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Abstract

An independence model for discrete random variables is a Segre-Veronese variety in a probability
simplex. Any metric on the set of joint states of the random variables induces a Wasserstein
metric on the probability simplex. The unit ball of this polyhedral norm is dual to the Lipschitz
polytope. Given any data distribution, we seek to minimize its Wasserstein distance to a fixed
independence model. The solution to this optimization problem is a piecewise algebraic function
of the data. We compute this function explicitly in small instances, we study its combinatorial
structure and algebraic degrees in general, and we present some experimental case studies.
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1. Introduction

A probability distribution on the finite set [n] = {1, 2, . . . , n} is a point ν in the simplex
∆n−1 = {(ν1, . . . , νn) ∈ Rn

≥0 :
∑n

i=1 νi = 1}. We metrize this simplex by the Wasserstein distance.
To define this, we first turn the state space [n] into a metric space by fixing a symmetric n × n
matrix d = (di j) with nonnegative entries. These satisfy dii = 0 and dik ≤ di j + d jk for all i, j, k.
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Given two probability distributions µ, ν ∈ ∆n−1, we consider the following linear program-
ming problem, where x = (x1, . . . , xn) denotes the decision variables:

Maximize
n∑

i=1

(µi − νi) xi subject to |xi − x j| ≤ di j for all 1 ≤ i < j ≤ n. (1.1)

The optimal value of (1.1) is denoted Wd(µ, ν) and called the Wasserstein distance between µ
and ν. This is a metric on ∆n−1 induced from the finite metric space ([n], d). The linear program
(1.1) is known as the Kantorovich dual of the optimal transport problem [1, 17]. In [2], we
emphasized the optimal transport perspective, whereas here we prefer the dual formulation (1.1).

The feasible region of the linear program (1.1) is unbounded since it is invariant under trans-
lation by 1 = (1, 1, . . . , 1). Taking the quotient modulo the line R1, we obtain the compact set

Pd =
{

x ∈ Rn/R1 : |xi − x j| ≤ di j for all 1 ≤ i < j ≤ n
}
. (1.2)

This (n−1)-dimensional polytope is the Lipschitz polytope of the metric space ([n], d). In tropical
geometry [11, 16], one refers to Pd as a polytrope. It is convex both classically and tropically.

An optimal solution x∗ ∈ Pd to the problem (1.1) is an optimal discriminator for the two
probability distributions µ and ν. It satisfies Wd(µ, ν) = 〈µ− ν, x∗〉. Its coordinates x∗i are weights
on the state space [n] that tell µ and ν apart. Here 〈 · , · 〉 is the standard inner product on Rn.

In this article, we study the Wasserstein distance from a distribution µ to a fixed discrete sta-
tistical model M ⊂ ∆n−1. We consider the case whereM is a compact set defined by polynomial
constraints on ν1, . . . , νn. Our task is to solve the following mini-max optimization problem:

Wd(µ,M) := min
ν∈M

Wd(µ, ν) = min
ν∈M

max
x∈Pd
〈µ − ν, x〉. (1.3)

Computing this quantity means solving a non-convex optimization problem. We study this prob-
lem and propose solution strategies, using methods from geometry, algebra and combinatorics.
The analogous problem for the Euclidean metric was treated in [5] and various subsequent works.

The term independence model in our title refers to a statistical model for k discrete random
variables where the state space is the product [m1] × · · · × [mk] and the mi are positive integers.
The number of states equals n = m1 · · ·mk. The simplex ∆n−1 consists of all tensors ν of format
m1 × · · · × mk with nonnegative entries that sum to 1. The independence modelM is the subset
of tensors ν that have rank one. These represent joint distributions for k independent discrete
random variables. Recall that a tensor has rank one if it can be written as an outer product of
vectors of sizes m1, . . . ,mk. In algebraic geometry, the modelM is known as the Segre variety.
Of particular interest is the case m1 = · · · = mk = 2 for whichM is the k-bit independence model.

We also consider independence models for symmetric tensors. Here, all k random variables
share the same marginal distribution, so the number of states is n =

(
m+k−1

k

)
where m := m1 =

· · · = mk. The modelM of symmetric tensors of rank one is the Veronese variety. The definition
of independence by way of rank one tensors generalizes to many other settings. For instance,
one may consider partially symmetric tensors, whenM is a Segre-Veronese variety (cf. [5, §8]).

Let us restate our problem for joint distributions. Given an arbitrary tensor µ ∈ ∆n−1, we seek
an independent tensor ν ∈ M that is closest to µwith respect to the Wasserstein distance Wd. One
natural choice for the underlying metric d is the Hamming distance on strings in [m1]×· · ·× [mk].
We consider various metrics in this paper. While the analysis in Section 3 is carried out for
general finite metric spaces, we consider three types of metrics relevant in applications for the
combinatorial analysis in Section 4, namely the discrete metric, the L0-metric, and the L1-metric.
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Our approach centers around the optimal value function µ 7→ Wd(µ,M) and the solution
function µ 7→ argminν∈MWd(µ, ν). The latter is multivalued since there can be two or more
optimal solutions for special µ. The guiding idea is to find algebraic formulas for these functions.
We will demonstrate this in Section 2 with explicit results for the two smallest instances, with
k = m = 2 and fixed d. This rests on a geometric study in the triangle ∆2 of symmetric 2 × 2
matrices, and in the tetrahedron ∆3 of all 2 × 2 matrices, with nonnegative entries that sum to 1.

The optimal value function and the solution function are piecewise algebraic. This suggests
a division of our problem into two tasks: first identify all pieces, then find a formula for each
piece. This will be explained in Section 3 where we review basics regarding polyhedral norms
and characterize the geometry of the distance function to an algebraic variety under such a norm.

Both tasks are characterized by a high degree of complexity. The first task pertains to combi-
natorial complexity. This will be addressed in Section 4 with a combinatorial study of the Lips-
chitz polytopes that are associated with product state spaces like those of independence models.
The second task pertains to algebraic complexity. This is our topic in Section 5. We relate the
algebraic degrees of the optimal value function to polar classes of the underlying model. We
discuss and apply the formulas derived by [15] for polar classes of Segre-Veronese varieties.

Many optimization problems arising in the mathematics of data involve both discrete and
continuous structures. In our view, it is important to separate these two, in order to clearly un-
derstand the different mathematical features that arise. In a setting like the one studied here, it is
natural to separate the combinatorial complexity and the algebraic complexity of an optimization
problem. The former arises from the exponentially many combinatorial patterns, here the faces
of a polytope, one might see in a solution. The latter refers to the problem of solving a system of
polynomial equations, and the algebraic degree that is intrinsically associated with that task.

Consider the problem of minimizing the L∞-distance from a data point in 3-space to a general
cubic surface. The optimal point on the surface is tangent to an L∞-ball around the data point.
Each L∞-ball is a cube, just like in Figure 5. This tangency occurs at either a vertex or an edge
or a facet. Thus the combinatorial complexity is given by the face numbers, f = (8, 12, 6).
Every face determines a system of polynomial equations in three unknowns that the optimal
point satisfies. The algebraic complexity is the expected number of complex solutions. These
numbers are the polar degrees, given by the vector δ = (3, 6, 12) for cubic surfaces. In Sections
4 and 5, we compute the vectors f and δ for Wasserstein distance to the independence models.
Section 6 features numerical experiments. We solve our optimization problem for a range of
instances using the software SCIP [8], and we discuss the geometric insights that were learned.

2. Explicit Formulas

In this section, we solve our problem for two binary random variables. We begin with the case
of a binomial distribution, namely the sum of two independent and identically distributed binary
random variables. The modelM is a quadratic curve in the probability triangle ∆2, known among
statisticians and biologists as the Hardy-Weinberg curve. This curve is the image of the map

ϕ : [0, 1]→ ∆2 , p 7→
(

p2, 2p(1 − p), (1 − p)2 )
. (2.1)

Thus,M is the set of nonnegative symmetric rank one matrices
(
ν1

1
2ν2

1
2ν2 ν3

)
with ν1 + ν2 + ν3 = 1.

Our second ingredient is the choice of a metric d = (d12, d13, d23) on the state space [3] =

{1, 2, 3}. There are two natural choices: the discrete metric d = (1, 1, 1) and the L1-metric
3



d = (1, 2, 1). Their corresponding balls are illustrated in Figure 1. Their optimal value functions
agree, so Theorem 1 is valid for both metrics. This holds only in such a small example. For larger
independence models on symmetric tensors, these two metrics will lead to different solutions.

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

Figure 1: The Wasserstein balls of radius 1
6 centered in the uniform distribution ( 1

3 ,
1
3 ,

1
3 ) associated to the discrete metric

(left) and the L1-metric (right) for n = 3.

We now present the optimal value function and the solution function for the model in (2.1).
These two functions are piecewise algebraic. The five pieces are shown in Figure 2. On four
of them, the solution function is algebraic of degree two. The formula involves a square root in
the data distribution. On the fifth piece, the solution function is constant and the optimal value
function is linear.

Theorem 1. For the discrete metric and for the L1-metric on the state space [3] = {1, 2, 3}, the
Wasserstein distance from a data distribution µ ∈ ∆2 to the Hardy-Weinberg curveM equals

Wd(µ,M) =


|2
√
µ1 − 2µ1 − µ2| if µ1 − µ3 ≥ 0 and µ1 ≥

1
4 ,

|2
√
µ3 − 2µ3 − µ2| if µ1 − µ3 ≤ 0 and µ3 ≥

1
4 ,

µ2 −
1
2 if µ1 ≤

1
4 and µ3 ≤

1
4 .

The solution function ∆2 →M, µ 7→ ν∗(µ) is given (with the same case distinction) by

ν∗(µ) =


(µ1, 2

√
µ1 − 2µ1, 1 + µ1 − 2

√
µ1),

(1 + µ3 − 2
√
µ3, 2

√
µ3 − 2µ3, µ3),

( 1
4 ,

1
2 ,

1
4 ).

Theorem 1 involves a distinction into three cases. Each of the first two cases gives two
algebraic pieces of the optimal value function. We point out three interesting features. First,
there is a full-dimensional region in ∆2, namely the top parallelogram in Figure 2, all of whose
points µ share the same optimal solution ν∗(µ) = ( 1

4 ,
1
2 ,

1
4 ) in M. Second, all points µ on the

vertical line segment {µ : µ1 = µ3, µ2 < 1/2} have two distinct optimal solutions, namely the
intersection points of the curve M with a horizontal line. The identification of such walls of
indecision is important for finding accurate numerical solutions. Third, the optimal value and
solution functions agree for the two metrics in Figure 1. However, one can perturb the discrete
metric to observe a difference. This is illustrated in Figure 3. The point µ = ( 1

2 , 0,
1
2 ) has two

4



µ2 − 1
2

2
√
µ1 − 2µ1 − µ2 2

√
µ3 − 2µ3 − µ2

−2√µ1 + 2µ1 + µ2 −2√µ3 + 2µ3 + µ2

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

Figure 2: The Hardy-Weinberg curveM is shown in red. The optimal value function for the Wasserstein distance to this
curve is piecewise algebraic with five regions.

closest points in the L1-metric but four closest points in the Wasserstein distance induced by
d = (d12, d13, d23) = (1, 1 − ε, 1) for some ε > 0.

µ µ

Figure 3: The Wasserstein balls around a data point touch the curve in either four or two points. The metrics on [3] are
d = (1, 1 − ε, 1) and d = (1, 2, 1) respectively.

Next, we increase the dimension by one. Consider the tetrahedron ∆3 whose points are joint
probability distributions of two binary random variables (n = 4, k = 2). The 2-bit independence
modelM ⊂ ∆3 consists of all nonnegative 2 × 2 matrices of rank one whose entries sum to one:(

ν1 ν2
ν3 ν4

)
=

(
pq p(1 − q)

(1−p)q (1−p)(1−q)

)
, (p, q) ∈ [0, 1]2. (2.2)

Thus, M is the surface in the tetrahedron ∆3 defined by the equation ν1ν4 = ν2ν3. We fix the
L0-metric d on the set of binary pairs [2] × [2]. Under our identification (lexicographic order) of
this state space with [4] = {1, 2, 3, 4}, the resulting metric on ∆3 is given by the 4 × 4 matrix

d =


0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

 . (2.3)

5



We now present the optimal value function and solution function for this independence model.

Theorem 2. For the L0-metric on the state space [2] × [2], the Wasserstein distance from a data
distribution µ ∈ ∆3 to the 2-bit independence surfaceM is given by

Wd(µ,M) =



2
√
µ1(1 −

√
µ1) − µ2 − µ3 if µ1 ≥ µ4 ,

√
µ1 ≥ µ1 + µ2 ,

√
µ1 ≥ µ1 + µ3,

2
√
µ2(1 −

√
µ2) − µ1 − µ4 if µ2 ≥ µ3 ,

√
µ2 ≥ µ1 + µ2 ,

√
µ2 ≥ µ2 + µ4,

2
√
µ3(1 −

√
µ3) − µ1 − µ4 if µ3 ≥ µ2 ,

√
µ3 ≥ µ1 + µ3 ,

√
µ3 ≥ µ3 + µ4,

2
√
µ4(1 −

√
µ4) − µ2 − µ3 if µ4 ≥ µ1 ,

√
µ4 ≥ µ2 + µ4 ,

√
µ4 ≥ µ3 + µ4,

|µ1µ4 − µ2µ3|/(µ1 + µ2) if µ1 ≥ µ4, µ2 ≥ µ3, µ1+µ2 ≥
√
µ1, µ1+µ2 ≥

√
µ2,

|µ1µ4 − µ2µ3|/(µ1 + µ3) if µ1 ≥ µ4, µ3 ≥ µ2, µ1+µ3 ≥
√
µ1, µ1+µ3 ≥

√
µ3,

|µ1µ4 − µ2µ3|/(µ2 + µ4) if µ4 ≥ µ1, µ2 ≥ µ3, µ2+µ4 ≥
√
µ4, µ2+µ4 ≥

√
µ2,

|µ1µ4 − µ2µ3|/(µ3 + µ4) if µ4 ≥ µ1, µ3 ≥ µ2, µ3+µ4 ≥
√
µ4, µ3+µ4 ≥

√
µ3.

The solution function ∆3 →M, µ 7→ ν∗(µ) is given (with the same case distinction) by

ν∗(µ) =



(
µ1 ,

√
µ1 − µ1 ,

√
µ1 − µ1 , −2

√
µ1 + µ1 + 1

)
,( √

µ2 − µ2 , µ2 , −2
√
µ2 + µ2 + 1 ,

√
µ2 − µ2

)
,( √

µ3 − µ3 , −2
√
µ3 + µ3 + 1 , µ3 ,

√
µ3 − µ3

)
,(

−2
√
µ4 + µ4 + 1 ,

√
µ4 − µ4 ,

√
µ4 − µ4 , µ4

)
,(

µ1 , µ2 , µ1(µ3+µ4)/(µ1+µ2) , µ2(µ3+µ4)/(µ1+µ2)
)
,(

µ1 , µ1(µ2+µ4)/(µ1+µ3) , µ3 , µ3(µ2+µ4)/(µ1+µ3)
)
,(

µ2(µ1+µ3)/(µ2+µ4) , µ2 , µ4(µ1+µ3)/(µ2+µ4) , µ4
)
,(

µ3(µ1+µ2)/(µ3+µ4) , µ4(µ1+µ2)/(µ3+µ4) , µ3 , µ4
)
.

The walls of indecision are the surfaces {µ ∈ ∆3 : µ1 − µ4 = 0, µ1 + µ2 ≥
√
µ1, µ1 + µ3 ≥

√
µ1}

and {µ ∈ ∆3 : µ2 − µ3 = 0, µ1 + µ2 ≥
√
µ2, µ2 + µ4 ≥

√
µ2}.

(1, 0, 0, 0)

(0, 0, 0, 1)

(0, 1, 0, 0)

(0, 0, 1, 0)

( 12 , 0, 0,
1
2 )

(1, 0, 0, 0)

(0, 0, 0, 1)

(0, 1, 0, 0)

(0, 0, 1, 0)

Figure 4: The optimal value function of Theorem 2 subdivides the tetrahedron of probability distributions µ (left). The
walls of indecision are shown in blue (right).
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Theorem 2 distinguishes eight cases. This division of ∆3 is shown in Figure 4. Each of the
last four cases breaks into two subcases, since the numerator in the formulas is the absolute value
of µ1µ4−µ2µ3. The sign of this 2×2 determinant matters for the pieces of our piecewise algebraic
function. The tetrahedron ∆3 is divided into 12 regions on which µ 7→ Wd(µ,M) is algebraic.

We now explain Figure 4. The red surface consists of eight pieces. Together with the blue
surface, these separate the eight cases (this surface is not the model). Four convex regions are
enclosed between the red surfaces and the sides they meet. These regions represent the first
four cases in Theorem 2. For instance, the region containing the points (1, 0, 0, 0), (1/2, 0, 0, 1/2)
corresponds to the first case. The remaining four regions are each bounded by two red and two
blue pieces, and correspond to the last four cases. Each of these four regions is further split in two
by the model which we do not depict for the sake of visualization. The two sides are determined
by the sign of the determinant µ1µ4−µ2µ3. The two blue shapes in the right figure form the walls
of indecision. These specify the points µ ∈ ∆3 with more than one optimal solution.

The same 2-bit model was studied in our conference paper [2]. Theorem 2 is a much im-
proved representation of the results in [2, Table 2]. Our formulas can easily be translated into a
description in terms of the parameters (p, q) from (2.2). The linear program we used in (1.1) to
define the Wasserstein distance is dual to the one via optimal transport in [2, eqn (2)]. The latter
primal formulation underlies the analysis in [2, §5]. In Section 3, we will present a self-contained
proof of Theorem 2 after a general discussion of distance minimization for polyhedral norms.

3. Polyhedral Norm Distance to a Variety

The Wasserstein metric on the simplex of probability distributions with n states defines a
polyhedral norm on Rm with m = n − 1 as follows. We translate the simplex ∆m such that its
barycenter is the origin. Next we consider a Wasserstein unit ball around the origin, denoted by
B. This unit ball is a centrally symmetric m-dimensional polytope B. It induces a norm on Rm by

‖y‖B := min { λ ∈ R≥0 : y ∈ λB }.

In terms of the dual polytope

B∗ = { x ∈ Rm : sup
z∈B
〈x, z〉 ≤ 1 },

the polyhedral norm can be rewritten as

‖y‖B = min { λ ∈ R≥0 : sup
x∈B∗
〈x, y〉 ≤ λ } = max

x∈B∗
〈x, y〉.

Note that (B∗)∗ = B. The dual of the unit ball equals

B∗ = Pd =
{

x ∈ Rn/R1 : |xi − x j| ≤ di j for all 1 ≤ i < j ≤ n
}
.

This is the Lipschitz polytope in (1.2), and the unit ball B = P∗d is its dual. This means that the
Wasserstein unit ball B is the convex hull of n(n − 1) vectors that lie on a hyperplane in Rn:

B = P∗d = conv
{ 1

di j
(ei − e j) : 1 ≤ i < j ≤ n

}
.

In the case m = n − 1 = 2, two Wasserstein balls for different metrics d were shown in Figure 1.
7



Example 3. Fix m = n − 1 = 3 and let d be the 2-bit Hamming metric in (2.3). We work in the
linear space L that is defined by x1 + x2 + x3 + x4 = 0. The Lipschitz polytope is the octahedron

Pd = B∗ =
{
(x1, x2, x3, x4) ∈ L : |x1 − x2| ≤ 1, |x1 − x3| ≤ 1, |x2 − x4| ≤ 1, |x3 − x4| ≤ 1

}
= conv

{
(1, 0, 0,−1), (1, 0, 0,−1), ( 1

2 ,−
1
2 ,−

1
2 ,

1
2 ), (− 1

2 ,
1
2 ,

1
2 ,−

1
2 ), (0, 1,−1, 0), (0,−1, 1, 0)

}
.

The Wasserstein unit ball is the cube

B = P∗d =
{
(y1, y2, y3, y4) ∈ L : |y1 − y4| ≤ 1, |y2 − y3| ≤ 1, |y2 + y3| ≤ 1

}
= conv

{
(1,−1, 0, 0), (1, 0,−1, 0), (0, 1, 0,−1), (0, 0, 1,−1)

(−1, 1, 0, 0), (−1, 0, 1, 0), (0,−1, 0, 1), (0, 0,−1, 1)
}
.

Returning to the general case, suppose thatM is a smooth compact algebraic variety in Rm.
For any point u ∈ Rm, we are interested in its distance to the variety under our polyhedral norm:

DB(u,M) := min
{
‖u − v‖B : v ∈ M

}
= min

{
λ ∈ R≥0 : (u + λB) ∩ M , ∅

}
.

We will now embark on understanding the geometry of this optimization problem.

Proposition 4. If the modelM and the point u are in general position relative to the unit ball B
then there is a unique optimal point v ∈ M for which DB(u,M) = ‖u − v‖B = λ holds. The point
1
λ
(v − u) is in the relative interior of a unique face F of the polytope B; we say that v has type F.

The general position hypothesis is understood as follows. The rotation group and the trans-
lation group act on Rm. These two algebraic groups have Zariski dense subsets such that the
hypothesis holds after applying group elements from those two subsets toM and u respectively.

Proof. We have λ = DB(u,M), so 1
λ
(v − u) lies in the boundary of the unit ball B. The polytope

B is the disjoint union of the relative interior of its faces. Hence there exists a unique face F that
has 1

λ
(v − u) in its relative interior. Let LF be the linear subspace of Rm that consists of linear

combinations of vectors in F. By hypothesis, the resulting affine subspace u + LF intersects
the variety M transversally, and v is a general smooth point in that intersection. Moreover, v
is a minimum of the restriction to the variety (u + LF) ∩ M of a linear function on u + LF .
Our hypothesis ensures that the linear function is generic relative to the variety, which in turn
is smooth and compact. The number of critical points is finite. This guarantees that the linear
function attains its minimum at a unique point in the variety, namely at v.

Our geometric discussion becomes very concrete in the Wasserstein case. The data point is
u = µ and the optimal point is v = ν∗. The type of v is a face F of the unit ball B = P∗d. Fix the
face F. This allows for the following algebraic characterization of optimality. Let F be the set
of all index pairs (i, j) such that the point 1

di j
(ei − e j) is a vertex and it lies in F. Let `F be any

linear functional on Rm that attains its maximum over B at F. We work in the linear space

LF =

 ∑
(i, j)∈F

λi j(ei − e j) : λi j ∈ R

 . (3.1)

The point ν∗ onM that is closest to µ is the solution of the following optimization problem:

Minimize `F = `F(ν) subject to ν ∈ (µ + LF) ∩M. (3.2)
8



This is a polynomial optimization problem in the linear subspace LF of Rm. With the notation in
(3.1), the decision variables are λi j for (i, j) ∈ F . The algebraic complexity of this problem will
be studied in Section 5. In Section 4, we focus on the combinatorial complexity. The unit ball B
has very many faces, and our desire is to control that combinatorial explosion. For the remainder
of this section, we return to the three-dimensional case seen in Section 2, and we present a proof
of Theorem 2 that uses the set-up above. Theorem 1 is analogous and its proof will be omitted.

(1,−1, 0, 0)

(−1, 1, 0, 0)

(1, 0,−1, 0)

(−1, 0, 1, 0)

(0, 1, 0,−1)

(0,−1, 0, 1)

(0, 0, 1,−1)

(0, 0,−1, 1)

Figure 5: Subdivision of the faces of the Wasserstein ball as in the proof of Theorem 2.

Proof of Theorem 2. The Wasserstein unit ball is the cube B in Example 3. We must solve (3.2)
for every face F of B. There are various symmetries we can employ to simplify the proof. First,
since B is centrally symmetric, we study only one among a face F and its negative −F. Since
LF = L−F , minima in (3.2) for F turn into maxima for −F, and vice versa. Second, consider
the dihedral group D4 of order 8 that is generated by the involutions (14) and (12)(34) in the
symmetric group on {1, 2, 3, 4}. This acts on the tetrahedron ∆3, on the cube B, and on the model
M, by permuting coordinates in R4. The action respects scalar products: 〈c, x〉 = 〈g · c, g · x〉 for
every g ∈ D4. Therefore, g · F is a face of B for every face F and every g ∈ D4, and the problem
(3.2) is symmetric under D4. The solution function satisfies ν∗(g · µ) = g · ν∗(µ) for all g ∈ D4.

For each vertex, edge or 2-face, one per symmetry class, we introduce Lagrange multipliers
to compute the critical points of (3.2). In each case, there are at most two critical points, since the
polar degrees are δ = (2, 2, 2); see k = 2 in Table 2. We now undertake a case-by-case analysis:

• dim(F) = 2: The green facets in Figure 5 give two orbits. For the first facet, Lagrange
multipliers reveal a critical point ν∗ = (1/4, 1/4, 1/4, 1/4). However, the associated con-
strained Hessian is indefinite, and hence ν∗ is not a local minimum. The second facet has
no critical points in ∆3. Hence there is never any optimal solution whose type is a facet.

• dim(F) = 1: We have two orbits of edges, marked in red (bounding the green facets)
and blue in Figure 5. Representatives are E1 = conv{(−1, 1, 0, 0), (−1, 0, 1, 0)} and E2 =

conv{(1,−1, 0, 0), (0, 0, 1,−1)}. For the first, we have LE1 = {x4 = 0, x1 + x2 + x3 = 0}
and `E1 = −x1 + x4. The associated Lagrangian system has two solutions one of which is
contained in ∆3, namely ν∗ = (−2

√
µ4 + µ4 + 1,

√
µ4 − µ4,

√
µ4 − µ4, µ4). The constrained

Hessian reveals that ν∗ is a local minimum. It remains to determine the constraints of the
9



region on which ν∗ lies in the interior of E1. They can be obtained from the inequalities
defining the 2-dimensional cone

CE1 := { λ12(e2 − e1) + λ13(e3 − e1) : λ12, λ13 ∈ R≥0 }.

Then ν∗ ∈ µ+ CE1 if and only if ν∗2 − µ2 ≥ 0 and ν∗3 − µ3 ≥ 0, that is
√
µ4 − µ4 − µ2 ≥ 0 and

√
µ4 − µ4 − µ3 ≥ 0. As `E1 = −x1 + x4, the corresponding optimal Wasserstein distance is

W(µ, ν∗) = `E1 (ν∗ − µ) = 2
√
µ4 + µ1 − µ4 − 1 = 2

√
µ4(1 −

√
µ4) − µ2 − µ3.

The optimization problem associated to E2 does not have critical points.

• dim(F) = 0: The eight vertices of B form one orbit. We consider v = (1,−1, 0, 0), with
associated zero-dimensional variety (µ + Lv) ∩ M. This consists of a unique point ν∗ =

( µ3(µ1+µ2)
µ3+µ4

, µ4(µ1+µ2)
µ3+µ4

, µ3, µ4). Depending on µ, this point can lie either on the ray through
µ + v, denoted µ + Cv, or on the ray through µ − v. We have ν∗ ∈ (µ + Cv) ∩M if and only
if ν∗1 − µ1 ≥ 0, that is µ2µ3−µ1µ4

µ3+µ4
≥ 0. In this case we choose `v = −x2 − x3, and we obtain

W(µ, ν∗) = `v(ν∗ − µ) = −
µ4(µ1 + µ2)
µ3 + µ4

− µ3 + µ2 + µ3 =
µ2µ3 − µ1µ4

µ3 + µ4
.

We act with the dihedral group D4 on the two local minima we found. This yields the eight
expressions for ν∗ shown in Theorem 2. It remains to decide which point ν∗ is the global mini-
mum. This is done by pairwise comparison of the eight expressions for the Wasserstein distance
Wd(µ, ν∗). We omit this last step, since it consists of elementary algebraic manipulation.

4. Lipschitz polytopes

The combinatorial complexity of our problem is governed by the facial structure of the
Wasserstein ball given by a finite metric space ([n], d). We now focus on the polar dual of that
ball, which is the Lipschitz polytope Pd. This lives in Rn/R1 ' Rn−1, and is defined in (1.2).

This object appears in the literature in several guises. See e.g. [9] for a study that emphasizes
generic distances di j. We consider specific metrics that are relevant for the independence model:

• The discrete metric on any finite set [n] where di j = 1 for distinct i, j.

• The L0-metric on [m1] × · · · × [mk] where di j = #{l : il , jl}.

• The L1-metric on [m1] × · · · × [mk] where di j =
∑k

l=1 |il − jl|.

For the last two metrics we have n = m1 · · ·mk. To compute the Wasserstein distance in each case,
we need to describe the Lipschitz polytope Pd as explicitly as possible. All three metrics above
can be interpreted as graph metrics. This means that there exists an undirected simple graph G
with vertex set [n] such that di j is the length of the shortest path from i to j in G. Wasserstein balls
associated to graphs in this way are studied in [4] under the name symmetric edge polytopes.

For the discrete metric on [n], the graph is the complete graph Kn. In the case of the L0-metric
on [m1]×· · ·× [mk], we have the Cartesian product of complete graphs Km1 ×· · ·×Kmk . In the last
case, the corresponding graph is the Cartesian product of paths of length m1, . . . ,mk. The facets
of the Lipschitz polytope Pd arising from a graph G correspond to the edges of G. We have

Pd = { x ∈ Rn/R1 : |xi − x j| ≤ 1 for every edge (i, j) of G }. (4.1)
10



This representation of Pd is a consequence of the triangle inequality. Vertices of Pd are precisely
those points for which at least dim(Pd) inequalities are sharp. More generally, we are interested
in higher-dimensional faces of Pd. The number of i-dimensional faces of Pd is denoted by fi =

fi(Pd), and we write f = ( f0, f1, . . . , fn−2) for the f-vector. Since Pd is (n − 1)-dimensional, we
have fn−1(Pd) = 1, and we omit this number. In general, it is difficult to compute the f -vector.

If d is the discrete metric on [n], then we have the following description of the faces. The
corresponding Lipschitz polytope Pd is a zonotope, namely it is the Minkowski sum of n general
segments in (n − 1)-space. For n = 4 this is the rhombic dodecahedron [11, Figure 4]. Its dual,
the Wasserstein ball for the discrete metric on [n], is the root polytope of Lie type A; cf. [11, 16].

Lemma 5. Let d be the discrete metric on [n]. The vertices of Pd are the binary vectors
∑

i∈I ei

where I runs over elements of the power set 2[n]\{∅, [n]}. Furthermore, a subset S of 2[n]\{∅, [n]}
indexes the vertices of a face of Pd if and only if S = {I : L ⊆ I ⊆ U} for some L,U ∈ 2[n]\{∅, [n]}.

Proof. Clearly, eI =
∑

i∈I ei lies in Pd. We observe that (eI)i − (eI) j = 1 if and only if i ∈ I and
j < I. The corresponding linear forms xi − x j for i ∈ I and j < I span an (n − 1)-dimensional
space. This means that eI is a vertex of Pd. Conversely, there are no vertices other than the eI

since vi − v j = 1 implies vi = 1 and v j = 0 for v ∈ Rn/R1. For the second statement, consider
any linear functional ` on Pd. We have ` =

∑n
i=1 aixi where

∑n
i=1 ai = 0. Set L = {i : ai > 0} and

U = {i : ai ≥ 0}. Then ` is maximized over Pd at the convex hull of {eI : L ⊆ I ⊆ U}, so this is a
face. Every face is the set of maximizers of a linear functional on Pd. This proves the claim.

From this description of Pd we can read off the number of faces in each dimension.

Corollary 6. [3, Proposition 4.3] Let d be the discrete metric on [n]. Then

fi(Pd) = fn−i−2(P∗d) =

(
n
i

)
(2n−i − 2) for i = 0, . . . , n − 2.

Proof. The face indexed by (L,U) in the proof of Lemma 5 has dimension |U | − |L|. Hence fi is
the number of chains ∅ ( L ⊆ U ( [n] with |U | − |L| = i. This is the given number.

Example 7 (n = 4). We consider the discrete metric on [4] = {1, 2, 3, 4}. The 3-dimensional
Lipschitz polytope Pd is the rhombic dodecahedron with f -vector (14, 24, 12). Its dual P∗d is the
Wasserstein ball with f -vector (12, 24, 14). The normal fan of Pd, which is the fan over P∗d, is a
central arrangement of four general planes in a 3-dimensional space. This has 14 regions.

Corollary 8. Up to a factor of 2, the Wasserstein distance between probability distributions on
[n] is the restriction of the L1-distance on Rn. In symbols Wd = 1

2 ‖µ − ν‖L1 for µ, ν ∈ ∆n−1.

Proof. Up to a factor of 2, which we ignore, Pd is the image of the cube [−1, 1]n under the map
Rn → Rn/R1. Hence its dual, which is the L1-ball or cross polytope, intersects the hyperplane
1⊥ in the Wasserstein ball P∗d. This means that the L1-metric agrees with the Wasserstein metric
on any translate of 1⊥. More explicitly, we compute Wd(µ, ν) with the formula (1.1). This yields

Wd(µ, ν) = max
x∈Pd
〈µ − ν, x〉 = 〈µ − ν, sign(µ − ν)〉 =

n∑
i=1

|µi − νi|.

Here we identify the linear functionals given by the vertices of 2Pd with elements in {−1, 1}n.
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Example 9. The L1-ball for n = 3 is an octahedron. The restriction of this octahedron to the
triangle ∆2 is the hexagon on the left of Figure 1.

We next examine the Lipschitz polytope Pd for metrics associated to graphs G other than Kn.
The inequality representation was given in (4.1). However, describing all faces, or even just the
vertex set V(Pd), is now more difficult than in Lemma 5. The Wasserstein ball P∗d is the convex
hull of the subset of vertices ei − e j of the root polytope of type A that are indexed by edges of G.
The following result for bipartite graphs G is due to [4, Lemma 4.5]. A related characterization
for weighted graphs was obtained in [12, Theorem 2, §3.1].

Proposition 10. Let d be a graph metric where G is bipartite. The set of vertices of Pd equals

V(Pd) = { x ∈ Zn/Z1 : |xi − x j| = 1 for every edge (i, j) of G }. (4.2)

Proposition 10 covers the case of the Lipschitz polytope for the L1-norm on a product of
finite sets. In particular, we obtain a vertex description for the Lipschitz polytope of the graph of
the k-cube. This covers the L0-metric which is equal to the L1-metric on the states of the k-bit
models. This metric is the Hamming distance on a cube. In Example 3, we described this for the
2-bit model, for which the Lipschitz polytope is an octahedron, and its dual is a cube.

It is not easy to compute the cardinality of (4.2). In graph theory, this corresponds to counting
graph homomorphisms from the k-cube to the infinite path with a fixed point. [6] observed that
there is a bijection between V(Pd) and the proper 3-colorings of k-cube with a vertex with fixed
color. For k = 2, 3, 4, 5, 6, the corresponding number equals 6, 38, 990, 395094, 33433683534.
This was computed with the graph coloring code in SageMath. We refer to [6] for asymptotics.

It follows from results in [11] that the Wasserstein ball for the discrete metric on [n] has the
most vertices for any metric on [n]. We next discuss the Wasserstein ball with the fewest vertices.

Example 11. Let d be the L1-metric on [n], i.e. the graph metric of the n-path. Then Pd =

{|xi − xi+1| ≤ 1 : i = 1, 2, . . . , n − 1} is combinatorially an (n − 1)-cube, and Pd is a cross
polytope. This has the minimum number of vertices for any centrally symmetric (n−1)-polytope:

fi(Pd) = fn−i−2(P∗d) = 2n−i−1
(
n − 1

i

)
for i = 0, 1, . . . , n − 2.

We conclude this section with four independence models that serve as examples for our case
studies in the next sections. The tuple ((m1)d1 , . . . , (mk)dk ) denotes the independence model with
n =

∏k
i=1

(
mi+di−1

di

)
states where the ith entry (mi)di refers to a multinomial distribution with mi

possible outcomes and di trials. This can be interpreted as an unordered set of di identically
distributed random variables on [mi] = {1, 2, ...,mi}. The subscript di is omitted if di = 1.

For example, (22, 2) denotes the independence model for three binary random variables where
the first two are identically distributed. We list the n = 6 states in the order 00, 10, 20, 01, 11, 21.
These are the vertices of the associated graph G, which is the product of a 3-chain and a 2-chain.
This modelM is the image of the map from the square [0, 1]2 into the simplex ∆5 given by

(p, q) 7→
(

p2q, 2p(1 − p)q, (1 − p)2q, p2(1 − q), 2p(1 − p)(1 − q), (1 − p)2(1 − q)
)
. (4.3)

Example 12. Our four models are: the 3-bit model (2, 2, 2) with the L0-metric on [2]3; the model
(3, 3) for two ternary variables with the L1-metric on [3]2; the model (26) for six identically
distributed binary variables with the discrete metric on [7]; the model (22, 2) in (4.3) with the
L1-metric on [3]×[2]. In Table 1, we report the f -vectors of the corresponding Wasserstein balls.
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M n dim(M) Metric d f -vector of the (n−1)-polytope P∗d
(2, 2, 2) 8 3 L0 = L1 (24, 192, 652, 1062, 848, 306, 38)
(3, 3) 9 4 L1 (24, 216, 960, 2298, 3048, 2172, 736, 82)
(26) 7 1 discrete (42, 210, 490, 630, 434, 126)
(22, 2) 6 2 L1 (14, 60, 102, 72, 18)

Table 1: f -vectors of the Wasserstein balls for the four models in Example 12.

5. Polar Degrees of Independence Models

In this section, we examine the problem (3.2) for fixed type F from the perspective of al-
gebraic geometry. Given a compact smooth algebraic variety M in Rm, we consider a linear
functional ` and an affine-linear space L of dimension r in Rm. It is assumed that the pair (`, L)
is in general position relative toM. Our aim is to study the following optimization problem:

Minimize the linear functional ` over the intersection L ∩ M in Rm. (5.1)

This is a constrained optimization problem. We write the critical equations as a system of poly-
nomial equations. Its unknowns are the m coordinates of Rm plus various Lagrange multipliers.
The genericity assumption allows us to attach an algebraic degree to this optimization problem.
That degree is the number of complex solutions to the critical equations. Assuming (`, L) to be
generic, this number does not depend on the choice of (`, L) but just on the dimension r of L.
The following result furnishes a recipe for assessing the algebraic complexity of our problem.

Theorem 13. The algebraic degree of the problem (5.1) is the polar degree δr ofM.

We begin by explaining this statement. First of all, we already tacitly replacedM by its clo-
sure in complex projective space Pm, and we are assuming that this projective variety is smooth.
Let (Pm)∨ denote the dual projective space whose points are the hyperplanes h in Pm. The conor-
mal variety of the modelM is the following subvariety in the product of two projective spaces:

CV(M) =
{
(x, h) ∈ Pm × (Pm)∨ : the point x lies inM and h is tangent toM at x

}
.

The importance of the conormal variety for optimization has been explained in several sources,
including [5, 13, 14]. The projection of CV(M) onto the second factor (Pm)∨ is the dual variety
M∗, which parametrizes hyperplanes that are tangent toM. It is known that CV(M∗) = CV(M)
and that this conormal variety always has dimension m − 1; see [14, Proposition 2.4 and Theo-
rem 2.6]. The dual variety already appeared in [2, §4], but here we need a more general approach.

Let [CV(M)] denote the class of the conormal variety in the cohomology of Pm × (Pm)∨.
This cohomology ring is Z[s, t]/〈sm+1, tm+1〉, and hence the class [CV(M)] is a homogeneous
polynomial of degree m + 1 in two unknowns s and t. We can write this binary form as follows:

[CV(M)] =

m∑
r=1

δr−1 · srtm+1−r. (5.2)

The coefficients δ0, δ1, δ2, . . . are the polar degrees of the model M. Some of these are zero.
Namely, the sum in (5.2) ranges from r1 to r2, where dim(M) = m − r1 and dim(M∗) = r2. The
first and last non-zero coefficients are δr1−1 = degree(M) and δr2−1 = degree(M∗) respectively.
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Proof of Theorem 13. It is known that δr−1 equals the number of points in (Lr×L′m+1−r)∩CV(M)
where Lr ⊂ Pm is a general linear space of dimension r and L′m+1−r ⊂ (Pm)∨ is a general linear
space of dimension m+1−r; see e.g. [5, §5]. We now identify Lr with the linear space L in (5.1).
The intersection (Lr × (Pm)∨) ∩ CV(M) is a smooth variety of dimension r − 1 by Bertini’s
Theorem. In (5.1), we optimize a general linear functional over its projection into the first factor
Pm. The dual variety to that projection lives in (Pm)∨, and the desired algebraic degree is the
degree of the dual variety. This is obtained geometrically by intersecting with L′m+1−r.

The independence models treated in this article are known in algebraic geometry as Segre-
Veronese varieties. The study of characteristic classes for these families is a classical subject
in algebraic geometry. The explicit computation of these polar degrees was carried out only
recently, in the doctoral dissertation [15]. The result is described in Theorem 14 below.

Let M be the model denoted ((m1)d1 , . . . , (mk)dk ) in Section 4. The corresponding Segre-
Veronese variety is the embedding of Pm1−1 × · · · ×Pmk−1 in the space of partially symmetric ten-
sors, P(Symd1

Rm1 ⊗· · ·⊗Symdk
Rmk ). That projective space equals Pn−1 where n =

∏k
i=1

(
mi+di−1

di

)
.

We identify its real nonnegative points with the simplex ∆n−1. The independence modelM con-
sists of the rank one tensors. Its dimension is denoted m := (m1−1)+· · ·+(mk−1). The following
formula for the polar degrees of the Segre-Veronese varietyM appears in [15, Chapter 5].

Theorem 14. For each integer r with n − 1 − dim(M) ≤ r ≤ dim(M∗), the polar degree equals

δr−1(M) =

m−n+1+r∑
s=0

(−1)s
(
m − s + 1

n − r

)
(m − s)!

 ∑
i1+···+ik=s

k∏
l=1

(
ml
il

)
dml−1−il

l

(ml − 1 − il)!

 . (5.3)

We next examine this formula for various special cases, starting with the binary case.

Corollary 15. LetM be the k-bit independence model. The formula (5.3) specializes to

δr−1(M) =

k−2k+1+r∑
s=0

(−1)s
(
k + 1 − s

2k − r

)
(k − s)! 2s

(
k
s

)
. (5.4)

The polar degrees in (5.4) are shown for k ≤ 7 in Table 2. The indices r with δr−1 , 0 range
from codim(M) = 2k−1−k to dim(M∗) = 2k−1. For the sake of the table’s layout, we shift the
indices so that the row labeled with 0 contains δcodim(M)−1 = degree(M) = k!. The dual variety
M∗ is a hypersurface of degree δ2k−2 known as the hyperdeterminant of format 2k. For instance,
for k = 3, this hypersurface in P7 is the 2 × 2 × 2-hyperdeterminant which has degree four.

We next discuss the independence models (m1,m2) for two random variables. These are the
classical contingency tables of format m1 × m2. Here, n = m1m2 and m = m1 + m2 − 2. The
m-dimensional Segre varietyM = Pm1−1×Pm2−1 ⊂ Pn−1 consists of m1×m2 matrices of rank one.

Corollary 16. The Segre variety of m1 × m2 matrices of rank one has the polar degrees

δr−1(M) =

m−n+1+r∑
s=0

(−1)s
(
m − s + 1

n − r

)
(m − s)!

∑
i+ j=s

(
m1
i

)
(m1 − 1 − i)!

·

(
m2

j

)
(m2 − 1 − j)!

 . (5.5)

The polar degrees (5.5) are shown in Table 3, with the labeling convention as in Table 2. We
now apply the discussion of polar degrees to our optimization problem for independence models.
Given a fixed modelM, the equality in Theorem 13 holds only when the data (`, L) in (5.1) is
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r − codim(M) k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
0 2 6 24 120 720 5040
1 2 12 72 480 3600 30240
2 2 12 96 840 7920 80640
3 4 64 800 9840 124320
4 24 440 7440 120960
5 128 3408 75936
6 880 30016
7 6816

Table 2: The polar degrees δr−1(M) of the k-bit independence model for k ≤ 7.

r − codim(M) (2, 3) (2, 4) (2, 5) (2, 6) (3, 3) (3, 4) (3, 5) (3, 6) (4, 4) (4, 5) (4, 6)
0 3 4 5 6 6 10 15 21 20 35 56
1 4 6 8 10 12 24 40 60 60 120 210
2 3 4 5 6 12 27 48 75 84 190 360
3 6 16 30 48 68 176 360
4 3 6 10 15 36 105 228
5 12 40 90
6 4 10 20

Table 3: The polar degrees δr−1(M) of the independence model (m1,m2).

generic. However, for the Wasserstein distance problem stated in (3.2), the linear space L = LF

and the linear functional ` = `F are very specific. They depend on the Lipschitz polytope Pd and
the type F of the optimal solution ν∗. For such specific scenarios, we only get an inequality.

Proposition 17. Consider the distance optimization problem (3.2) for the independence model
((m1)d1 , . . . , (mk)dk ) on a given face F of the Wasserstein ball P∗d. The degree of the optimal solu-
tion ν∗ as an algebraic function of the data µ is bounded above by the polar degree δr−1 in (5.3).

Proof. This follows from Theorem 13. The upper bound relies on general principles of algebraic
geometry. Namely, the graph of the map µ 7→ ν∗(µ) is an irreducible variety, and we study its
degree over µ. The map depends on the parameters (`, L). When the coordinates of L and ` are
independent transcendentals then the algebraic degree is the polar degree δr−1. That algebraic
degree can only go down when these coordinates take on special values in the real numbers. This
semi-continuity argument is valid for most polynomial optimization problems. It is used tacitly
for Euclidean distance optimization in [5, §2] and for semidefinite programming in [13, §3].

We now study the drop in algebraic degree for the four models in Example 12. In the language
of algebraic geometry, our four models are the Segre threefold P1 × P1 × P1 in P7, the variety
P2×P2 of rank one 3×3 matrices in P8, the rational normal curve P1 in P6 = P(Sym6(R2)), and the
Segre-Veronese surface P1 ×P1 in P5 = P(Sym2(R2)×Sym1(R2)). The underlying finite metrics
d are specified in the fourth column of Table 1. The fifth column records the combinatorial
complexity of our optimization problem, while the algebraic complexity is recorded in Table 4.
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M Polar degrees Maximal degree Average degree
(2, 2, 2) (0, 0, 0, 6, 12, 12, 4) (0, 0, 0, 4, 12, 6, 0) (0, 0, 0, 2.138, 6.382, 3.8, 0)

(3, 3) (0, 0, 0, 6, 12, 12, 6, 3) (0, 0, 0, 2, 8, 6, 6, 0) (0, 0, 0, 1.093, 3.100, 4.471, 6.0, 0)
(26) (0, 0, 0, 0, 6, 10) (0, 0, 0, 0, 6, 5) (0, 0, 0, 0, 6, 5)

(22, 2) (0, 0, 4, 6, 4) (0, 0, 3, 5, 2) (0, 0, 2.293, 3.822, 2.0)

Table 4: The algebraic degrees of the problem (1.3) for the four models in Example 12.

The second column in Table 4 gives the vector (δ0, δ1, . . . , δn−2) of polar degrees for the model
M under consideration. The third and fourth column are results of our computations. For each
model, we take 1000 uniform samples µ with rational coordinates from the simplex ∆n−1, and we
solve the optimization problem (1.3) using the methods described in Section 6. The output is an
exact representation of the optimal solution ν∗. This includes the optimal face F that specifies
ν∗, along with its maximal ideal in the polynomial ring over the field Q of rational numbers. The
algebraic degree of the optimal solution ν∗ is computed as the number of complex zeros of that
maximal ideal. This number is bounded above by the polar degree, as seen in Proposition 17.

The third and fourth column in Table 4 reports on the algebraic degree of ν∗ in our experi-
ments. It shows the maximum and the average of the degrees found in the 1000 computations.
That maximum is bounded above by the polar degree. Equality holds in some cases. For exam-
ple, for the 3-bit model (2, 2, 2) we have δ3 = 6, corresponding to P∗d touchingM at a 3-face F,
but the maximum degree we observed was 4, with an average degree of 2.138. For 4-faces F, we
have δ4 = 12, and this was indeed attained in some of our experiments. The average was 6.382.

6. Algorithms and Experiments

We now report on computational experiments. These are carried out in three stages: (1)
combinatorial preprocessing, (2) numerical optimization, and (3) algebraic postprocessing. Our
object of interest is a modelM in the simplex ∆n−1, typically one of the independence models
((m1)d1 , . . . , (mk)dk ) where n =

∏k
i=1

(
mi+di−1

di

)
. The state space [n] is given the structure of a metric

space by a symmetric n × n matrix d = (di j). This matrix defines the Lipschitz polytope Pd and
its dual, the Wasserstein ball P∗d. Our first algorithm computes these combinatorial objects.

Algorithm 1: Combinatorial preprocessing
Input: An n × n symmetric matrix d = (di j).
Output: A description of all facets F of the Wasserstein ball P∗d.
Step 1: From the description in Section 4, find all vertices of the Lipschitz polytope Pd.
These vertices are the inner normal vectors `F to the facets F of P∗d. Store them.

Step 2: Determine an inequality description of the cone CF over each facet F.
Return: The list of pairs (`F ,CF), one for each vertex of the Lipschitz polytope Pd.

In our experiments, we use the software Polymake [7] for running Algorithm 1. Note that
Step 1 is a challenging calculation. It remains an open problem to characterize combinatorially
the incidence structure of other Lipschitz polytopes in the same spirit as Lemma 5. We carried
out this preprocessing for a range of smaller models including those four featured in Example 12.
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Our next algorithm solves the optimization problem in (1.3). This is done by examining each
facet F of the Wasserstein ball. The problem is precisely that in (3.2) but with the linear space
LF now replaced by the convex cone CF that is spanned by F.

Algorithm 2: Numerical optimization
Input: ModelM and a point µ in the simplex ∆n−1; complete output from Algorithm 1.
Output: The optimal solution ν∗ in (1.3) along with its type G.
Step 1: for each facet F of the Wasserstein ball P∗d do

Step 1.1: Apply global optimization methods to identify a solution ν∗ ∈ M of

minimize `F = `F(ν) subject to ν ∈ (µ + CF) ∩M.

Step 1.2: Identify the unique face G of F whose span has ν∗ in its relative interior.
Step 1.3: Find a basis of vectors ei − e j ∈ CG for the linear space LG spanned by G.
Step 1.4: Store the optimal solution ν∗ and a basis for the linear subspace LG of Rn.

end
Step 2: Among candidate solutions found in Step 1, identify the solution ν∗ for which
the Wasserstein distance Wd(µ, ν∗) to the data point µ is smallest. Record its type G.

Return: The optimal solution ν∗, its associated linear space LG, and the facet normal `G.

We use the software SCIP [8] for running Algorithm 2. SCIP employs sophisticated branch-
and-cut strategies to solve constrained polynomial optimization problems via LP relaxation. We
make use of the Python interface in SCIP to implement Algorithm 2 in a single environment.

The virtue of Algorithm 2 is that it is guaranteed to find the global optimum for our prob-
lem (1.3). Moreover, it furnishes an identification of the combinatorial type. This serves as
the input to the symbolic computation in Algorithm 3. The drawback of Algorithm 2 is that it
requires reprocessing that is prohibitive for larger models. We will return to this point later.

Algorithm 3: Algebraic postprocessing
Input: The optimal solution (ν∗,G) to (1.3) in the form found by Algorithm 2.
Output: The maximal ideal in the polynomial ring Q[ν1, . . . , νn] which has the zero ν∗.
Step 1: Use Lagrange multipliers to give polynomial equations that characterize the
critical points of the linear function `F on the subvariety (µ + LG) ∩M in Rn.

Step 2: Eliminate all variables representing Lagrange multipliers from the ideal
in Step 1.

Step 3: The ideal from Step 2 is in Q[ν1, . . . , νn]. If this ideal is maximal then call it M.
Step 4: If not, remove extraneous primary components to get the maximal ideal M of ν∗.
Step 5: Determine the degree of ν∗, which is the dimension of Q[ν1, . . . , νn]/M over Q.
Return: Output generators for the ideal M along with the degree found in Step 5.

We run Algorithm 3 with the computer algebra system Macaulay2 [10]. Steps 2 and 4 are the
result of standard Gröbner basis calculations. We illustrate the entire pipeline with an example.

Example 18. The following matrices are points in the probability simplex ∆8 for the model (3, 3):

µ =
1

100

 2 3 5
7 11 13
17 19 23

 , ν∗ =
1

4600

124 152 184
403 494 598
713 874 1058

 , ν̂ =
1

10000

 260 330 410
806 1023 1271

1534 1947 2419

 .
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Algorithm 2 computes the optimal solution ν∗ along with its type G. This face of the 8-dimensional
Wasserstein ball P∗d is the tetrahedron G = conv{e1 − e2, e2 − e3, e4 − e5, e4 − e7}. The four ver-
tices span the linear space LG. A facet F containing G is defined by the normal vector `F =

(2, 1, 0, 1, 0, 1, 0,−1, 0). While the corresponding polar degree δ3 equals 6, Table 4 shows that
all solutions observed for this type have algebraic degree 1 or 2, with average 1.093. Indeed, the
entries of the matrix ν∗ are rational numbers, so the algebraic degree is 1. The optimal Wasser-
stein distance is the rational number Wd(µ, ν∗) = 〈`F , µ − ν

∗〉 = 159/4600 = 0.034565217....
The rightmost matrix ν̂ also has rank one. It lies in the model, just like ν∗. This matrix is the

maximum likelihood estimate for µ, so it minimizes the Kullback-Leibler distance to the model.
Its Wasserstein distance to the data µ equals Wd(µ, ν̂) = 32/625 = 0.0512. In the experiments
recorded in Table 6, the type G of the solution ν∗ has dimension 3 for the 65.7% of the samples µ.

We now consider another data point, obtained by permuting the coordinates used above:

µ =
1

100

11 2 5
3 13 7
17 19 23

 , ν∗ =

ν1 ν2 ν3
ν4 ν5 ν6
ν7 ν8 ν9

 =

0.037183 0.041558 0.050303
0.080956 0.090480 0.109525

0.17 0.19 0.229995

 .
Here Algorithm 2 identifies the solution ν∗ above, together with the 4-dimensional type

G = conv{e2 − e1, e3 − e2, e4 − e1, e6 − e5, e6 − e9}.

The optimal value, Wd(µ, ν∗) = 0.112645, has algebraic degree 4, so it can be written in radicals
over Q. The relevant polar degree is δ4 = 12. The largest observed degree is 8, as seen in Table 4.
The exact representation of the solution ν∗ is the maximal ideal in Q[ν1, . . . , ν9] generated by

5631250000ν4
1 − 18245250000ν3

1 − 3922376250ν2
1 − 121856850ν1 + 9002061,

17ν2 − 19ν1, 100ν7 − 17, 100ν8 − 19,
10489919785ν3 + 954632025000ν3

1 − 3208398380500ν2
1 − 261822911570ν1 + 11757750732,

12341082100ν4 − 1123096500000ν3
1 + 3774586330000ν2

1 + 334161011000ν1 − 16424275161,
209798395700ν5 − 21338833500000ν3

1 + 71717140270000ν2
1 + 6349059209000ν1 − 312061228059,

104899197850ν6 + 23173044250000ν3
1 − 77993197677500ν2

1 − 6429496583150ν1 + 285451958883,
104899197850ν9 − 12503627500000ν3

1 + 42134627542500ν2
1 + 3254966978650ν1 − 174527999929.

This Gröbner basis in triangular form is the output of Algorithm 3. Two entries of ν∗ are rational.

Using our three algorithms, we ran experiments on various models with 1000 uniformly
sampled data points µ. The first question we addressed: For a given data point µ, how many of the
polynomial optimization problems in Step 1.1 of Algorithm 2 are feasible? In geometric terms:
for how many facets F of the ball P∗d does the cone µ+ CF intersect the model? A bound for this
number could be used to reduce the number of optimization problems in Step 1 of Algorithm 2.
We report the average number of feasible problems for several models and metrics in Table 5.
We observe that different metrics for the same model can produce quantitatively different results.

Our second question is: What is the distribution of the dimension of the type G for µ ∈ ∆n−1?
The output of Algorithm 2 contains that information. We display it in Table 6 for the same mod-
els and metrics as in Table 5. For some models unexpected intersections happened. For example,
the second row shows that for 1 of the 1000 random points the optimal type was a 2-dimensional
face, even though generically a 3-dimensional linear space does not intersect a model with codi-
mension 4. This is due to numerical imprecision. In Theorem 2, we studied the 2-bit model, and
we saw that the intersection of the Wasserstein ball and the model is either an edge or a vertex.
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M d dim(M) # facets of B avg # feasible probs.
(2, 2) L0 2 6 5.000

(2, 2, 2) L0 3 38 23.734
(2, 3) L0 3 54 30.000
(2, 3) L1 3 18 12.645
(3, 3) L0 4 534 162.307
(3, 3) L1 4 82 40.626
(2, 4) L0 4 282 110.165
(2, 4) L1 4 54 32.223

(23) L1 1 8 4.000
(23) di 1 14 5.182

(22, 2) L1 2 18 8.604
(22, 2) di 2 62 24.618

(32) di 2 62 24.365
(24) L1 1 16 5.000
(24) di 1 30 8.690

Table 5: The number of feasible optimization problems for a uniform sample of 1000 points.

The first row of Table 6 shows that, on a uniform sample of 1000 points in the tetrahedron ∆3, in
roughly 31% of the cases the intersection lies in the interior of an edge. Looking at Figure 4, this
indicates the fraction of volume enclosed between the red surfaces and the edges of ∆3 they cover.

% of opt. solutions of dim(type) = i
M d f -vector 0 1 2 3 4 5 6

(2, 2) L0 (8, 12, 6) 68.6 31.4 0 - - - -
(2, 2, 2) L0 (24, 192, 652, 1062, 848, 306, 38) 0 0 0.1 70.9 27.5 1.5 0

(2, 3) L0 (18, 96, 200, 174, 54) 0 64.1 18.7 17.2 0 - -
(2, 3) L1 (14, 60, 102, 72, 18) 0 76.7 17.4 5.9 0 - -
(3, 3) L0 (36,468,2730,8010,12468,10200,3978,534) 0 0 0.1 58.3 28.2 4.6 8.8
(3, 3) L1 (24, 216, 960, 2298, 3048, 2172, 736, 82) 0 0 0 65.7 27.8 5.1 1.4
(2, 4) L0 (32, 336, 1464, 3042, 3168, 1566, 282) 0 0.1 55.1 14.6 25.8 4.4 0
(2, 4) L1 (20, 144, 486, 846, 774, 342, 54) 0 0 75.3 16.5 8.2 0 0
(23) L1 (6, 12, 8) 0 98.3 1.7 - - - -
(23) di (12, 24, 14) 0.2 96.7 3.1 - - - -

(22, 2) L1 (14,60,102,72,18) 0 0 67.6 27.5 4.9 - -
(22, 2) di (30, 120, 210, 180, 62) 0 0.2 81.9 16.8 1.1 - -

(32) di (30, 120, 210, 180, 62) 0 0.2 83.1 16.0 0.7 - -
(24) L1 (8, 24, 32, 16) 0 0.1 98.3 1.6 - - -
(24) di (20, 60, 70, 30) 0 0 96.9 3.1 - - -

Table 6: Distribution of types among optimal solutions for a uniform sample of 1000 points.

In this article we studied the Wasserstein distance problem for discrete statistical models, with
emphasis on the combinatorics, algebra and geometry of independence models. The theoretical
results we obtained here constitute the foundation for a class of iterative algorithms that can
be applied to larger models. We shall develop such algorithms and their implementation in a
forthcoming project, with a view towards concrete applications of our methods in data science.
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