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Epstein-Barr virus–encoded EBNA2 downregulates
ICOSL by inducing miR-24 in B-cell lymphoma
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KEY PO INT S

• EBNA2 reduces ICOSL
expression in B-cell
lymphoma such as
DLBCL through miR-24.

• Silencing of miR-24
reconstitutes tumor
immunogenicity and
induces apoptosis in
DLBCL.
/5/42
Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and
diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial
number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of
their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-
encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL
and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects
the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition
of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and
EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of
the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24)
by EBNA2. By using ICOSL 3′ untranslated region–luciferase reporter system, we validated
9/2210955/blood_bld-2023-021346-m
a

that ICOSL is an authentic miR-24 target. Transfection of anti–miR-24 molecules in EBNA2-expressing lymphoma cells
reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is
known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti–miR-24
transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and
increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high
miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL
expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify
miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
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Introduction
It is estimated that globally ~240 000 to 350 000 new cases of
Epstein-Barr virus (EBV)–associated cancers occur annually.1 A
significant proportion of them are hematological malignancies
such as Burkitt lymphoma (BL), diffuse large B-cell lymphoma
(DLBCL), Hodgkin lymphoma (HL), and other lymphomas arising
in immunocompromised hosts such as recipients of trans-
plantation or individuals with HIV infection.2,3 Among these
lymphomas, the most frequent association of EBV is with the
endemic form of BL, a tumor very common in sub-Saharan
Africa. Indeed, almost all endemic forms of BL carry EBV. BL
is also considered the fastest growing human tumor.4,5

DLBCL is the most frequent non-HL and up to 10% of cases are
associated with EBV in immunocompetent patients.6 The viral
association with DLBCL reaches >90% when the immune sys-
tem is jeopardized.1 With gene expression profiling
technologies, DLBCLs have been broadly divided into 2 cate-
gories, namely the germinal center (GC) type or the activated B-
cell (ABC) type.7-9 Protein expression–based algorithms suggest
that EBV is more frequently associated with ABC-type DLBCLs,
and EBV/EBV-encoded nuclear antigen (EBNA2)–positive
DLBCLs have a very poor prognosis.10,11 However, a more
recent comprehensive study based on gene expression analysis
in primary central nervous system lymphomas suggests that
EBV association with ABC DLBCL may be lower.12 Interestingly,
EBNA2 expression is also associated with drug resistance in
DLBCL.13

Worldwide, >95% of the human population is EBV seroposi-
tive.14 To establish latency, the virus encodes 6 nuclear antigens
(EBNA1-6); 3 membrane proteins, latent membrane protein
(LMP)1, 2A, and 2B; and a set of noncoding RNAs comprising
Epstein-Barr virus-encoded RNAs (EBERs) and viral microRNAs
(miRNAs).15 The latent viral gene expression is divided into 3
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main latency types. EBNA1 and EBER are expressed in type-1
latency. Type-2 latency includes LMP1, 2A, and 2B whereas in
type 3 latency, all EBNAs and LMPs are expressed.16

EBNA2 is required for the B-cell–transforming ability of the
virus.17,18 Indeed, strains lacking EBNA2 cannot transform
normal B lymphocytes into characteristic proliferating lympho-
blasts.18 A 497 amino acid–long nuclear protein, EBNA2, is a
transcription activator and regulator of both the viral and
cellular genes. It does so not by direct DNA binding but
through adapter proteins such as RBP-Jk/CBF1.19,20 Notably,
c-MYC is positively regulated by this viral protein.21

miRNAs are noncoding RNAs, 20 to 22 nucleotides in length.
They are evolutionarily conserved and have emerged as
powerful regulators of gene expression.22 Based on their
expression in cancer, they are either defined as onco-miRNAs or
suppressor miRNAs.22 To avoid immune attack and establish
latency, EBV expresses a battery of viral miRNAs and alters
expression of many host miRNAs.23 Indeed, EBV compromises
virus-specific surveillance and influences programmed cell
death ligand 1 (PD-L1) through its own miRNAs.24-26 In the
tumor context, the viral latent growth transformation–associated
proteins bring profound changes in cellular miRNAs by upregu-
lating, among others, oncogenic miRNA-21 (miR-21), miR-155,
and miR-17-92.27-30

Maintenance of immune self-tolerance is critically controlled by
immune checkpoint (IC) proteins.31 Both costimulatory and
coinhibitory signals play an important role in the regulation of T-
cell responses. The inducible costimulator (ICOS)/inducible
costimulator ligand (ICOSL) interaction on T cells and the
antigen-presenting cells, respectively, is an example of the
former, and PD/PDL1 engagement is an example of the latter.
Among numerous strategies usurped by tumor cells to avoid
immune recognition, one of the most noted strategies includes
high expression of PD-L1.32,33 In contrast, a compromised
ICOS/ICOSL interaction as a mechanism of immune evasion
has, to our knowledge, not been investigated in EBV-associated
B-cell neoplasms.

Both in asymptomatic latent infection in healthy individuals and
in the virus-associated cancers, EBV uses several strategies to
become immunologically invisible.34,35 These include mutation
of its immunogenic epitopes36 and downregulation of HLA class
I expression.35,37 Recently, we have shown that EBNA2 upreg-
ulates PD-L1 by downregulating miR-34a.38 In the present
study, we asked whether EBNA2 regulates the costimulatory
molecule ICOSL, how this affects tumor immunogenicity and
cell proliferation, and whether miRNAs are involved in this.
Materials and methods
Cell lines
A total of 14 cell lines were used in this study and are described
in the supplemental Table 1, available on the Blood web-
site.27,38-45 U2932, an EBV-negative BCL6+ DLBCL cell line,39

and its EBV-infected and EBNA2-transfected counterparts
have previously been described in detail by us else-
where.27,38,40 Further details are provided in supplemental
Material and methods.
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Immunoblotting
Proteins were extracted from 3 million cells lysed in radio-
immunoprecipitation assay lysis buffer. Protein lysates (30 μg)
were electrophoresed on a 10% sodium dodecyl sulfate–
polyacrylamide gel. The proteins were then transferred to pol-
yvinylidene fluoride membranes at a constant amperage of 400
mA for 1.5 hours in transfer buffer. Further details can be found
in supplemental Material and methods.

Reverse transcription quantitative polymerase
chain reaction (RT-qPCR)
Total RNA from cell lines was isolated using Direct-zol RNA
MiniPrep Plus kit (Zymo Research) according to the vending
company’s instructions. The integrity of RNA was routinely
checked using 1% agarose gel. RNA (40 ng) was reverse tran-
scribed from each sample. The complementary DNA synthesis
from mature miR-24 was performed with a TaqMan MicroRNA
Reverse Transcription Kit (Applied Biosystems, ThermoFisher
Scientific). Further PCR details are in supplemental Material and
methods.

Flow cytometry analysis
The expression of ICOSL was assessed by flow cytometry using
a monoclonal antibody (eBioscience Inc, San Diego, CA) with its
matched isotype control. Fixable viability dye was also included
in the analysis to exclude dead cells. A total of 50 000 live cells
were analyzed per sample. The data analysis was performed by
FlowJo software (TreeStar Inc, Ashland, OR). More details can
be found in supplemental Material and methods.

Anti–miR-24 inhibitor transfection
The U2932 mycophenolic acid (MPA) vector or EBNA2-
expressing cells were transfected with 40 nM of either miR-24
inhibitors or control inhibitor (Sigma-Aldrich). Cells (1.5 × 106

per mL) were seeded in a 6-well plate at ~70% confluence in a
total volume of 2 mL and immediately transfected using Dhar-
maFECT Duo transfection reagent (GE Dharmacon). After 48
hours, the cells were harvested for total RNA and protein
extraction and flow cytometry.

Droplet digital PCR (ddPCR)
The ddPCR was performed using the Bio-Rad QX200 System
(Bio-Rad Laboratories, Hercules, CA) following the manufac-
turer’s protocol. Amplification was carried out using 1 μL of
complementary DNA template and 1 μL TaqMan probe of U6 or
hsa-miR-24-3p (Applied Biosystems, ThermoFisher Scientific,
Waltham, MA) and ddPCR supermix for probe (no deoxyuridine
triphosphate; Bio-Rad Laboratories). More details are in sup-
plemental Material and methods.

Apoptosis assay
The MPA vector control and EBNA2-expressing U2932 cells
were transfected with miR-24 inhibitors and controls. The cells
were harvested 48 hours after transfection and washed in
phosphate-buffered saline. Subsequently, 1 × 105 cells were
assayed for apoptosis using the Phycoerythrin Annexin V
Apoptosis Detection with 7-amino-actinomycin kit (BD Phar-
mingen). Further details can be found in the supplemental
Material and methods.
LEOPIZZI et al
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Lentiviral transduction of ICOSL 3′ untranslated
region (UTR)
The MISSION 3′ UTR Lenti GoClone of ICOSL (Switchgear
Genomics, Sigma-Aldrich) or the corresponding control were
transduced into 6 × 105 U2932 MPA vector control and U2932
EBNA2 cells in the presence of 8 μg/mL of polybrene. After 48
hours, the cells were selected in medium containing 0.2 μg/mL
puromycin. Twelve days after selection, the cells were trans-
fected with either miR-24 inhibitor or the control inhibitor using
DharmaFECT Duo reagent. The luciferase activity was assessed
with GloMax Explorer Multimode Microplate Reader (Promega).

Mixed lymphocyte reaction (MLR)
Blood from 3 healthy donors was used to separate peripheral
blood mononuclear cells, using Ficoll-Paque separation media
(GE Healthcare). MLR was essentially performed as previously
described.38 Further details are in the supplemental Material
and methods. After 48 hours, all samples were treated for 5
hours with Golgi plug protein transport inhibitor, brefeldin (BD
Biosciences) to inhibit cytokine accumulation in the Golgi
complex and processed to measure interferon-γ (IFN-γ) pro-
duction by CD4+ and CD8+ T cells by flow cytometry.

Immunohistochemistry in biopsies from patients
with DLBCL
All biopsies were obtained for diagnosis purposes after written
consent from all patients and in accordance with the code of
ethics of the World Medical Association (Declaration of Helsinki)
and conformed to Sapienza University ethical committee pro-
tocols. Formalin-fixed paraffin-embedded 3-μm sequential
sections were cut for immunohistochemical staining, which was
performed using automated platforms (Bond III, Leica Bio-
systems, Muttenz, Switzerland, and Ventana Benchmark Ultra,
Roche Diagnostics, Mannheim, Germany). Further details are
available in supplemental Material and methods.

Results
ICOSL expression is high in EBNA2-lacking BL and
DLBCL cell lines
Ramos and BJAB cells infected with EBNA2-positive B95-8 (B
converted) and EBNA2-negative P3HR1 (P converted) strains of
EBV have been characterized previously.41,46 The B-converted
Ramos E95D cells were EBNA2 positive and the P-converted
Ramos EHRB cells were EBNA2 negative (Figure 1A, left panel).
A similar EBNA2 expression profile is shown in BJAB cells
infected with the 2 EBV strains (Figure 1A, left panel). As pre-
viously described, U2932 EBVGFP cell line (cl.)A was EBNA2
negative, whereas cl.B was EBNA2 positive (Figure 1A, right
panel).40 Densitometry analysis is shown in supplemental
Figure 1A. Next, we investigated ICOSL expression by flow
cytometry (Figure 1Bi). The Ramos E95D, had higher ICOSL
than the parental line, and Ramos EHRB-lacking EBNA2 showed
even higher ICOSL expression. The BJAB B-converted cells did
not show any significant difference in ICOSL when compared
with the parental cells. Interestingly, the BJAB EHR1, showed a
remarkable increase in ICOSL (Figure 1Bi). Similar results were
obtained with U2932 EBV-infected cell lines. We analyzed
ICOSL expression in the P3HR1 cell line carrying an EBNA2-
deleted viral genome and its EBNA2-expressing parental cell
line Jijoye. Indeed, EBNA2-lacking P3HR1 showed a notable
EBNA2 DOWNREGULATES ICOSL IN B-CELL LYMPHOMA
increase in ICOSL. Finally, ICOSL expression was verified in
EREB2-5 cells (a kind gift from Bettina Kempkes, Munich, Ger-
many), which expresses estradiol-inducible EBNA2 in conjunc-
tion with the P3HR1 genome.44 In the presence of estradiol and
thus EBNA2, ICOSL was reduced. Figure 1Bii shows average
mean fluorescence intensity of ICOSL from 3 experiments.
Combined, these data suggest that in the presence of the
genomic EBNA2, ICOSL is reduced both in BLs and DLBCL.

EBNA2-transfected B-cell lymphoma cells have
lower ICOSL
To better understand whether EBNA2 expression alone is suf-
ficient to negatively regulate ICOSL, we used EBNA2-
transfected U2932 and BJAB cells. The EBNA2 transfectants
of U2932 and estradiol-inducible BJABK3 cells have been
described in detail elsewhere.38,44 EBNA2 expression in both
cell lines is shown in Figure 2Ai,Bi. As seen in Figure 2Aii and
Bii, the EBNA2-expressing U2932 and BJABK3 cells show a
significant reduction in ICOSL. The mean ICOSL expression of 3
independent experiments is shown in Figure 2Aiii and Biii. In
both these cell lines, EBNA2 expression also led to reduction in
messenger RNA (mRNA) of ICOSL as shown in Figure 2Ci-ii.
Taken together, these data show that EBNA2 alone is sufficient
to reduce ICOSL in B-lymphoma cells.

EBNA2 increases miR-24 expression in the virus-
infected and transfected cells
Several previous observations including ours led us to focus on
miR-24.27,47 TargetScan and miRWalk identified ICOSL as a
potential target of miR-24 (also known as miR-24-3p;
Figure 3A).48,49 The context score and strength of prediction
of miR-24–ICOSL interaction is detailed in supplemental
Material and methods. As seen in Figure 3Bi-iii, the in vitro
infected EBNA2-positive BL and DLBCL cells have higher miR-
24 expression. The P-converted Ramos and BJAB cells, and
EBNA2-lacking U2932 EBVGFP cl.A cells had low miR-24
expression. Likewise, EBNA2-deleted P3HR1 BL cells had
lower miR-24 expression than its isogenic EBNA2-positive
parental Jijoye cell line (Figure 3Biv). Next, we tested whether
EBNA2 induces miR-24 in an inducible setting. Indeed, EREB2-
5 in the presence of estradiol, and thus of EBNA2, shows higher
expression of miR-24 (Figure 3Bv). Finally, we verified that
EBNA2 expression alone was sufficient to induce miR-24 in
U2932 EBNA2 and BJABK3 transfectants. As shown in
Figure 3Ci-ii, the EBNA2 expressors of both these cell lines
have higher miR-24 than controls. We also verified pre–miR-24
expression in EBNA2-transfected U2932 and BJABK3 cells
(supplemental Figure 2). The expression of pre–miR-24 tran-
script was lower in both cell lines in the presence of EBNA2.
Reduced pre-miR levels and an increase in the corresponding
mature miRNA due to increased RNA processing have been
frequently observed.50,51

Validation of the ICOSL 3′ UTR as an miR-24 target
in U2932 DLBCL
To study the role of miR-24 in the regulation of ICOSL, ICOSL
3′ UTR lentivirus–transduced U2932 EBNA2 cells and corre-
sponding control cells were transfected with either anti–miR-
24 or control inhibitor. Figure 4A shows expression of miR-24
by RT-qPCR. Indeed, anti–miR-24 transfected U2932 EBNA2
and vector control cells had significantly reduced miR-24 in
1 FEBRUARY 2024 | VOLUME 143, NUMBER 5 431
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Figure 1. EBNA2 and ICOSL expression in B-lymphoma cell lines infected with EBV. (A) Immunoblots show EBNA2 expression in parental, B95.8, and P3HR1 virus–
converted RAMOS (E95D and EHRB RAMOS, respectively) cells and BJAB, BJAB-B95.8, and BJAB-EHR1 cells. EBNA2 expression in U2932 DLBCL cell line infected with
the recombinant EBVGFP viral strain is also shown. U2932 EBVGFP cl.A is negative for EBNA2, whereas U2932 EBVGFP cl.B is positive. Total cell lysates were electrophoresed,
and EBNA2 expression was verified by using anti-EBNA2 (PE2) monoclonal antibodies. The housekeeping protein, β-actin, was used as loading control. Densitometry analysis
of immunoblots is shown in supplemental Figure 1A. (Bi) ICOSL expression in B and P virus–converted B-lymphoma cell lines, P3HR1 and Jijoye pair, and EREB2-5–carrying
inducible EBNA2. Mean fluorescent intensity (MFI) was measured by flow cytometer, CytoFLEX. One of 3 representative experiments is shown. Phycoerythrin (PE)-conjugated
ICOSL antibodies were used for the experiments. (Bii) Histograms show the average ICOSL MFI of 3 experiments. The significance of ICOSL MFI between EBNA2− vs EBNA2+

cell lines was calculated using 2-tailed unpaired t test; *P < .05, **P < .01, ***P < .001, ****P < .0001.
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comparison with the same cells transfected with a control
inhibitor. To further verify the efficiency of reduction of miR-
24, we performed ddPCR. Figure 4B shows a significant
reduction in miR-24 copy numbers in U2932 EBNA2 cells
transfected with miR-24 inhibitor. Next, luciferase activity was
measured in U2932 EBNA2 and vector control cells. Figure 4C
shows significantly higher ICOSL 3′ UTR luciferase activity after
inhibition of miR-24 in U2932 EBNA2 cells, than in control
cells. These data indicate that ICOSL is an authentic miR-24
target.
Inhibition of miR-24 leads to reconstitution of
ICOSL expression and tumor immunogenicity in
U2932 DLBCL
To assess the biological relevance of miR-24 inhibition, we
analyzed ICOSL expression in vector transfected or U2932
432 1 FEBRUARY 2024 | VOLUME 143, NUMBER 5
EBNA2 cells after knockdown of miR-24 expression. Figure 5Aii
(left) shows a significant increase of ICOSL expression in U2932
EBNA2 cells after miR-24 inhibition. Figure 5Aii (middle panel)
shows an average ICOSL increase in 3 experiments, and the
corresponding mRNA increase is shown in Figure 5Aii (right
panel). In contrast, in U2932 MPA vector cells, the inhibition of
miR-24 with anti–miR-24 inhibitor or control inhibitors did not
affect ICOSL expression (Figure 5Ai), showing that this was
EBNA2 dependent.

MLR assays were used to understand the immunological sig-
nificance of ICOSL reconstitution after miR-24 inhibition. The
irradiated stimulator U2932 vector or U2932 EBNA2 and either
their control or anti–miR-24-transfected derivatives were added
in an MLR. Successful anti–miR-24 delivery was confirmed by
RT-qPCR and ddPCR (Figure 4). The activated T-cell state was
corroborated by increased IFN-γ production (Figure 5B).
LEOPIZZI et al
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Figure 2. Decreased ICOSL expression in EBNA2-transfected B-cell lymphomas. (Ai) Immunoblots showing EBNA2 expression in vector or EBNA2-transfected U2932
DLBCL. β-actin was used as a protein loading control. Densitometry analysis is shown in supplemental Figure 1B. (Aii) ICOSL MFI was assessed by flow cytometry. One
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Importantly, U2932 EBNA2 boosted IFN-γ production by both
CD4+ and CD8+ T cells, only when miR-24 was reduced with
anti–miR-24 molecules (Figure 5B). These data suggest that
EBNA2, by decreasing ICOSL through miR-24, reduces T-cell
activation, and by inhibiting miR-24, tumor immunogenicity can
be restored through reconstitution of ICOSL.
EBNA2 DOWNREGULATES ICOSL IN B-CELL LYMPHOMA
EBNA2 induces miR-24 to maintain
proproliferative levels of c-MYC
We confirmed that EBNA2 increases c-MYC (Figure 6A, right
panel). miR-24 is known to target c-MYC.52 Thus, it is intriguing
that EBNA2 positively affects both c-MYC and its negative regu-
lator, miR-24. To better understand this, we used anti–miR-24
1 FEBRUARY 2024 | VOLUME 143, NUMBER 5 433
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molecules to downregulate this miRNA in U2932 EBNA2 cells.
Inhibition of miR-24 expression further increased c-MYC
EBNA2 DOWNREGULATES ICOSL IN B-CELL LYMPHOMA
expression (Figure 6A, right panel). Because high levels of MYC
are known to induce apoptosis,53 we measured apoptosis in
EBNA2-expressing cells after transfecting anti–miR-24 molecules.
High c-MYC expression, as a result of downregulation of miR-24,
increased apoptosis (Figure 6B, lower panel). Reduction of miR-24
in U2932 EBNA2 cells reduced BCL2 expression (supplemental
Figure 3). Figure 6C shows the percentage increase in annexin
V. Next, we tested whether inhibition of miR-24 in U2932 EBNA2
cells affected their proliferation rate. As shown in Figure 6D,
U2932 EBNA2 cells transfected with miR-24 inhibitor grew
significantly slower than controls, indicating that the reduction in
miR-24 and consequent increase in apoptotic c-MYC reduces the
cell proliferation rate. Overall, these data suggest that EBNA2
may increase miR-24 for fine-tuning and maintaining proprolifer-
ative levels of c-MYC (Figure 6E).

ICOSL is downregulated and miR-24 is upregulated
in EBNA2-positive clinical DLBCL samples
To investigate the clinical relevance and consistency of the
in vitro data, we selected 22 cases of DLBCL from 1113 cases in
our archives, diagnosed between 2018 and 2023 (supplemental
Figure 4). Diagnosis of DLBCLs was carried out according to the
World Health Organization criteria.54 The cell of origin was
evaluated according to Han classification.55 Clinical details of
each case are reported in Table 1. ICOSL expression was
evident in all EBER-negative GC and non-GC DLBCL, varying
between 20% and 90%. Figure 7A shows strong ICOSL mem-
brane staining in most neoplastic cells in 3 representative EBV-
negative EBNA2-negative GC DLBCL cases. ICOSL expression
in a few additional EBV-negative DLBCL biopsies is shown in
supplemental Figure 5. In contrast, all EBNA2-positive DLBCLs
showed downregulated ICOSL expression (Figure 7B;
supplemental Figure 6). ICOSL in 1 reactive lymph node control
is shown in supplemental Figure 7.

Because EBNA2 and LMP1 are coexpressed in type-3 latency,
we asked whether the latter could have any role in ICOSL
downregulation. To answer this, we tested LMP1-positive but
EBNA2-negative (type-2 latency) DLBCL and HL cases for
ICOSL expression. Four type-2 latency non-GC DLBCLs and 4
HL cases were high ICOSL expressors (supplemental Figures 8
and 9). ICOSL expression in 7 additional HL cases is shown in
supplemental Table 3. These data suggest that in type-2
latency–expressing DLBCL clinical samples tested, the
reduced ICOSL does not correlate with LMP1 but most likely
with EBNA-2. Thus, as summarized in Figure 7C, all EBNA2-
negative DLBCL samples examined did express ICOSL, and in
contrast, EBNA2-positive clinical samples had negligible levels
of ICOSL. In agreement with the in vitro data, EBNA2-positive
clinical samples have higher miR-24 expression and copy
number as indicated by RT-qPCR and ddPCR, respectively
(Figure 7D). Taken together, these data underscore that EBNA2
alone may be sufficient to downregulate ICOSL in DLBCL
through induction of miR-24.
Discussion
To establish latency in healthy individuals and contribute to
pathogenesis of cancers under specific conditions, EBV must
overcome immune responses. We have previously shown that
EBNA2 upregulates PD-L1 by downregulating miR-34a in B-cell
1 FEBRUARY 2024 | VOLUME 143, NUMBER 5 435
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lymphoma.38 Very little information is available on expression of
ICOSL in lymphomas. Particularly, it is not known whether and
how EBV influences this costimulatory IC. Here, we report that
ICOSL is downregulated by EBNA2 by virtue of upregulating
miR-24. We also found that EBNA2 increases this miRNA to
rheostatically maintain proproliferative levels of c-MYC. Hence,
EBNA2 by positively regulating miR-24 seems to be simulta-
neously affecting tumor immunogenicity and increasing cell
proliferation.

The immunostimulatory interaction between ICOS and ICOSL is
considered of fundamental importance in generation and acti-
vation of different T-cell populations and their effector func-
tions. Indeed, ICOS is expressed by activated CD4+/CD8+ T,
regulatory T and T follicular helper cell populations. In the
context of tumor cells, an increase in ICOS–ICOSL interaction
may tip the balance in favor of T-effector cells being recruited in
cancer tissue.57 In preclinical studies, it was observed that the
ICOS/ICOSL pathway was required for optimal therapeutic
effect of anti–CTLA-4 antibodies.58 When murine melanoma
cells expressing ICOSL were used as vaccines, the anti–CTLA-4
treatment was both qualitatively and quantitatively potentiated,
and converted an immunosuppressive tumor microenvironment
to an immunostimulatory one.59 That costimulatory molecules
play a critical role in controlling EBV-infected cells is clear from
2 lines of evidence. First, individuals with genetically compro-
mising mutations in these molecules often develop EBV-
associated pathologies.60 In contrast, most EBV infections and
indeed EBV-associated cancers occur in immunocompetent
individuals. A corollary to this, therefore, is that for EBV, sur-
mounting the immune onslaught and establishing latency is a
challenging task in the face of a functioning immune system.
Negatively affecting costimulatory molecules in such situations
would ensure viral survival. Interestingly, it has been reported
that among the EBNA2-affected genes, a costimulatory mole-
cule CD86 is downregulated.61 Thus, the findings of this study
add a novel viral strategy that facilitates tumor immune escape.

The onco-miRs such as miR-21, miR-155, and miR-17-92 are
often upregulated in B-cell lymphomas.27,29,62,63 Deregulated
expression of miR-24 has been noted in different cancers.64-67

In EBV-associated lymphomas having type-3 latency, an
increased miR-24 expression was reported, but which EBV-
encoded gene is responsible for its upregulation was not
known.63 Here, we show that EBNA2 induces miR-24 and that
ICOSL is its authentic target. The reduced pre–miR-24 and
increased mature miR-24, most likely because of an increased
turnover,51 seem to suggest involvement of RNA processing.
Indeed, EBNA2 is known to associate with DDX5,68 a RNA
helicase, which in turn is associated with Drosha/DGCR8, the
principal microprocessor complex involved in miRNA process-
ing within the nucleus.69,70 Further studies will be needed to
better understand these interactions. Data from this study,
taken together with the previously identified upregulation of
miR-21 and reduction in miR-34a by EBNA2, place this viral
Figure 5 (continued) as result of ICOSL reconstitution after miR-24 downregulation. T ce
Irradiated U2932 MPA vector and U2932 EBNA2 were cocultivated with activated T cells (
control inhibitor or anti–miR-24 molecules before cocultivation with the effector cells. The
IFN-γ and processed for flow cytometry. All experiments were repeated at least 3 times an
analysis was performed with two-way ANOVA and Tukey multiple comparisons test; **P

EBNA2 DOWNREGULATES ICOSL IN B-CELL LYMPHOMA
protein as 1 of the central regulators of cell proliferation
through perturbation of miRNA expression.

EBNA2 upregulates MYC; this has been shown previously,21,71

and we confirm it here. However, how can we reconcile the
data showing that EBNA2 increases not only MYC but also its
negative regulator, miR-24? A previous study identified MYC as
one of the targets of miR-24.52 A possible explanation for this
paradox is provided by experiments related to miR-24 inhibi-
tion. When anti–miR-24 compounds were transfected into
EBNA2–expressing U2932 DLBCL cells, the expression of MYC
was even higher. These elevated MYC levels led to higher
apoptosis. The proapoptotic functions of high MYC are well
known.53,72,73 Based on these data, we suggest that EBNA2
induces miR-24 to maintain proproliferative levels of MYC and
avoid MYC-driven apoptosis.

Acknowledging the limitation of the small cohort in this study, it
is noteworthy, nonetheless, that all GC DLBCLs have higher
expression of ICOSL (Table 1). In contrast, very low expression
of ICOSL was frequently seen in EBNA2-positive DLBCLs. In
view of the fact that non-GC DLBCLs have poorer prognosis,74

ICOSL expression could be taken into consideration as a pre-
dictive biomarker. The poor prognosis of non-GC DLBCLs and,
particularly, of EBNA2-positive cases could be correlated with
immune dysregulation. Indeed, patients with EBNA2-positive
DLBCL in our cohort belonged to such a category. A critical
question that begs discussion and to which perhaps there is no
straightforward answer, is whether EBNA2 is the cause or the
consequence of immunosuppression. Undoubtedly, in patients
with immunosuppression caused either by HIV or iatrogenic
immunosuppression as in patients who have received trans-
plantation, EBV/EBNA2 may enter as a subsequent event to
worsen immunosuppression. Interestingly, it has been reported
that homozygous loss of ICOSL in 1 patient led to combined
immunodeficiency characterized by defects in T-cell–depen-
dent antibody and memory B-cell generation.75 It is thus
conceivable that ICOSL compromised by viral factors could be
an important immune evasion strategy in an otherwise immu-
nocompetent host. Based on our data, we suggest that in
non-AIDS and nontransplant DLBCLs without any apparent
immunodeficiency,76,77 EBV through EBNA2 could play a
prominent role in immunocompetence decline and consequent
immune evasion.

It is known that the success rate with IC-blocking antibodies
alone, although encouraging, is far from satisfactory.33 The data
from murine models showing that efficacies of therapies based
on anti–CTLA-4 are enhanced through the ICOS/ICOSL
pathway, underscoring its critical contribution in improving
cancer immunotherapy.33,59,78,79 Clinical trials with agonistic
antibodies to ICOS are ongoing.80 The latest data from 1 such
trial, however, suggest that the use of vopratelimab (an ICOS
agonist antibody) as artificial ligand in combination with anti–
PD-1 nivolumab showed only a modest objective response rate
lls were activated for 72 hours in plates coated with anti-CD3/anti-CD28 antibodies.
effector). The effector-to-target ratio was 1:10. The target cells were transfected with
coculture was carried out for 48 hours, and the cells were stained for CD4/CD8 and
d with peripheral blood mononuclear cells (PBMCs) from 3 healthy donors. Statistical
< .01, ***P < .001, ****P < .0001.
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Table 1. Clinical details of the cases included in the study

Case ID* Diagnosis DLBCL Type Sex Age, y EBER
EBNA2
%†

ICOSL
%† LMP1

1 IDD‡ Non-GC Male 74 + 43 <1 +

2 IDD Non-GC Male 71 + 65 <1 +

3 IDD Non-GC Male 32 + 36 <1 +

4 IDD Non-GC Male 56 + 45 <1 +

5 IDD Non-GC Male 70 + 48 <5 +

6 IDD Non-GC Male 71 + 40 <1 +

7 IDD Non-GC Female 52 + 65 <1 +

8 IDD Non-GC Male 83 + 70 <1 +

9 IDD Non-GC Male 58 + − >95 +

10 IDD Non-GC Male 59 + − 20 +

11 IDD Non-GC Male 48 + − 40 +

12 IDD Non-GC Female 86 + − 60 +

13 IDD Non-GC Female 72 + − 40 +

14 IDD GC Male 64 − − 90 −

15 NOS

ˇ

GC Male 83 − − 50 −

16 NOS Non-GC Male 73 − − 60 −

17 NOS Non-GC Female 83 − − >90 −

18 NOS Non-GC Male 97 − − 50 −

19 NOS GC Female 49 − − 60 −

20 NOS GC Male 48 − − >90 −

21 NOS GC Female 88 − − >90 −

22 NOS Non-GC Female 50 − − 20 −

23 CTRL R LN − − 20 −

24 CTRL R LN − − 20 −

CTRL, control; IDD, immune deficiency/dysregulation; NOS, not otherwise specified; R LN, reactive lymph node.

*A total of 22 cases of DLBCL from the Sapienza Rome and University of Siena Pathology Department archives. Five were GC types, and 17 were non-GC types, classified according to the
Hans algorithm.

†A total of 6 areas were manually counted, and in each area at least 100 cells were scored. The number in the table is the average percentage positive cells.

‡IDD per the World Health Organization lymphoma classification, fifth edition.
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in solid cancers.81,82 Although more data from other clinical
trials are awaited, we suggest that the reconstitution of natural
ligand (ie, ICOSL) on tumor cells may prove to be a better
alternative for combination therapy. It is in this context that we
envisage an important role for anti–miR-24 molecules to rees-
tablish ICOSL expression on tumor cells, which, in turn, may
deliver more potent and qualitatively different signals to T cells
than what has been observed thus far with agonistic antibodies
to ICOS.
EBNA2 DOWNREGULATES ICOSL IN B-CELL LYMPHOMA
In summary, these data, together with our previous findings
that show that EBNA2 increases PD-L1 by downregulating
miR-34a, underscore the central role played by this viral pro-
tein in tampering with tumor immunogenicity.38 Considering
that it is associated with drug resistance and that patients with
EBNA2-positive DLBCLs have a poor overall survival,11,13 we
suggest that this particular group of patients might benefit the
most from IC-blocking therapy. Combined, these data high-
light how miRNA-based therapeutic approaches involving
1 FEBRUARY 2024 | VOLUME 143, NUMBER 5 439
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miRNA-based immunotherapy of EBV-associated EBNA2-expressing B-cell lymphoma. A proposed model underscoring the use of PD-L1, targeting miR-34a mimics as
suggested by our previous data38 in combination with anti–miR-24 molecules to reconstitute ICOSL as an RNA-based immunotherapeutic approach (created with BioRender.
com). Panel E is reproduced from Blandino et al,56 licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
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reconstitution of miR-34a with mimics and downregulation of
miR-24 by anti–miR-24 molecules (Figure 7E) could overcome
the compound immunosuppression caused by high PD-L1
and low ICOSL expression in EBNA2-expressing B-cell
lymphomas.
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