Jiao et al., 2019; Xu
et al., 2017; Zhao et al., 2017). Nevertheless, to the best of our knowl-
edge, this is the first investigation reporting such a clear response of
the UPS to NPs in Crustacea. Actually, only a recent proteomic analysis
has described a similar response to MPs in the gills of zebra mussel
(Magni et al., 2019). It has been outlined that intracellular proteolysis
shows a biphasic response to oxidative stress: moderate stress pro-
motes upregulation of the ubiquitination system and proteasome activ-
ity, while UPS is inactivated by sustained oxidative stress (Shang and
Taylor, 2011). Thus, our results suggest that UPS was regulated under
polystyrene NP exposure as an antioxidant defense in order tomaintain
cellular integrity.

Furthermore, molecular chaperones transcription was altered in
crayfish: sacsin-likewasupregulated in females, while heat shock protein
HSP 90-alpha was downregulated in males (Table S17). HSP90 and
sacsin display several regions of sequence similarities and thus share
molecular chaperone ability function and the capacity to interact with
the proteasome (Anderson et al., 2011; Imai et al., 2003). Specifically,
HSP90 has been proposed to play a principal role in the assembly and
maintenance of the 26S proteasome (Imai et al., 2003), while sacsin is
involved in protein quality control in the UPS and chaperone-
mediated autophagy (Morani et al., 2019). The higher relative expres-
sion of sacsin in NP exposed female crayfish is in line with the upregu-
lation of the other proteasome components described above. Another
explanation of sacsin overexpression may lie in its recently suggested
role in mitochondrial dynamics and bioenergetics, promoting
mitophagy following mitochondrial damage (Morani et al., 2019). In-
deed, RNA-seq revealed two other DEGs involved in mitochondrial dy-
namics, namely peptidyl-prolyl cis-trans isomerase F (PPIF) and MICOS
complex subunit mic25-a (Mic25/CHCHD6), which were respectively
up- and downregulated in exposed females (Table S17). PPIF is a
major modulator of the mitochondrial permeability transition pore
(MPTP) (Gutiérrez-Aguilar and Baines, 2015) and it is reported tomedi-
ate Ca2+ overload- and oxidative damage-induced cell death (Baines
et al., 2005) through the transient or permanent depolarization and re-
arrangement of the cristae (Azzolin et al., 2010). Mic25/CHCHD6 is a
subunit of the mitochondrial contact site and cristae organizing system
(MICOS), which is deputed to create crista junctions, in order to
maintain cristae morphology, and to form contact sites with the
mitochondrial outer membrane (An et al., 2012; Ding et al., 2015;
Muñoz-Gómez et al., 2015). Overall, several authors reported that MPs
and NPs are able to alter cellular membrane integrity by inducing lipid
peroxidation in a concentration-dependent manner (Jeong et al.,
2018; Li et al., 2020a; Lin et al., 2019; P. Yu et al., 2018). In Brachionus
koreanus, Jeong and colleagues unearthed NP-induced damage to
mitochondrial membrane integrity, which is in line with our results
(Jeong et al., 2016).

Lastly, one transcript annotated as arylsulfatase B-like (ARSB-like) re-
sulted also downregulated in females (Table S17). In mammals, ARSB
deficiency has been associated with pathological processes
(Bhattacharyya et al., 2016). In particular, it has been reported that
ARSB downregulation inhibits mitochondrial membrane potential and
oxygen consumption (Bhattacharyya et al., 2016) as well as leads to in-
creased reactive oxygen species (ROS) production and activation of the
MAPK signaling pathway (Q. Wang et al., 2019). Although its specific
role in crayfish is unknown, it seems reasonable to speculate the ARSB
contribution to oxidative stress. Mounting evidence support the idea
that oxidative stress is one of the molecular mechanisms underlying



the toxicity of NPs (Hu et al., 2020). PS NPs caused the over-production
of ROS and activates the downstreammitogen-activated protein kinases
MAPK signaling pathway inD. pulex (75 nmPSNPs; 0.1–2mg/L for 48 h,

expression in the liver of femalemedaka exposed to virgin orweathered
MPs, but no effect was reported in males (Rochman et al., 2014). An-
other study by Rochman et al. (2017b), revealed a lower vitellogenin
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Z. Liu et al., 2020), B. koreanus and Paracyclopina nana (50 nm PS NPs;
0.1–20 mg/L for 24 h, Jeong et al., 2018, 2017, 2016). The gene expres-
sion of antioxidant enzymes, including GST which was found to be up-
regulated in male crayfish in this study, displayed an initial rise and a
subsequent decline with increasing NPs dose in D. pulex (Z. Liu et al.,
2020) and M. nipponense (75 nm; 5–40 mg/L for 28 d, Li et al., 2020a),
suggesting that high nanoplastic concentrations can overwhelm antiox-
idant systems and induce loss of compensatory mechanisms, but lower
concentration induces antioxidant response. Despite our investigation
used a concentration that lies the lower range of the ones used in
cited NP toxicity studies, a mild antioxidant response was visible in
crayfish. This seems to be interconnected with ER stress, protein degra-
dation, and possibly mitochondrial dysfunction, which are known to be
frequently related (Chaudhari et al., 2014; Liang et al., 2016).

4.2.2.4. Lipid metabolism and oogenesis-related genes. Environmental
stress can affect the optimal allocation of energy: under moderate
stress, basal maintenance takes priority over other processes, including
growth, reproduction, or storage and it can negatively affect the organ-
ism's fitness (Sokolova, 2013). Crustacean hepatopancreas is the princi-
pal organ for lipid synthesis (González-Baró and Pollero, 1993) and
storage (Cheng et al., 1998). In the current study, a dysfunction of the
lipid metabolism pathway emerged in females (Table S17). Three
genes coding for proteins involved in glycerolipids biosynthesis were
downregulated: long-chain-fatty-acid—CoA ligase (ACSBG2), glycerol-3-
phosphate acyltransferases 3 (GPAT3), and phosphoethanolamine N-
methyltransferase-like (Athamena et al., 2011; Mashek et al., 2007;
Pellon-Maison et al., 2009; J. Yu et al., 2018). Conversely, gamma-
butyrobetaine dioxygenase-like (BBOX1), which play a role in the carni-
tine biosynthetic pathway (Lindstedt and Lindstedt, 1970; Vaz et al.,
1998), was upregulated. Changes in carnitine concentration affect the
rate of mitochondrial β-oxidation and therefore energy metabolism
(Clark et al., 2017). The upregulation of BBOX1, in association with the
downregulation of ACSBG2, GTPA3, and phosphoethanolamine N-
methyltransferase likely reflects an increased demand for energy in
the PS NP exposed crayfish as compared to control. Besides, a reduced
biosynthesis of phosphatidylcholine, as a consequence of
phosphoethanolamine N-methyltransferase downregulation, can affect
membrane fluidity.

Consistently, four transcripts all annotated as vitellogenin (Vtg)were
downregulated in the hepatopancreas of female crayfish (Table S17),
while male crayfish did not show a marked response in this regard.
Vtg biosynthesis is the first step of vitellogenesis and occurs both in
the ovary and in the hepatopancreas of P. clarkii (Cai et al., 2016; Shen
et al., 2014). Given that vitellus is the main energy reserve for the
developing embryos, alteration in the vitellogenesis balance may result
in significant reproductive impairment (Arambourou et al., 2020).
Evidence of reproductive dysfunction in rotifers, bivalves, crustaceans,
and fish exposed to MPs and NPs have been focusing on a reduced
fecundity (Cole et al., 2015; Heindler et al., 2017; Jeong et al., 2017;
Lee et al., 2013; Sussarellu et al., 2016) and fertilization success (Tallec
et al., 2018), fewer total offspring and offspring performance (Au et al.,
2015; Cong et al., 2019; Ziajahromi et al., 2017) including increased
embryonic malformations (Besseling et al., 2014; Cui et al., 2017), and
a delayed reproduction time (Jaikumar et al., 2019; Jeong et al., 2016;
Liu et al., 2019a). Micro- and nanoplastics have been suggested
to cause endocrine disruption directly or indirectly through
leaching of plastic additives and/or associated chemicals (Amereh
et al., 2019; Chen et al., 2019; Mak et al., 2019; Rochman et al., 2017a,
2014; J. Wang et al., 2019). A study by Wang and colleagues reported
downregulation of Vtg expression in the liver of female medaka after
PS MP exposure, while an upregulation was noticed in males (J. Wang
et al., 2019). Similarly, Rochman et al. found downregulation of Vtg
protein content in the liver of Acipenser transmontanus females fed
with clams previously exposed to different MP polymers virgin or
spikedwith polychlorinated biphenyls for 28 days. Even though a histo-
pathologic analysis of crayfish ovarieswas not conducted in this study, a
significantly lower expression of vitellogenin transcripts in both ovary
and hepatopancreas was previously associated with a clear inhibition
of ovarian growth in P. clarkii exposed to the insecticide atrazine
(Silveyra et al., 2018), confirming the primary role of vitellogenin in oo-
genesis for this species.

A very good illustration of a significant shift in energy allocation in-
duced by microplastic exposure was provided by Sussarellu and col-
leagues in Pacific oysters (Sussarellu et al., 2016). After 2-month
exposure to MPs during gametogenesis (2–6 μm; 0.023 mg/L), oyster
energy flows were relocated to organism maintenance and structural
growth at the expense of reproduction, leading to impacts on reproduc-
tive health indices (i.e., quantity and quality of gametes produced,
Sussarellu et al., 2016). Similarly, a proteomic analysis on the zebra
mussel showed that MPs interfered with glycolysis and the Krebs
cycle (Magni et al., 2019). In D. magna neonates, the glycometabolic
changes enriched by PS NP exposure were suggested to increase energy
production as away to counteract NP toxicity (Liu et al., 2021). Likewise,
we suppose that the altered lipid metabolism in crayfish has to do with
an increased energy demand for the innate immune response, and also
to maintain cellular homeostasis. Altogether, our findings are in line
with the data available in literature and may suggest that P. clarkii's re-
production efficiency could be threatened by the exposure to
nanoplastics. Undoubtedly, further phenotypic data collection is re-
quired to support our inference.

4.2.2.5. Hemocyanin. Hemocyanin (Hc) expression was upregulated in
the hepatopancreas of female and male crayfish (Table S17). Hc is the
main respiratory pigment of arthropods, primary synthetized in hepato-
pancreas and then released in hemolymph (Gellissen et al., 1991; Qin
et al., 2018). Although having a primary role in oxygen transport,
P. clarkii Hc exhibited antibacterial capacity by promoting phagocytosis
and exerting phenoloxidase activity (Qin et al., 2018). In the current
study, the overexpression of Hc may indicate either that challenged
crayfish had a greater need for tissue oxygenation, or that Hc took
part in the immune response and homeostasis maintenance following
NP exposure. Consistently with our results, crabs exposed to MPs
showed an enhanced Hc expression in the hepatopancreas (Liu et al.,
2019a), and an altered Hc hemolymph content, albeit the magnitude
and the direction of change (i.e., an increase or a decrease) varied
with the exposure duration or dose level, as well as with the different
particle surface coatings (COOH or NH2) (Liu et al., 2019a; Watts et al.,
2016).

Along with Hc, pseudohemocyanins (PHc) belong to the arthropod
hemocyanin superfamily, which further comprises phenoloxidases
and the insect hexamerins (Burmester, 2015, 2002). PHcs have lost
the ability to bind copper and have been proposed to be involved in
molting and reproduction as storage proteins (Burmester, 1999). Here,
PHc underwent a different expression regulation based on sex, and par-
ticularly it was found to be upregulated and downregulated in females
and males, respectively. The limited existing knowledge on PHc func-
tion in crustaceans, together with the diverse direction of the alteration
betweenmales and females in the current study, prevent us from infer-
ring the possible role of PHcs in response to NP in crayfish.

4.2.2.6. Transcription and translation-related genes. Just like in hemocytes,
PS NPs caused an alteration in gene transcription and translation in the
hepatopancreas of both males and females. Two RNA helicases, NFX1-
type zinc finger-containing protein 1-like, la-related protein 6-like
(LARP6), and an RNA polymerase (RPABC5) were all upregulated in



the hepatopancreas of females, while serine/arginine repetitive matrix
protein 1-likewasdownregulated (Table S17). Inmales, the transcription
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activator BRG1-like, also part of the ATP-dependent helicases superfam-
ily, was downregulated, while the RNA-binding protein squid-like was
upregulated (Table S17). Ribosomal proteins remain consistently up-
regulated in all groups of samples analyzed (Table S17). As stated
above, an enrichment in ribosomal proteins, both from a transcriptomic
and proteomic perspective, was pointed out in several other investiga-
tions of microplastic exposure in zebrafish (LeMoine et al., 2018), the
zebra mussel (Magni et al., 2019), and marine copepod T. japonicus (C.
Zhang et al., 2019).

5. Conclusion

The present study represents the first attempt to unravel the effects
of polystyrene nanoparticles at both transcriptomic and physiological
levels in a freshwater decapod species. In an integrated approach, RNA
sequencing data were complemented by physiological responses,
revealing that after 72 h exposure to relatively low concentrations of
PS NPs, the studied species was able to face the induced stress, not
exceeding generic stress thresholds. Our results evidence the power of
RNA-Seq analysis in ecotoxicology to disclose minor physiological,
immunological, and molecular alterations induced by environmental
contaminants such as nanoplastics. In the red swamp crayfish, we
reported that PS NPs can trigger transcriptomic pathways linked to
immune response, induce oxidative stress and interfere with gene
transcription and translation, protein degradation, lipid metabolism,
oxygen demand, and potentially reproduction. Particularly, a quite
clear transcriptomic response to NPs emerged as a strong downregula-
tion of vitellogenin expression in female crayfish, which can lay the
basis for a deeper exploration about the potential impacts of polysty-
rene nanosized particles at a population level. Nonetheless, further
studies investigating phenotypic and ecological effects of nanoplastics
on decapod crustaceans are needed to support our findings.
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