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Abstract

In the present thesis, we study various instances of many-body systems, both
quantum and classical, adopting an overall geometrical and topological perspective.
Systems with many degrees of freedom can exhibit a great variety of emergent
phenomena, from metastability to dynamical or thermodynamic phase transitions,
and their intricate properties often elude our full understanding. Through careful
inspection of the underlying geometrical structures behind these complex objects,
and using diverse mathematical tools, some of which are borrowed from the field of
Riemannian geometry and topology, we try to characterize their most prominent
aspects.

The first part of this thesis focuses on the field of quantum information, exploring
in particular the notions of entanglement and correlations in discrete quantum
systems, first in pure and then in mixed states. We propose a novel measure of
entanglement for pure quantum states, the entanglement distance, and discuss and
test it using various examples. We then study maximally entangled pure states,
revealing in part their internal structures, using the intuitive notion of correlations
and projective measurements. Doing so, we are able to show simple relations
between pre-measurement correlations and post-measurement expectation values
and provide an upper bound to the persistency of entanglement of such states.
We further demonstrate how the connectivity properties of a paradigmatic model
for quantum computing, the celebrated graph state, can be probed through the
proper use of quantum correlators. Our study is then extended to the framework
of mixed quantum states. We infer from the pure state entanglement distance, the
induced measures of quantum correlations, on the one hand, and of mixed state
entanglement, on the other hand. We emphasize the strengths and limitations of
the latter, in particular the heavy optimization procedure it implies, for which we
propose a workaround. Finally, we investigate the superradiant transition present
in the Tavis–Cummings model and reveal that it is accompanied by a jump in the
quantum correlation and entanglement between the atoms.

In the second part of our work, we tackle two classical models, both possess-
ing ergodicity-breaking and strongly non-linear behaviours. We first present a
comprehensive numerical and analytical investigation of a toy model, which is a
prototypical example of a long-range interacting, strongly non-additive model: the
Hamiltonian Mean Field (HMF). At low energy in the microcanonical ensemble, a
metastable state may arise, coined as a bicluster. By inspecting the dynamics of a
macroscopic quantity, the magnetization, and by observing the occurrence of two
distinct timescales in the system, we provide a quite intuitive and self-consistent
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scenario accounting for the great stability of biclusters, which sustain themselves
for extensive amounts of time. Finally, we present the results of an extensive
numerical study, applying the topological theory of phase transition to a model
of glass-forming material. Such systems are notoriously difficult to simulate and
equilibrate, because of the very slow dynamics, characteristic of the glass phase,
yielding a tendency to remain stuck in small regions of phase space. Within a
microcanonical framework, a Monte Carlo algorithm was developed, for which
various numerical methods were implemented, such as parallel tempering and
particle swapping. Our results, though preliminary, are encouraging: the heat
capacity is found to exhibit clear peaks for two values of the energy, indicating a
two-step second order transition, in correspondence with topological changes of the
equipotential level sets on which the system is confined. We conclude by a thorough
discussion of our findings, and by a proposition of a promising follow-up research,
that would top off the bridge between our diverse finding: namely, applying the
topological theory to quantum phase transitions, possibly drawing a further link
with the creation of entanglement in these processes.

Keywords: Complex systems, many-body systems, Differential geometry, Emer-
gent phenomena, Metastability, phase transition, Riemannian geometry, Topology,
Non-equilibrium behavior, Strongly non-linear behavior, Hamiltonian Mean Field
(HMF), Microcanonical ensemble, Bicluster, Topological theory of phase transition,
Glass-forming material, Monte Carlo algorithm, Parallel tempering, Heat capacity,
Equipotential level sets, Quantum information, Pure states, Mixed states, Entan-
glement, Fubini-Study metric, state space, Projective measurements, Maximally
entangled pure states, Superradiant transition, Tavis-Cummings model, Quan-
tum computing, Connectivity, Persistency of entanglement, Correlators, Quantum
correlations, Curvature
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Introduction

The study of many-body systems, as it ultimately tackles our daily experience of
reality, constitutes one of the most important aspects of modern physics. Statistical
physics and complex systems draw the link between our ever-increasing knowledge
of fundamental physics and the observation of emergent behaviour, ubiquitous in
nature. Indeed, from the intricate interplay and interactions among the many
constituents of physical systems emerge phenomena that do not find any counterpart
in individual dynamics, such as self-organization, pattern formation, synchronization
and phase transitions.

Evidently, owing to the computational inaccessibility of their microscopic dynam-
ics, the study of many-body systems requires the use of elaborate mathematical
tools. Within this framework, and despite its numerous limitations, the conven-
tional methodology of statistical physics, which is devoted to the study of systems
at thermodynamic equilibrium, holds a position of utmost significance. One of
its prominent features, of great interest to us, is the state space representation
of the evolution of a system; it considers the state of the system as a point in
a 6N -dimensional space, rather than a collection of 2N vectors describing the
position and momenta of the N individual particles that it contains. This elegant
viewpoint allows, in particular, the interpretation of constraints such as conserva-
tion of macroscopic quantities as a loss of dimensionality of the accessible state
space. For instance, Hamiltonian systems, in which energy is conserved, evolve on
6N − 1-dimensional hypersurfaces embedded in the global 6N -dimensional state
space.

It has been shown in pioneer works [1] that the geometric properties of these
accessible hypersurfaces, envisioned as Riemannian manifolds, can account for
many phenomena such as Hamiltonian chaos, phase transitions, and metastability.

In this thesis, we thus adopt an overall geometrical and topological perspective
to explore the structure of state space in both quantum and classical systems.

The Part I of this thesis focuses on the field of quantum information, and
specifically on the characterization of entanglement and quantum correlations,
leaning on the equivalence between classes of states, that can be encoded in the
construction of projective spaces.

Quantum entanglement is one of the most prominent nonclassical properties
that a quantum system can exhibit. While relatively well understood in the simple
case of bipartite pure states, its characterization in the general case of mixed,
multipartite states remains an open problem. Deciding whether a multipartite
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state is separable, exploring its network-like correlation structure, or asserting
its k-separability are very difficult tasks that are of critical importance in the
development of quantum technologies. We develop a novel measure of entanglement
in pure quantum states using the metric of a projective Hilbert space. Remarking
that quantum states can be seen as statistical distributions, we attempt to deepen
our understanding of entanglement structures by applying the intuitive notion of
correlations and projective measurements to maximally entangled states. In this
spirit, we demonstrate how the connectivity properties of a paradigmatic model
for quantum computing, the celebrated graph state, can be probed through the
proper use of quantum correlators. We then infer from the entanglement distance
a measure of quantum correlations, and a measure of mixed state entanglement.
We emphasize the strengths and limitations of the latter, in particular the heavy
optimization procedure on which it relies, and for which we propose a workaround.
Finally, we investigate the superradiant transition present in the Tavis–Cummings
model and reveal that it is accompanied by a jump in the quantum correlation and
entanglement between the atoms.

In Part II, we tackle with classical systems, employing a dynamical perspective
by considering the properties of the Hamiltonian flow and of the space on which it
evolves. More specifically, claiming that all of the information is contained in the
potential function, we study its behaviour and the landscape it shapes, depending
on the constraints and parameters of the model. The two classical models we
studied both present ergodicity-breaking, strongly non-linear behaviours. We first
present a comprehensive numerical and analytical investigation of a toy model,
which is a prototypical example of a long-range interacting, strongly non-additive
model: the Hamiltonian Mean Field (HMF). At low energy in the microcanonical
ensemble, a metastable state may arise, coined as a bicluster. By inspecting the
dynamics of a macroscopic quantity, the magnetization, and by observing the
occurrence of two distinct timescales in the system, we provide a quite intuitive
and self-consistent scenario accounting for the great stability of biclusters, which
sustain themselves for extensive amounts of time. In a second chapter, we present
the results of an extensive numerical study, with the aim of applying the topological
theory of phase transition to a model of glass-forming material. Such systems are
notoriously difficult to simulate and equilibrate, because of the very slow dynamics
of the glassy phase and their tendency to remain stuck in small regions of phase
space. Within a microcanonical framework, a Monte Carlo algorithm was devel-
oped, for which various numerical methods were implemented, such as parallel
tempering and particle swapping algorithms. Our results, though preliminary, are
encouraging: the heat capacity is found to exhibit clear peaks for two values of
energy, in correspondence with topological changes of the equipotential level sets
on which the system is confined.

Through the combination of our work on quantum states and their statistical
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properties and that on the topological theory of phase transitions, we aim to
provide tools that allow the study of quantum phase transitions from this double
perspective. As we exemplify in the case of the Tavis-Cummings model, quantum
phase transitions may be accompanied by a jump of entanglement, which can
thus be considered an order parameter in this context. Further study of the
topological properties of the accessible state space of the associated quantum
dynamics might improve our understanding of these phenomena and open new
research perspectives.
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Part I.

Quantum correlations and
entanglement
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Introduction of part I

The concept of entanglement emerged in the first half of the 20th century from the
seminal article of A. Einstein, B. Podolsky, and N. Rosen (EPR), who first pointed
out the existence of this seemingly paradoxical type of correlation naturally arises
from quantum theory [2], soon follow by E. Schrödinger [3, 4].

Today widely considered as an essential aspect of the quantum realm, it was
at the time deemed by many to be a paradox, because it implies instantaneous
action at a distance, thus breaking the causal principle. Baptized EPR paradox in
reference to the latter authors, it was thought by them to be an indication of the
incompleteness of the theory; EPR postulated that a more fundamental theory, yet
to be discovered, should be at the root of the quantum formalism, namely, a hidden
variable theory. In other words, the indetermination of the properties of quantum
objects would be a mere consequence of our ignorance of deeper deterministic
phenomena [5].

Later on, J. Bell formulated a set of inequalities that should be fulfilled by any
local realistic hidden variable theory [6], and further showed that they theoretically
can be violated in a quantum mechanical framework.

Finally, A. Aspect proposed [7] and performed [8] a series of experiments, defini-
tively proving the Bell’s inequalities were indeed violated by some quantum systems.

It is worth noting that causality is nevertheless preserved, as no information can
be sent instantaneously using entanglement alone, due to the no-communication
theorem [9].

Entanglement and quantum correlations play an essential role in quantum
information theory and in the development of the quantum technologies. It stems as
the key resource at the foundation of the promising fields of quantum cryptography,
quantum computation, quantum teleportation, quantum batteries and quantum
metrology [10, 11, 12]. To fully exploit the quantum advantages of the involved
systems, a full and detailed quantification of entanglement is required [13].

However, despite its importance, entanglement remains an elusive and challenging
concept, and the problem of its quantification in the most general case is still open
[14, 15].

Over the past few decades, several approaches and an extensive literature have
been developed address the problem of measuring and characterizing entanglement
for the wide variety of quantum states . However, the rigorous achievements in the
explicit quantification of entanglement are mostly limited to the case of bipartite
systems [13], and a computationally affordable measure valid in the most general
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case is still lacking, up to our best knowledge.
Entropy of entanglement is widely accepted as the paradigmatic measure of

entanglement for pure states of bipartite systems [16, 17], while entanglement
of formation [18], entanglement distillation [19, 20, 21] and relative entropy of
entanglement [22] are widely acknowledged as faithful measures for bipartite mixed
systems [23].

A vast body of literature is further devoted to the study of entanglement in
multipartite systems. Over time, different approaches have been proposed including,
e.g. in the case of pure states, the study of the equivalence classes in the set of
multipartite entangled states [24, 25], whereas, the study of entanglement in mixed
multipartite states have been addressed, e.g., with a Schmidt measure [26] or with
a generalization of the Concurrence [27, 28].

In the last years, have been proposed entanglement estimation-oriented ap-
proaches and derived from a statistical distance [29] concept, as, for instance, the
quantum Fisher information [30, 31, 32, 33].

In this first Part, we will address a number of these issues, resorting to a
abstract geometric framework and to somewhat more intuitive notions such as
correlators and expectation values, while drawing links between these mathematical
concepts. We start in Chapter 1 by introducing the general framework of multi-
qubit quantum states, recalling the concepts of pure and mixed quantum states,
and the various formulations that can be employed to describe them; we further
discuss and recall the definition of quantum entanglement and quantum correlations,
and the requirements that should be met by a measure of these properties. In
Chapter 2, we focus on the characterization of entanglement in pure states of many
qubits, introducing the Entanglement Distance, a novel entanglement measure,
and by further exploring correlations patterns and their implications in maximally
entangled cases. In Chapter 3, we expand our analysis to mixed states, adapting
the entanglement distance to define both a measure of quantum correlations, the
Quantum Correlation Distance, and an extension of the Entanglement Distance
to entanglement for mixed states. Chapter 4 is devoted to the study, through
the computation of correlators, of the connectivity properties of Graph States, a
particular instance of quantum states useful to quantum computation. Finally,
in Chapter 5, we study the superradiant phase transition exhibited by the Tavis-
Cummings model, applying the Quantum Correlation Distance and entanglement
criteria to show that it is accompanied by a Quantum Correlation transition, and
that entanglement is most likely extensive at the critical crossing point.

Chapters 2 and 3 mainly depict the work we published in [34, 35, 36], while
Chapter 4 refers to [37] and Chapter 5 to [38].
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1. Preliminary statements
Notoriously, Pierre-Simon de Laplace, one of the founding fathers of probability
theory, believed in absolute determinism. In the introduction of his book on
probability theory [39], he thus wrote:

“La probabilité est relative en partie à [notre] ignorance, en partie à nos
connaissances.”1

That is, randomness is to be understood as the mere result of our lack of knowledge
of some links in a causal chain, i.e. of the exact initial conditions of the considered
system.

Quantum theory, at least in its standard interpretation, contradicts this point of
view. The EPR paradox [2], mentioned in Section I, is in fact representative of this
contradiction: during the dawn of quantum mechanics, many scientists, amongst
which EPR, were very strong advocates of Laplace’s deterministic worldview, hence
the century-old dispute about the essence of quantum indetermination.

In the following, we call classical the probabilities and indetermination due to
the incompleteness of the available information, that is Laplace’s definition of
probability; conversely, we call quantum the probabilities that are quantum in
nature and, according to the standard interpretation of quantum mechanics, due
to an essential indetermination.

The most general quantum systems contain, of course, both.
Yet, our understanding of the quantum realm can benefit greatly from the study

of pure quantum states, that is, states that contain only quantum indetermination;
as unrealistic as it may be, this a theoretical framework sometimes allows to isolate,
to some extent, the “truly” quantum phenomena at stake.

In contrast with pure states, mixed states, other than quantum indetermination,
hold classical uncertainty, and stem as the formal expression of our incomplete
knowledge of the state of the system.

1.1. Two-level quantum systems: generalities and
notations

Throughout this thesis, we focus on two-level quantum systems, called qubits in
the language of quantum information theory.

1“Probability is relative in part to our ignorance, in part to our knowledge.”
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1. Preliminary statements

Qubits, being the simplest possible quantum systems, constitute the preferred
basic unit in the field of quantum information. Owing to their binary nature, they
are simpler to understand and manipulate than higher dimensional systems, and
further allow ease of comparison of computing powers of quantum computers and
classical computers.

The most obvious examples of qubits are spin-1
2 particles and photon polarization

states; they can, however, be experimentally implemented using a great variety of
physical supports, e.g. superconducting qubits, such as Cooper boxes or Transmon
qubits [40, 41, 42, 43, 44, 45]. Note, however, that the latter, like most qubit
realizations intended as building blocks of quantum computers, constitute in fact
many-level systems, for which the energy gap between the first and second excited
state is large enough to approximate them as two-level systems.

Formally, a qubit µ is described in a 2-dimensional complex Hilbert space that
we denote Hµ, spanned by the basis state vectors |0⟩ , |1⟩.

The set of all observables acting on Hµ is spanned by σµk , with k = x, y, z the
Pauli matrices acting on qubit µ. We denote σµ =

(︂
σµx , σ

µ
y , σ

µ
z

)︂
the Pauli vector

acting on µ, and σµv = vµ · σµ = ∑︁
k=x,y,z

vµkσ
µ
k the Pauli observable acting on µ

oriented in the direction vµ. We call Pauli observable any operator that can be
written as a tensor product of Pauli matrices, i.e. tensor products of 2× 2 traceless
hermitian matrices.

Given set Q of M qubits, and any operator, vector or subspace Aµ, we will
hereafter abbreviate ⨂︁

ν∈Q
Aν = AQ. Identity operators Iµ will be implicit from now

on.
The order in which tensor products are shown is irrelevant: we simply keep track

of the subsystems operators apply on, by using our superscript notation. If the
algebra is to be made explicit, one can simply choose a conventional ordering of
the subsystems, and then reorder every tensor products using these superscripts.

We occasionally drop the superscript µ when we clearly refer to single-qubit
systems.

In the following, all of the vectors denoted by a lower-case bold letter belong to
R3, and are in general distinct from each other, if their indices do not match.

The state of any single qubit µ is fully described by a 2 × 2 density matrix,
conventionally denoted ρ, which is simply an operator acting on Hµ. This corre-
sponds to a set of two complex numbers, hence four real numbers, along with the
constraint coming from the hermiticity of ρ: a qubit can therefore be represented
in a 3-dimensional space.

A pure state can also be expressed as a unit vector |s⟩ such that ρ = |s⟩ ⟨s|.
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1. Preliminary statements

More precisely, a generic single-qubit density matrix writes

ρ = 1
2

(︄
1 + nz nx − iny
nx + iny 1− nz

)︄
= 1

2 (I + n · σ) , (1.1)

where |n| ≤ 1, owing to the fact that physically meaningful density matrices are
positive semi-definite, since their eigenvalues can be interpreted as probability
weights.

This yields a considerable advantage in visualization, as the state of a single
qubit is therefore uniquely determined by n, and can hence be represented as a
point in the unit ball, called in this context the Bloch ball.
|n| = 1, i.e. the state belongs to the Bloch sphere, if and only if the considered

qubit is in a pure state. The outcome of a measurement along the n direction (and
only along this direction) is then 1 with certainty.

Pure quantum states are indeed, by definition, states of which we have complete
knowledge. Their indetermination, i.e. the uncertainty of some measurement
outcomes, thus solely arises from their quantum nature.

The purity of a state is defined as

P (ρ) = Tr
[︂
ρ2
]︂

=
∑︂
k

p2
k, (1.2)

where {pk}k is the set of eigenvalues of ρ. It accounts for the degree of mixedness,
as its value ranges from 1, in the case of a pure state, to 1/2M in the case of the
maximally mixed state I/2M .

The von Neumann entropy [46, 47]

S(ρ) = −Tr [ρ log (ρ)] = −
∑︂
k

pk log (pk) , (1.3)

can also be interpreted as another measure of mixedness, as can be seen by the
similarity of Eqs. (1.2) and (1.3). In fact, the linear entropy, derived considering
the first term of the Mercator series, can be expressed as a function of the purity

SL(ρ) = −Tr [ρ (ρ− 1)] = 1− P (ρ). (1.4)

Remark. Pure quantum states are nothing but a theoretical idealization, as it
is impossible to perfectly reconstruct such states from experimental data, using
quantum state tomography. This is due to the fact that, if a state lies on the Bloch
sphere, there exists a measurement axis for which the outcome is +1 with probability
1, and −1 with probability 0; yet, it is in principle impossible to determine that a
given outcome is certain (or impossible) given a finite statistical sample.

In other words, experimentalists should never be able to determine that a quantum
state is pure, because frequency equates probability only if the statistical sample is
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1. Preliminary statements

infinite.

The most general situation can be described as follows: a quantum apparatus
generates quantum states |k⟩, with some associated probability weights pk, account-
ing for the imperfect knowledge we have of the underlying process. The whole
statistics is then described by a mixed state, formally expressed through a density
matrix ρ, including both quantum and classical uncertainties. It consists of a linear
combination of the form

ρ =
∑︂
k

pk |k⟩ ⟨k| , (1.5)

where the |k⟩ are normalized quantum pure state, and the pk are probability weights,
such that ∀k, 0 ≤ pk ≤ 1 and ∑︁k pk = 1.

Hereafter, we call such sets of couples {pk, |k⟩}k realizations or decompositions
of ρ. Interestingly, the realization of a given ρ is not unique, and there actually
exist an infinite number of such ways to produce a given ρ. In other words, there
exists an infinite number of distinct apparatuses generating a given statistics.

As a prototypical example of this ambiguity, consider an even-weighted mixture
of the two Bell states |ψ±⟩ = 1√

2 (|00⟩ ± |11⟩); it is easy to verify that

1
2 (|ψ+⟩ ⟨ψ+|+ |ψ−⟩ ⟨ψ−|) = 1

2 (|00⟩ ⟨00|+ |11⟩ ⟨11|) . (1.6)

This emphasizes how a quantum apparatus that produces, with some classical
uncertainty, an entangled state or another, may yet yield statistics equivalent to
that of an apparatus that produces product states. It results that the entanglement
of a mixed state cannot be simply defined as the sum of the entanglement of the
pure states composing it.

While this ambiguity may seem rather counter-intuitive, it is in fact a reminder
that quantum theory is, over all, a theory of measurements, and that density
matrices ρ are in fact the quantum equivalent of statistical distributions, not
describing reality as it is, but rather as we experiment it; from this point of view, it
appears on the contrary quite natural to identify as completely equivalent, states
that yields the exact same statistical properties.

One could naively argue that since, in reality, there exists only pure states, in
some sense mixed states should not be essential to quantum theory, and that the
statistical ambiguity they highlight emphasizes its incompleteness. Yet, on the
contrary, the concept of mixed states is an essential ingredient of the quantum
formalism, as they encompass, with the maximal attainable precision, the reality
accessible to experiments.

Indeed, whereas in a classical world, the “true state” of the system (i.e. the
pure state it is actually in) can always be distinguished by performing appropriate
measurements, this does not hold in the quantum world: as measurements processes
generally modify the state and henceforth destroy part of the information, and

19
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no single measurement can allow to retrieve a complete information on quantum
states, the ”true state“ cannot be known entirely.

The only available method to study quantum states is to perform the experiment
many times, performing series of measurements on many instances of ρ. The
statistical analysis of the outcomes is called quantum tomography, and allows to
retrieve ρ within a given precision [48, 49, 50, 51].

This fact participate to the great difficulties encountered in experiments and
applications involving entangled states: the mixture, practically almost unavoidable,
tends to diminish or even erase the incidence of quantumness on measurements
(that can for instance take the form of a violation of Bell’s inequalities or quantum
speedup for tasks ).

It is sometimes useful to write general mixed states of M qubits in terms of Pauli
matrices (see e.g. [52] or appendix A of [45])

ρ = 1
2M

⎛⎝I +
∑︂
µ

∑︂
i=1,2,3

nµi σ
µ
i +

∑︂
µ,ν

∑︂
i,j=1,2,3

tµνij σ
µ
i σ

ν
j +

∑︂
µ,ν

∑︂
i,j,k=1,2,3

tµνηijk σ
µ
i σ

ν
j σ

η
k + · · ·

⎞⎠ .
(1.7)

Notice that the tensors nµ, tµν , tµνη simply correspond to the expectation values
of spin observable combinations, i.e.

nµi = ⟨σµi ⟩ρ = Tr [ρσµi ]
tµνij =

⟨︂
σµi σ

ν
j

⟩︂
ρ

= Tr
[︂
ρσµi σ

ν
j

]︂
tµνηijk =

⟨︂
σµi σ

ν
j σ

η
k

⟩︂
ρ

= Tr
[︂
ρσµi σ

ν
j σ

η
k

]︂
· · · ,

(1.8)

hence obey the constraint |nµ|, |tµν |, |tµνη|, · · · ≤ 1. This particular formulation
of density matrices highlights the fact that they stem as quantum statistical
distributions, that can be written as the mere sum of their moments. Furthermore,
it evidentiates how all operations that can be performed on ρ can be reduced to
operations on Pauli matrices; recalling that the Pauli matrices are traceless, and
that ∀i, j = x, y, z, and ∀µ, ν ∈ Q, we have σµi σνj = δijδµν , this formulation greatly
simplifies some computations.

In Appendix A, we provide an example depicting how, using formulation (1.7)
to analyse the statistics of a (simple) mixed state, equivalent realizations such as
(1.6) can be retrieved.
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1.2. Entanglement and quantum correlations

1.2.1. Definitions
Definition 1. A pure state |ψ⟩ is said to be separable in µ if and only if it can be
expressed as a tensor product

|ψ⟩ = |ψµ⟩ ⊗ |ψµc⟩ , (1.9)

where µc is the complement of µ on the set Q of all qubits in the system. We can
also say that µ is disentangled from µc. Conversely, a state which can’t be written
in the form (1.9) is said to be entangled in µ.

The reduced density matrix describing the state of a qubit µ is found by discarding
the rest of the system, namely

ρµ = Trµc [|ψ⟩ ⟨ψ|] = 1
2 (Iµ + nµ · σµ) , (1.10)

where Trµc [·] is the partial trace over µc.

It is clear that, if Eq. (1.9) holds, we have ρµ = |ψµ⟩ ⟨ψµ| : the reduced state of
a disentangled qubit is pure.

This also means that no information on µ is lost by discarding the rest of the
system, i.e. S(ρµ) = 0, and |nµ| = 1. On the contrary, if µ is entangled with µc, ρµ
is a mixed state, and there is some information loss, i.e. S(ρµ) > 0, and |nµ| < 1.

Thus S(ρµ), called in this context entropy of entanglement, stems as a valid
measure of bipartite entanglement on pure states. It possesses, in contrast with
P (ρµ), the desirable property of yielding the same value if computed on ρµ or on
ρµ

c .

Proposition 1.2.1. Given a multiqubit pure state |ψ⟩, the following propositions
are equivalent:

• µ is disentangled from the rest of the system.

• S(ρµ) = 0

• P (ρµ) = 1

• ∃!nµ such that ⟨ψ|σµn |ψ⟩ = 1.

• The reduced state of µ can be represented as a point on the Bloch sphere, i.e.
∃!nµ such that ρµ = (I + nµ · σ) /2, where |n| = 1.

On the other hand, while an entangled qubit µ might possess a unique axis
maximizing the probability of a given outcome, this probability is always lesser
than one.
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Proposition 1.2.2. Given a multiqubit pure state |ψ⟩, the following propositions
are equivalent:

• µ is maximally entangled with the rest of the system.

• S(ρµ) = log(2)

• P (ρµ) = 1/2

• ∀nµ, ⟨ψ|σµn |ψ⟩ = 0.

• The reduced state of µ is the maximally mixed state ρµ = I/2.

The only type of quantum correlation (QC) that a pure state can exhibit is
entanglement. Therefore, a measure of QC is also a measure of entanglement for
pure states.

On the contrary, in the case of mixed states, one can observe QC distinct from
entanglement [53, 23], notably measured by quantum discord.

Let us recall the definitions for the various degrees of QCs[23].

Definition 2. Let ρAB ∈ HAB be a state of a bipartite system, associated with
the Hilbert space HAB = HA ⊗HB. The sets of product states PA, of separable
states SA and of classical states CA, with respect to the system A, are then defined
as follows:

PA :=
{︂
ρAB

⃓⃓⃓
ρAB = ρA ⊗ ρB

}︂
= PB (1.11)

CA :=
{︄
ρAB

⃓⃓⃓
ρAB =

∑︂
k

pk |k⟩ ⟨k|A ⊗ ρBk

}︄
̸= CB (1.12)

SA :=
{︄
ρAB

⃓⃓⃓
ρAB =

∑︂
k

pkρ
A
k ⊗ ρBk

}︄
= SB, (1.13)

where we conventionally denote {|k⟩A}k a set of states forming an orthonormal basis
in HA, while {ρAk }k do not necessarily form an orthonormal basis, nor necessarily
consist of pure states.

Less formally, PA is the set of states for which there is no correlation (quantum
of classical) between A and B; CA is the set of states for which there is no QC
with respect to the subsystem A; SA is the set of states for which there is no
entanglement between A and B.

We have PA ⊂ CA ⊂ SA.
Furthermore, in any Hilbert space H = ⨂︁

µHµ, where the Hµ are irreducible, the
set of genuine product states can be defined as P = ⋂︁

µPµ, the set of fully separable
states as S = ⋂︁

µ Sµ, and the set of fully classical states (also called pointer states)
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as C = ⋂︁
A CA.

If ρ ∈ SA \CA, the subsystem A exhibits a kind of QC not linked to entanglement
that we call quantum dissonance. This particular notion is an expression of the fact
that distinct quantum states, at variance with classical states, are not necessarily
orthogonal, that is, mutually exclusive; on the contrary, the former can overlap.

1.2.2. Quantum operations
CPTP maps

The most general quantum operations (also called quantum channels) can be seen
as a map M : ρ −→ ρ′ = ∑︁

kMk [ρ], where each Mk is a trace non-increasing (i.e.
subnormalized), completely positive map; they sum up to a completely positive
trace preserving map (CPTP) M = ∑︁

kMk. That is to say that a quantum
operation must map density operators (positive semi-definite operators of trace
unity) to density operators, although not necessarily defined on the same Hilbert
space (as the addition or dismissal of new subsystems is a valid quantum operation).
The Mk can be thought of as corresponding to specific measurement outcomes k,
of probability

pk = Tr [Mk [ρ]] (1.14)
and with resulting post-measurement state

ρk =Mk [ρ] /pk. (1.15)

The dual of M is normalized, that is ∑︁kM∗
k[I] = I. This is because we require it

to be complete as a measurement, i.e.

∀ρ,
∑︂
k

Tr [Mk [ρ]] =
∑︂
k

pk = 1

=
∑︂
k

Tr [Mk [ρ] I] =
∑︂
k

Tr [ρM∗
k [I]]

= Tr
[︄
ρ
∑︂
k

M∗
k [I]

]︄ (1.16)

The M∗
k[I] thus form a positive operator valued measure (POVM). In contrast,

since M does not necessarily map an orthonormal basis into another, it does not
have to be normalized, i.e. we can have∑︂

k

Mk [I] ̸= I. (1.17)

In general, the subnormalized completely positive maps can be written in matrix
form as Mk [ρ] = MkρM

†
k . To a given POVM correspond infinitely many different

23
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CPTP maps.
Now, to better understand the above statements as to normalization conditions,

consider the case of generalized measurements, i.e. Mk = |k̃⟩ ⟨k|. Clearly, Eq. (1.16)
implies that the set {|k⟩}k forms an orthonormal basis, to translate the fact that,
as a measurement, M must always yield an outcome, i.e. M[ρ] ̸= 0; this amount
to satisfy Eq. (1.16). On the other hand, no condition is imposed on the |k̃⟩: a
general quantum operation may very well transform any ρ into a classical state (in
which case {|k̃⟩}k forms an orthonormal basis), or to a pure state (all the |k̃⟩ are
identical), or even generate quantum correlated states (in which case the |k̃⟩ are not
orthonormal). It is also possible to have a quantum channel with Mk = √qk |k̃⟩ ⟨k|,
where qk is the probability of performing this specific suboperation; with CPTP
of the latter form, we can for instance write decohering channels, that is channels
that decrease the purity of ρ.

Von Neumann Measurement

Formally, von Neumann measurement, also called projective measurements, are
simply instances of CPTP maps, fulfilling the supplementary constraintsMkMl =
δklMk, i.e. they are orthogonal projectors; furthermore, they are of rank 1.

Unitary Operations

A unitary operation is a particular instance of CPTP map, that can be interpreted
as a rotation, and expressed as a matrix U such that UU † = I. Thus, their general
form is

U(ξ,v) = e−iv·Gξ, (1.18)
where ξ ∈ R, v is a unit vector, and G is the generator of the transformation. In
the case of a system of qubits, G = ⨂︁

µ∈R⊆Q σµ, and v is of dimension 3|R|.

Local and Unilocal Operations

In general, a quantum operation is said to be local if it can be written as products
of operations acting on a single subsystem, i.e. M = ⨂︁

µ Mµ. It is said to be
unilocal if it consists of a product of identity operators on all subsystems but one,
i.e. M = Mµ⨂︁

ν ̸=µ I. Note the analogy between the structure of local operators,
defined as products of single qubit operators, and product states, defined as prod-
ucts of single qubit states; in fact, non-local operations are sometimes referred to
as entangling operations.

In particular, local unitary (LU) operations, are products of unilocal unitaries,
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i.e. of the form U = ⨂︁
µ∈Q U

µ(ξµ,vµ), with

Uµ(ξµ,vµ) = e−iσµ
v ξ

µ

, (1.19)

where ξµ ∈ R, and vµ is an arbitrary unit vectors of dimension 3.

1.2.3. Measures of entanglement
Vidal proposed, in a seminal work [54], that a reasonable measure of entanglement
should be an entanglement monotone, that is

Condition 1. A magnitude E(ρ) is an entanglement monotone if it does not
increase, in average, under local operations and classical communications (LOCC).

LOCC, i.e. the set of all operations that cannot generate entanglement, can
simply be defined as the set of all local CPTP operations.

This condition quite naturally arises from the mere definition of entanglement,
as a type of correlation that cannot be generated by classical operations alone. It
results that any operation that can be classically performed, possibly generating
classical correlation, should not increase entanglement, and the behaviour of a
measure entanglement should reflect this fact.

Indeed, it is clear that local operations (such as local measurements, LU opera-
tions, the addition or dismissal of a local subsystem) cannot create entanglement,
as they can always be decomposed into successive single qubit operations. On the
other hand, classical communication evidently cannot create entanglement either.

Another requirement often encountered in the literature is the following

Condition 2. If ρ ∈ S, then E(ρ) = 0, i.e. an entanglement measure vanishes on
the set of separable states.

Yet this condition amounts to a mere rescaling, as was noted in [17, 54]. In fact,
by construction, LOCC is the set of free operation relative to entanglement; it
results that any separable state can be transformed into any other by the means of
LOCC alone. The definition 1 therefore implies that E(ρ) take a constant value E0
for any such states. The requirement that E should vanish for separable states can
thus trivially be met by any LOCC monotone, simply by subtracting this constant
term.

The reciprocal statement, that E(ρ) should vanish only on separable states, is a
much stronger one, and arguably too restrictive in the case of mixed states. Indeed,
it has been shown that the problem of deciding whether an arbitrary density matrix
is separable or not is NP-hard [55]. Nevertheless, it can be met much more easily
for pure state measures, as we will show in the case of the ED.
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A variety of references have proposed sets of necessary conditions for a magnitude
E to be an entanglement monotone [17, 22, 54]. Most of them are perfectly
equivalent, and amount to the dissection of 1 into simpler and more practically
tractable properties.

We now recall a set of necessary and sufficient conditions for a measure E to be
an entanglement monotone, in the sense of Definition 1, drawn from [54]

E1 E is convex: let {pk, ρk} be a realization of ρ in terms of pure states, then

E
(︄∑︂

k

pkρk

)︄
≤
∑︂
k

pkE(ρk) (1.20)

E2 E is monotonically decreasing in average, under unilocal quantum operations:
let {Lµk(·)}k be a complete set of unilocal quantum operation performed on
subsystem µ; then

E(ρ) ≥
∑︂
k

Lµk(ρ) (1.21)

The problem remains to fully characterize unilocal quantum operations. Condi-
tion E2 can be decomposed as follows [54]:

E2.1 E is monotonically decreasing, in average, under unilocal unitary operations

E2.2 E is monotonically decreasing, in average, under unilocal von Neumann
measurements

E2.3 E is monotonically decreasing, in average, under addition of an ancilla (i.e.
tensor product with a new subsystem)

E2.4 E is monotonically decreasing, in average, under dismissal of an ancilla (i.e.
partial trace over a subsystem)

The following is equivalent to Conditions E1 and E2, and present the advantage
of specifically addressing measures defined on pure states [54]

F A function Eµ(|ψ⟩) that can be expressed as Eµ(|ψ⟩) = f(Trµ(ψ)), where f(ρ)
is concave and LU-invariant, is an entanglement monotone for pure states. In
addition, the related mixed state measure obtained from Eµ by convex roof
extension is a LOCC-monotone on average, i.e. an entanglement monotone.

1.2.4. Measures of quantum correlations
Following [23] the requirements for a one-sided measure of QCs QA are the following

C1 QA(ρAB) = 0 if ρ ∈ CA.

C2 QA(UAρABU †
A) = QA(ρAB), where UA is a LU operation on A.
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C3 QA(|ψ⟩ ⟨ψ|) = EA(|ψ⟩)

C4 QA(IA ⊗ ΛCPTP
B [ρAB]) ≤ QA(ρAB), where ΛCPTP

B is CPTP map on B.

Note that measures of QCs should not be concave nor convex. Indeed, the mixing
of two maximally entangled pure states can result in a classical state2, and the
mixing of two non-entangled pure states can give rise to QCs 3.

For a comprehensive review on QCs and measures of QCs, we refer the reader to
[23].

2See, for instance, Eq. (1.6).
3For instance, the mixing of two non orthogonal pure product state result in a quantum-correlated

state: x |00⟩ ⟨00|+ (1− x) |++⟩ ⟨++|.
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In this chapter, we study entanglement and correlations in pure quantum states of
many qubits.

In Section 2.1, we develop the construction of the Fubini-Study metric, natural
feature of the space of physical quantum states defined on a projective Hilbert
space. Section 2.2 depicts how this metric can be redefined by extending this
projection to a stronger invariance requirement, hereby generating a measure of
entanglement of pure states, the Entanglement Distance; these findings are drawn
from the work published a few years back by our research group, in [56]. A proof
of its monotonicity is then provided, relations to other quantities are discussed,
and examples of applications are provided; the latter are original results we issued
in [35]. Finally, Section 2.3 outlines our most recent contribution [36], where we
explore the links between quantum correlators, expectation values and projective
measurement processes, providing tools to investigate k-separability and persistency
of entanglement in maximally entangled pure states, along with a procedure to find
optimal entanglement breaking measurements.

2.1. Defining a projective Hilbert space: the
Fubini-Study metric

Quantum mechanics can be understood as a geometric theory; in particular, the set
of all quantum states forms a Riemannian manifold, thus endowed with a metric
structure.

Hilbert spaces are indeed equipped with a Hermitian scalar product that naturally
induces a distance between vectors. If H denotes a Hilbert space of a general
quantum system, for given two close vectors in H, |ψ1⟩ and |ψ2⟩, from the scalar
product ⟨ψ1|ψ2⟩, one derives the norm || and the (finite) distance between these
two vectors as

D(|ψ1⟩, |ψ2⟩) = ||ψ1⟩ − |ψ2⟩| = ⟨∆ψ|∆ψ⟩1/2 , (2.1)
where |∆ψ⟩ = |ψ1⟩ − |ψ2⟩. In the case of two normalized vectors |ψ1⟩ and |ψ2⟩, it
results

D(|ψ1⟩, |ψ2⟩) = [2 (1− Re(⟨ψ1|ψ2⟩))]1/2 . (2.2)
Furthermore, because Hilbert spaces are differentiable manifolds, it is possible, for
any given state, to define a local chart on its neighbourhood in H. This allows us
to derive the metric tensor induced by the above-defined distance. Let |ψ⟩ and
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|ψ⟩ + |dψ⟩ be two arbitrarily close vectors. The squared infinitesimal distance
between them writes

d2(|ψ⟩+ |dψ⟩, |ψ⟩) = ⟨dψ|dψ⟩ . (2.3)
By means of a local chart, the normalized vectors in H admit a smooth parametriza-
tion governed by a N -dimensional variable ξ ∈ RN and we have

|dψ⟩ =
∑︂
µ

|∂µψ(ξ)⟩dξµ , (2.4)

where with ∂µ(·) := ∂/∂ξµ(·). Thus we have

d2(|ψ⟩+ |dψ⟩, |ψ⟩) =
∑︂
µν

⟨∂µψ|∂νψ⟩dξνdξµ . (2.5)

Though the matrix of elements gµν = ⟨∂µψ|∂νψ⟩ constitutes a valid Riemannian
metric tensor for H, the notion of distance it induces is unfit for the characterization
of physical quantum states. This is because the latter are in fact defined up to
an irrelevant global phase, and thus are not in one-to-one correspondence with
the complex vectors of the Hilbert space. Quantum states are in fact associated
with rays of the Hilbert space, and can be defined through equivalence classes of
normalized vectors |ψ⟩ ∈ H, for the relation ∼

p
on H given by

|ψ⟩ ∼
p
|ϕ⟩ ⇐⇒ |ψ⟩ = eiθ |ϕ⟩ , (2.6)

with θ ∈ R.
Consistently, a physically meaningful metric must be defined so that the distance

between |ψ⟩ and |ψ⟩ + |dψ⟩, and the one between |ψ′⟩ = eiα |ψ⟩ and |ψ′⟩ + |dψ′⟩
must be the same. An appropriate metric tensor for the state-space hence has to be
invariant under gauge transformation |ψ(ξ)⟩ → eiα(ξ)|ψ(ξ)⟩. This is accomplished
with the Fubini-Study metric, which gives the squared distance between two
neighbouring rays

d2
FS(|ψ⟩+ |dψ⟩, |ψ⟩) = ⟨dψ|dψ⟩ − ⟨ψ|dψ⟩⟨dψ |ψ⟩ , (2.7)

from which we derive the metric tensor

gµν = ⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩ . (2.8)

The Fubini-Study metric (2.7) is therefore defined on the finite projective Hilbert-
space PH := H/ ∼

p
[57, 58].

It is worth noting that we can define the square of the finite distance between two
rays [|ϕ1⟩]p, [|ϕ2⟩]p ∈ PH, associated with the normalized states eiα1|ϕ1⟩, eiα2|ϕ2⟩,
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respectively, as follows

D2
FS(|ϕ1⟩, |ϕ2⟩) = (1− |⟨ϕ1|ϕ2⟩|2) , (2.9)

which doesn’t depend on the global phases α1, α2.

2.2. The Entanglement Distance

2.2.1. Construction
Following Ref. [56], we investigate here the deep link between the Riemannian
metric structure associated with a projective Hilbert space and the entanglement
properties of the states of this space. To this end, we consider another projection
on the Hilbert space, and find its metric, adapted from the Fubini-Study metric.
We consider the case of the Hilbert space H = ⨂︁

µ∈Q
Hµ that is, the tensor product

of the Hilbert spaces of a set Q of M qubits.
A measure of entanglement (or of any type of correlation), is invariant under

local unitary (LU) transformations: indeed, the choice of a local basis should not
affect the amount of correlation between subsystems. Thus, given two normalized
vectors |ϕ⟩ , |ψ⟩ ∈ H, we define the following additional equivalence relation between
elements of the projective Hilbert space

[|ϕ⟩]p ∼
LU

[|ψ⟩]p ⇐⇒ |ϕ⟩ = eiα
∏︂
µ∈Q

Uµ |ψ⟩ , (2.10)

with α ∈ R and where, for µ ∈ Q, each Uµ is an arbitrary SU(2) LU operator
acting on the µth qubit.

With this equivalence relation, we define the quotient space PH/∼
LU

. Thus, the
entanglement measure E has to be a function E : PH/∼

LU
→ R+, i.e. a function of

the equivalence classes

[|ψ⟩] =
{︃

[|ϕ⟩]p ∈ PH
⃓⃓⃓⃓

[|ϕ⟩]p ∼
LU

[|ψ⟩]p
}︃
. (2.11)

Any state in [|ψ⟩] has the same degree of entanglement as |ψ⟩.
From now on, we neglect the global phase factor, as it is already discarded by

construction of the Fubini-Study metric. Let us consider the equivalence classes

[|ψ⟩]
LU

=
⎧⎨⎩|U, ψ⟩ =

∏︂
µ∈Q

Uµ |ψ⟩

⎫⎬⎭ , (2.12)

in which each state is parametrized by a set of variables {ξµ, vµ}µ∈Q. [|ψ⟩]
LU

is a
submanifold of H, and we can thus build associated local charts, considering the
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2. Entanglement in pure states

neighbouring states
|dU, ψ⟩ =

∑︂
µ∈Q

dŨ
µ |ψ⟩ , (2.13)

obtained by application of infinitesimal variations of the form

dŨ
µ = −iσµvdξµ (2.14)

which rotates the µth qubit by an infinitesimal angle 2dξµ around the unitary
vector vµ.

By substituting |dU, ψ⟩ in place of |dψ⟩ in Eq. (2.7), we get

d2
F S

(︂
|ψ⟩ , |ψ⟩+ |dU, ψ⟩, {vµ}µ∈Q

)︂
=

∑︂
µν∈Q

gµν
(︂
|ψ⟩ , {vµ}µ∈Q

)︂
dξµdξν . (2.15)

The corresponding projective Fubini-Study metric tensor is

gµν(|ψ⟩ , {vµ}µ∈Q) = ⟨ψ|σµ
v σν

v |ψ⟩ − ⟨ψ|σµ
v |ψ⟩ ⟨ψ|σν

v |ψ⟩ . (2.16)

We shall from now on call the latter entanglement metric (EM), as it contains
information on the entanglement structure of quantum states. Indeed, as will be
discussed in chapter 2.3, the inspection of the block structure of the EM g(|ψ⟩) can
be informative about the k-separability and the persistency of entanglement.

Clearly, the metric tensor gµν(|ψ⟩ , {vµ}µ∈Q) is not uniquely defined for each
|ψ⟩, as it depends on the unit vectors vµ. We thus define the entanglement of
[|ψ⟩], as the minimum of the trace of gµν(|ψ⟩ , {vµ}µ∈Q) taken over all the possible
orientations of the unit vectors vµ. Formally, the induced measure of entanglement,
called entanglement distance (ED), writes

E(|ψ⟩) = inf
{vµ}µ∈Q

Tr(g(|ψ⟩ , {vµ}µ∈Q)) , (2.17)

where the inf operation, insures that the measure (2.17) is independent from the
choice of the operators Uµ, and uniquely defined for each class (2.12). This is a
necessary condition for a well-defined entanglement measure [22].

From Eq. (2.16) we derive

Tr[g(|ψ⟩ , {vµ}µ∈Q)] =
M−1∑︂
µ=0

[︂
1− (vµ · ⟨ψ|σµ |ψ⟩)2

]︂
, (2.18)

that shows that the unit vectors

ṽµ = ±⟨ψ|σµ |ψ⟩ /|⟨ψ|σµ |ψ⟩ | , (2.19)

provide the inf of Tr(g). Therefore, we obtain the following closed-form expression
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2. Entanglement in pure states

for the ED
E(|ψ⟩) = M −

M−1∑︂
µ=0
|⟨ψ|σµ |ψ⟩ |2 . (2.20)

Note that the latter equation can be seen as the sum of the M single-qubit EDs

Eµ(|ψ⟩) = 1− |⟨ψ|σµ |ψ⟩ |2. (2.21)

Eµ(|ψ⟩) is a measure of bipartite entanglement of µ with the rest of the system.

An entanglement monotone for mixed state is then obtained by straightforward
convex roof construction

Eµ(ρ) := min
{pj ,ψj}

∑︂
j

pjEµ(|ψj⟩), (2.22)

where the minimization is carried over all of the possible realizations {pj, ψj} of ρ
as a mixture of pure states.

As shown in our recent publication [35], the ED fulfils condition F, namely

Proposition 2.2.1. The pure state ED defined in (2.21), along with its convex
roof extension to mixed states, is monotonically non-increasing under LOCC, hence
is an entanglement monotone.

Proof. First notice that the single-qubit measure (2.21) can be rewritten

Eµ(|ψ⟩) = 1− | ⟨ψ|σµ |ψ⟩ |2 = 1− |nµ|2, (2.23)

where nµ is the 3 dimensional vector defining the reduced state ρµ obtained by
tracing out the rest of the system µc, as in (1.10). Yet we have

Tr
[︂
(ρµ)2

]︂
= 1

2
(︂
1 + |nµ|2

)︂
, (2.24)

hence

Eµ(|ψ⟩) = 2
(︂
1− Tr

[︂
(Trµc [|ψ⟩ ⟨ψ|])2

]︂)︂
= f(Trµc [ψ]),

(2.25)

with f(x) = 2(1− Tr[x2]).
f inherits the LU-invariance property of the trace. Let us now prove that f

is concave. Consider ρk = 1
2(I + nk · σ), with k = 1, 2, two single-qubit density

matrices, and λ ∈ [0, 1]. We have

f (λρ1 + (1− λ)ρ2) = 1− |λn1 + (1− λ)n2|2 (2.26)
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2. Entanglement in pure states

and
λf(ρ1) + (1− λ)f(ρ2) = 1− λ|n1|2 + (1− λ)|n2|2, (2.27)

and the convexity of the Euclidean squared norm implies

f (λρ1 + (1− λ)ρ2) ≥ λf(ρ1) + (1− λ)f(ρ2), (2.28)

that is f is concave, which completes our proof that Eµ(|ψ⟩) is a valid entanglement
monotone for pure states.

The latter optimization procedure is notoriously hard to achieve, as it requires
to explore a r-dimensional space, r being the rank of ρ, and in practice intractable
for large systems. In fact, we were not able to find in the literature any example of
entanglement measures applicable to mixed states of more than 3 qubits. On the
other hand, criteria exist to assert for the separability of some states, in a boolean
fashion [59, 52, 60].

For this reason, we propose in Section 3.2 an alternative definition for the ED,
relying on an optimization trick.

2.2.2. Relation with other entanglement measures
2.2.2.1. Linear entropy

It is easy to see that the ED (2.21) of a qubit µ is related to the linear entropy (1.4)
of the associated reduced state ρµ = TrµC [|ψ⟩ ⟨ψ|]. Indeed, inserting Eq. (1.10) in
Eq. (1.4), we get

SL(ρµ) = 1− Tr
[︂
(ρµ)2

]︂
= 1− 1

4 Tr
[︂
(I + nµ · σµ)2

]︂
= 1− 1

4 Tr
[︂
(I + |nµ|2I + 2σµ)

]︂
= 1− 1

2
(︂
1 + |nµ|2

)︂
= 1

2
(︂
1− |nµ|2

)︂
= 1

2Eµ(|ψ⟩)

(2.29)

2.2.2.2. Measure of the unitary response

The ED can be derived by a minimum distance principle, if studied in the framework
of the Riemannian geometry of the projective Hilbert space. In fact, according to
Eq. (2.9), the square of the distance between the rays associated with the unit
vectors |ϕ⟩ and σµv |ϕ⟩ = |σµvϕ⟩, is

D2
FS (|ϕ⟩ , |σµvϕ⟩) = 1− | ⟨ϕ|σµvϕ⟩ |2 , (2.30)

therefore
Eµ (|ϕ⟩) = inf

vµ
D2
FS (|ϕ⟩ , |σµvϕ⟩) . (2.31)
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2. Entanglement in pure states

In other words, the single qubit ED can be interpreted as the distance between a
state and its image under the action of the least perturbing observable σµv .

This is consistent with Prop. 1.2.1: a pure state is separable in µ if and only if
it is the eigenstate of eigenvalue ±1 of some σµv or, equivalently, if there exists a
local projective measurement on µ that leaves such a state invariant.

The ED is also quite similar to the stellar mirror entanglement (SME) introduced
in Ref. [61]. The latter turns out to be as a special case of mirror entanglement,
and is given, for a bipartition A−B, by

E∗(|ψ⟩) = inf
W∗

(︂
1− | ⟨ψ|W∗ |ψ⟩ |2

)︂
, (2.32)

where W∗ is a LU operator of the form W∗ = ∑︁dA
j=1 e

i(dA−2j+1)π/dA |ϕj⟩ ⟨ϕj|, dA is
the dimension of the subsystem A and {|ϕj⟩}j=1,...,dA

forms an orthonormal basis
in HA.

Now consider a bipartition µ− µc. It can easily be checked that

E∗
µ(|ψ⟩) = inf

W∗

(︂
1− | ⟨ψ|W∗ |ψ⟩ |2

)︂
= inf

U

(︂
1− | ⟨ψ|Ueiπσ

µ
z /2U † |ψ⟩ |2

)︂
= inf

vµ

(︂
1− | ⟨ψ|σµv |ψ⟩ |2

)︂
= Eµ(|ψ⟩)

(2.33)

2.2.2.3. Concurrence

Let us consider a general M = 2 qubits normalized pure state

|ψ⟩ =
∑︂

j=x,y,z
wj|j⟩ , (2.34)

such that ∑︁j=x,y,z |wj|2 = 1. The concurrence for pure state (2.34) is defined as
[62]

C(|ψ⟩) = |⟨ψ|ψ†⟩| , (2.35)
where |ψ†⟩ = σ0

2 ⊗ σ1
2
∑︁
j=x,y,z w

∗
j |j⟩. By direct computations we get [62]

C(|ψ⟩) = 2|w0w3 − w1w2| . (2.36)

and
E(|ϕ⟩) = 8[w2

0w
2
3 + w2

1w
2
2 −w∗

0w
∗
3w1w2 −w0w3w

∗
1w

∗
2] . (2.37)

Therefore we get the following general result for M = 2 qubits states

1
2E(|ϕ⟩) = [C(|ϕ⟩)]2 . (2.38)

34



2. Entanglement in pure states

This proves that the concurrence for pure states, is a special case of ED, valid for
the case M = 2.

2.2.3. Examples
In this section, we apply our geometric method to investigate the entanglement
properties of three one/multi-parameter families of states. In all the cases, the
degree of entanglement of each state depends on these parameters and, in particular,
they have known the values of the parameters corresponding to maximally entangled
states for each one of the families.

The first is a one-parameter family of states which is related to the Greenberger-
Horne-Zeilinger states [5] since for a suitable choice of the parameter one gets
a Greenberger-Horne-Zeilinger state. We will name the elements of such family
Greenberger-Horne-Zeilinger–like states (GHZLS). The second is a one-parameter
family of states too. This class of states has been introduced by Briegel and
Raussendorf in Ref. [25], for this reason, we name the elements in this family
Briegel-Raussendorf states (BRS). The third is a (M − 1)-parameters family of
states, related to the W states. In particular, we consider a weighted combination
of the M states that compose a W state of M qubits. In this case, the state with
the higher degree of entanglement is known to correspond to the case with the
same weights.

In the following, we consider the standardM -qubit basis {|0 · · · 0⟩ , |0 · · · 01⟩, . . . , |1 · · · 1⟩}
for H, where |0⟩µ (|1⟩µ) denotes the eigenstate of σµ3 with eigenvalue +1 (−1).
Thus, each basis vector is identified by M integers n0, . . . , nM−1 = 0, 1 as |{n}⟩ =
|nM−1 nM−2 n0⟩ . Therefore, we enumerate such basis vectors according to the
binary integers representation |k⟩ = |{nk}⟩, with k = ∑︁M−1

µ=0 nkµ2µ, where nkν is the
ν-th digit of the number k in binary representation and k = 0, . . . , 2M − 1.

2.2.3.1. Greenberger-Horne-Zeilinger–like states

In this section, we consider a one-parameter family of states, the GHZLS, defined
according to

|GHZ, θ⟩M = cos(θ)|0⟩+ sin(θ)|2M − 1⟩ , (2.39)
where 0 ≤ θ ≤ π/2. For θ = 0, π/2 the states are fully separable, whereas for
θ = π/4 the state has the maximum degree of entanglement. In this case, the trace
for the metric tensor (2.16) results

Tr(g) = M − cos2(2θ)
M−1∑︂
ν=0

(vν3 )2 , (2.40)
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2. Entanglement in pure states

and, consistently with (2.19), it is minimized by the values ṽν1 = ṽν2 = 0, ṽν3 = ±1,
for ν = 0 . . . ,M − 1. Therefore, we have

g̃ = sin2(2θ)JM (2.41)

where JM is the M ×M matrix of ones. The ED per qubit for the GHZLS results

E(|GHZ, θ⟩M)/M = sin2(2θ) . (2.42)

2.2.3.2. Briegel Raussendorf states

We denote with Πj
0 = (I + σj3)/2 and Πj

1 = (I − σj3)/2 the projector operators
onto the eigenstates of σj3, |0⟩j (with eigenvalue +1) and |1⟩j (with eigenvalue −1),
respectively. Each M qubit state of the BRS class is derived by applying to the
fully separable state

|r, 0⟩ =
M−1⨂︂
j=0

1√
2

(|0⟩j + |1⟩j) , (2.43)

the non-LU operator

U0(ϕ) = exp(−iϕH0) =
M−1∏︂
j=1

(︂
I + αΠj

0Πj+1
1

)︂
, (2.44)

where H0 = ∑︁M−1
j=1 Πj

0Πj+1
1 and α = (e−iϕ − 1) . The full operator (2.44) is diagonal

on the states of the standard basis {|0 · · · 0⟩ , |0 · · · 01⟩, . . . , |1 · · · 1⟩}.
In fact, the eigenvalue λk of the operator (2.44), corresponding to a given

eigenstate |k⟩ of this basis, results

λk =
n(k)∑︂
j=0

(︄
n(k)
j

)︄
αj , (2.45)

where n(k) is the number ordered couples 01 inside the sequence of the base vector
|k⟩. For the initial state (2.43) we consistently get

|r, 0⟩M = 2−M/2
2M −1∑︂
k=0
|k⟩ , (2.46)

and, under the action of U0(ϕ) we obtain

|r, ϕ⟩M = 2−M/2
2M −1∑︂
k=0

n(k)∑︂
j=0

(︄
n(k)
j

)︄
αj|k⟩ . (2.47)

For ϕ = 2πk, with k ∈ Z, this state is separable, whereas, for all the other choices
of the value ϕ, it is entangled. In particular, in [25] it is argued that the values
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2. Entanglement in pure states

ϕ = (2k + 1)π, where k ∈ Z, give maximally entangled states.

Briegel Raussendorf states: case M = 2

In the case M = 2 the one-parameter family of BRS is

|r, ϕ⟩2 =
3∑︂

k=0
ck|k⟩ , (2.48)

with ck = 1/2 if k ̸= 1, and c1 = e−iϕ/2, where ϕ ∈ [0, 2π]. By direct calculation
we obtain the trace of the Fubini-Study metric

Tr(g) =
1∑︂

ν=0

[︃
1− c2

(︂
cvν1 + (−1)ν+1 svν2

)︂2
]︃
, (2.49)

where c = cos (ϕ/2) and s = sin (ϕ/2). Eq. (2.49) is minimized with the choice
ṽν = ±(c, (−1)ν+1s, 0). Consistently, the EM and the ED per qubit result

g̃ = s2J2 (2.50)

and
E(|r, ϕ⟩2)/2 = s2 . (2.51)

Briegel Raussendorf states: case M = 3

In the case M = 3 we have

|r, ϕ⟩3 =
7∑︂

k=0
ck|k⟩ , (2.52)

with ck = 1/23/2 if k ̸= 1, 2, 3, 5, and ck = e−iϕ/23/2 if k = 1, 2, 3, 5, where ϕ ∈ [0, 2π].
The trace of g results

Tr(g) =
[︂
3−

(︂
(c2v0

1 + csv0
2)2 + (c2v1

1)2 + (c2v2
1 − csv2

2)2
)︂]︂
, (2.53)

is minimized with the choices ṽ0 = (c, s, 0), ṽ1 = (1, 0, 0) and ṽ2 = (c,−s, 0). The
EM and the ED per qubit, in this case result

g̃ = s2

⎛⎜⎝ 1 c 0
c 1 + c2 c
0 c 1

⎞⎟⎠ , (2.54)
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and
E(|r, ϕ⟩3)/3 = s2

(︂
3 + c2

)︂
/3 , (2.55)

respectively.

Briegel Raussendorf states: case M = 4

For M = 4 we have
|r, ϕ⟩4 =

15∑︂
k=0

ck|k⟩ , (2.56)

with ck = e−iϕ/4 if k ̸= 0, 5, 8, 12, 14, 15, c5 = e−i2ϕ/4, and c0 = c8 = c12 = c14 =
c15 = 1/4, where ϕ ∈ [0, 2π]. The trace of g results

Tr(g) =
[︂
4−

(︂
(c2v0

1 + csv0
2)2 + (c2v1

1)2+

(c2v2
1)2 + (c2v3

1 − csv3
2)2
)︂]︂
,

(2.57)

is minimized with the choices ṽ0 = (c, s, 0), ṽ1 = (1, 0, 0), ṽ2 = (1, 0, 0) and
ṽ3 = (c,−s, 0). The EM in this case results

g̃ = s2

⎛⎜⎜⎜⎝
1 c 0 0
c 1 + c2 c2 0
0 c2 1 + c2 c
0 0 c 1

⎞⎟⎟⎟⎠ , (2.58)

thus the ED reads
E(|r, ϕ⟩4)/4 = s2

(︂
4 + 2c2

)︂
/4 . (2.59)

2.2.3.3. W -states

In this section, we consider a (M − 1)-parameters family of states, the W states,
defined according to

|W,α⟩M =
M∑︂
j=1

αj|2j−1⟩ , (2.60)
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with

α1 = c1

α2 = s1c2
...

αk = s1s2 · · · sk−1ck
...

αM−1 = s1s2 · · · sM−2cM−1

αM = s1s2 · · · sM−2sM−1 ,

(2.61)

where we set cj = cos(θj), sj = sin(θj), and where 0 ≤ θj ≤ π/2, j = 1, . . . ,M − 1.
If the number of indices k such that αk = 0 is r, then the state (2.60) is r-partite.
For αk = 1/

√
M , for each k, the state (2.60) is maximally entangled.

In the case of state (2.60), the trace of the metric tensor (2.16) results

Tr(g) =
[︄
M −

M−1∑︂
ν=0

[(1− 2|αj(ν)|2)vν3 ]2
]︄
, (2.62)

where j(ν) is an invertible map j : {0, . . . ,M − 1} → {1, . . . ,M}. Consistently
with (2.19), Eq. (2.62) is minimized by the values ṽν1 = ṽν2 = 0, ṽν3 = ±1, for
ν = 0 . . . ,M − 1. Therefore, the ED for these states results

E(|W,α⟩M)/M = 4(1−
∑︂
j

|αj|4)/M . (2.63)

The state with the higher entanglement corresponds to the choice αj = 1/
√
M , for

j = 0, . . . ,M − 1. The corresponding value for the ED is

E(|W,αM⟩M)/M = 4(1− 1/M)/M . (2.64)

Therefore, except for the case M = 2, E(|W,α⟩M)/M < 1. This is due to the
non-vanishing of the expectation values of the operators σµ

v on the state with the
higher entanglement. In this sense, such state could not be considered a maximally
entangled state. Remarkably, the W state with maximal entanglement remains a
maximal entanglement state under particle loss.

W -states: case M = 2

For M = 2 it is
|W,α⟩2 = α1|1⟩+ α2|2⟩ , (2.65)

where α1 = cos(θ1) and α2 = sin(θ1), and θ1 ∈ [0, π/2]. The choice ṽν1 = ṽν2 = 0,
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ṽν3 = (−1)ν , for ν = 0, 1, by direct calculations we get the following expressions for
the EM and ED

g̃ = sin2(2θ1)J2 , (2.66)
E(|W,α⟩2)/2 = sin2(2θ1) , (2.67)

respectively.

W -states: case M = 3

For M = 3 it is
|W,α⟩3 = α1|1⟩+ α2|2⟩+ α3|4⟩ , (2.68)

where α1 = cos(θ1), α2 = sin(θ1) cos(θ2) and α3 = sin(θ1) sin(θ2). By direct
calculations we get the ED

E(|W,α⟩3)/3 =4
3
[︂
1−

(︂
cos4(θ1) + sin4(θ1) cos4(θ2)+

sin4(θ1) sin4(θ2)
)︂]︂
.

(2.69)

2.3. Correlations and projective measurements in
maximally entangled states

We present in this section the results we recently published in [36].
The complete analysis of entanglement convokes numerous additional notions,

as their k-separability, k-producibility, entanglement depth or persistency of entan-
glement [10, 25, 13].

Measurement processes and their understanding are of major importance in the
field of quantum computing. Measurement-based quantum computation, which
stands as a universal model of quantum computation, obviously heavily lie on the
control of their effects on quantum states [63, 64, 65].

The ways of quantifying entanglement in multipartite states are manifold. In
the present section, we solely employ the pure state ED defined in (2.21), section
2.2. In other words, we focus on the notion of qubit-wise entanglement, that is
entanglement of bipartitions (µ, µC), and study how, in conjunction with the EM
(2.16) and quantum correlators, it can be used to reveal the internal, network-like,
entanglement structure in pure states, primarily focusing on maximally entangled
ones.

We start, in Section 2.3.1, demonstrating a few simple theorems, which high-
light the strong relationship between pre-measurement correlations and post-
measurement average values, and show how the structure of the EM provides
an upper bound to the persistency of entanglement. In section 2.3.2, we derive two
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procedures in order to determine sets of measurement axis optimal with respect to
pairwise correlators or with respect to the induced total entanglement breaking;
the question of the equivalency of these two optimal sets arises as an interesting
open problem, to our best knowledge, yet to be solved. We apply our methods to a
few examples in Section 2.3.3. Finally, in Section 2.3.4, we synthesize our results,
and make a few remarks on possible continuations of this work; in particular, we
examine the effect of several successive projective measurements on expectation
values, and argue that a more thorough study of entanglement breaking in quantum
states should investigate the behaviour of higher order correlations.

2.3.1. First order projective measurements
Departing from a generic multipartite quantum state |s⟩ ∈ H, the state |s′⟩ obtained
after a projective measurement of the qubit ν in the direction mν write

|s⟩ −→ |s′⟩ = P ν
m |s⟩√︂
⟨s|P ν

m |s⟩
, (2.70)

with
P ν

m := I + σνm
2 (2.71)

the single qubit projector onto the eigenstate of σνm , of eigenvalue 1. For the sake
of clarity, we hereafter denote with the letter m the vectors associated with actual
projective measurements such as (2.70). In contrast, vectors denoted with the letter
v denote the variables of the EM, i.e. virtual measurement axis.

In such a post-measurement state, the expectation value of an arbitrary qubit µ
in the direction vµ can be expressed as a function of the expectation values and
the correlator of σνm and σνv in the initial state.

Theorem 2.3.1. If |s⟩ is maximally entangled in ν and µ, and |s′⟩ is the post-
measurement state after a projective measure of σνm, then we have, for any mea-
surement axis vµ

⟨s′|σµv |s′⟩ = ⟨s|σµvσνm |s⟩ (2.72)

Proof. From Eq.(2.70) we draw

⟨s′|σµv |s′⟩ = ⟨s|P
ν
mσ

µ
vP

ν
m |s⟩

⟨s|P ν
m |s⟩

= ⟨s|P
ν
mσ

µ
v |s⟩

⟨s|P ν
m |s⟩

= ⟨s|σ
µ
v |s⟩+ ⟨s|σµvσνm |s⟩
1 + ⟨s|σνm |s⟩

,

(2.73)

where we used the fact that P ν
m and σµv commute with each other, and that P ν

m is
idempotent. By hypothesis, proposition 1.2.2 applies here, hence our Theorem.
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2. Entanglement in pure states

Corollary. If |s⟩ is maximally entangled in ν and µ, and ∃vµ such that | ⟨s|σµvσνm |s⟩ | =
1, then the measurement of ν along the axis mν completely breaks the entanglement
of µ, i.e. Eµ

(︂
|s′⟩

)︂
= 0.

Proof. If Theorem 2.3.1 applies, we can rewrite the post-measurement ED of µ

Eµ
(︂
|s′⟩

)︂
= 1−max

vµ
| ⟨s|σµvσνm |s⟩ |2, (2.74)

which equates 0 if the above condition is fulfilled.

Theorem 2.3.2. For any state |s⟩, ∀µ, ν ∈ Q such that ⟨s|σµvσνv |s⟩ = 1, the
operators σµv and σνv are equivalent with respect to |s⟩ (they act on it in the same
fashion). In particular, this implies, ∀η,

⟨s|σηvσνv |s⟩ = ⟨s|σηvσµv |s⟩ , (2.75)
and ⟨s|σηvσµvσνv |s⟩ = ⟨s|σηv |s⟩ . (2.76)

It also results that the measure of σνv yields the implicit measure of σµv .

Proof. By hypothesis, |s⟩ is eigenvector of σµvσνv of eigenvalue 1, and the following
holds

σµvσ
ν
v |s⟩ = |s⟩
σνv |s⟩ = σµv |s⟩
P ν

v |s⟩ = P µ
v |s⟩

P ν
v |s⟩ = P ν

v P
µ
v |s⟩ .

(2.77)

Let us now examine the consequences of these results on g. Its structure gives
valuable insights on persistency of entanglement Pe in such maximally entangled
states. First introduced in [25], it quantifies the minimal number of measurements
needed to completely disentangle a quantum state. For the sake of clarity, we will
hereafter drop dependence and adopt the shortened notation gνµ

(︂
|s⟩ ,vµ,vν

)︂
= gνµ.

Theorem 2.3.3. Let |s⟩ be a state maximally entangled ∀µ ∈ Q and {vµ}µ a
choice of measurement directions such that ∀µ, ν ∈ Q, gµν = 0 or ±1. Then:

• Up to a reordering of its indices (equivalently, a relabelling of the qubits), g is
diagonal by blocks filled with ±1.

• The number n of such blocks provides an upper bound to the persistency of
entanglement Pe of the state |s⟩, i.e. Pe ≤ n. In other words, the minimal
number of local measurements necessary to fully break its entanglement is n
or less.
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2. Entanglement in pure states

Proof. From proposition 1.2.2, it is clear that ∀µ, ν ∈ Q, Eq.(2.16) simplifies as

gνµ = ⟨s|σµvσνv |s⟩ , (2.78)

and, from Theorem 2.3.2, we see that ∀η ∈ Q, the following transitivity relation
holds

|gνµ| = |gνη| = 1 =⇒ |gµη| = 1 (2.79)
Added with the symmetry of g, this proves the first part of the Theorem.
Using Theorem 2.3.1 together with Eq.(2.78), we can rewrite the diagonal

elements of g after a measure of σνm as

g′
µµ = 1− |gνµ|2 (2.80)

where g′ = g(|s′⟩). This straightforwardly implies that all diagonal elements of a
block vanish after the measurement, along the appropriate direction, of any qubit
belonging to the block, hence breaking entanglement of the whole block.

To complete our proof, we now need to show that the correlations in the other
blocks cannot decrease after such a measurement. Consider two qubits µ and
η that do not belong to the same block as ν, that is gµν = gην = 0. Applying
Theorem 2.3.1 to a correlator instead of a single qubit expectation value yields
⟨s′|σµvσηv|s′⟩ = ⟨s|σµvσηv|s⟩+ ⟨s|σµvσηvσνm|s⟩, and the post-measurement off-diagonal
terms hence write

g′
µη = ⟨s′|σµvσηv|s′⟩ − ⟨s′|σµv |s′⟩⟨s′|σηv|s′⟩

= ⟨s|σµvσηv|s⟩+ ⟨s|σµvσηvσνm|s⟩ − ⟨s|σµvσνm|s⟩⟨s|σηvσνm|s⟩
= gµη + ⟨s|σµvσηvσνm|s⟩

(2.81)

If, furthermore, µ and η belonged to the same block, i.e. gµη = ±1, Theorem 2.3.2
applies 1 and we have ⟨s|σµvσηvσνm|s⟩ = ±⟨s|σνm|s⟩ = 0, hence

g′
µη =

⎧⎨⎩gµη if gµη = ±1,
⟨s|σµvσηvσνm|s⟩ if gµη = 0.

(2.82)

It results that the measure of σνm preserves or enlarges the size of remaining blocks,
implying n′ ≤ n− 1, with n′ the number of blocks in the post-measurement EM g′.
At most one measurement by block is thus sufficient to fully break the entanglement
of |s⟩, and we have Pe ≤ n, the second part of the theorem.

Remark that, in addition to the inequality n′ ≤ n− 1, a set {vµ}µ minimizing n
for a given g, may not minimize n′ for g′, a post-measurement EM. It results that
an optimally disentangling sequence of measurements cannot in general be found
by an optimization procedure carried onto g.

1As −σµ
v = σµ

−v, Theorem 2.3.2 can easily be extended to negative correlators.
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2. Entanglement in pure states

The notion of persistency of entanglement is distinct from that of k-separability2.
They are however related, as the entanglement of a maximally entangled k-separable
state can clearly be fully broken by k measurements. In other words, the persistency
of entanglement provides an upper bound to the separability, and we have

k ≤ Pe ≤ n, (2.83)

with n, Pe, k ∈ N∗. As these three quantities are positive integers, both inequalities
are saturated if n = 1, i.e. k = Pe = n = 1. Furthermore, since n′ ≤ n − 1,
n = 2 =⇒ n′ = 1, hence the second inequality is saturated for n = 2, i.e.
k ≤ Pe = n = 2.

Because g only encodes information on the effects of first order projective mea-
surement (i.e. contains only two-point correlators), it may not capture the actual Pe,
hence only provides an upper bound. This is due to the fact that new non-vanishing
correlation patterns may arise after one or more projective measurements, entailing
diminished Pe relative to our first guess. The Briegel Raussendorf state with N > 4,
detailed in Section 2.3.3.1, constitutes an example of such a situation.

Let us stress the dependence of g on the set of unit vectors {vµ}, representing
directions of measurements. This point is of great importance because, as a different
g will arise from a different set {vµ}, such are also the correlation patterns and
subsequent entanglement breaking highlighted in the above. In order to bound Pe
as finely as possible, we thus need to find the appropriate set {vµ}.

2.3.2. Optimization of the measure
We are now looking for the measurement directions vν optimizing the spin correla-
tors.

First, let us perform the pairwise optimization of the correlators

⟨s|σµvσνv |s⟩ =
3∑︂

i,j=1
vµi v

ν
j ⟨s|σ

µ
i σ

ν
j |s⟩ = (vµ)TCµν

s vν , (2.84)

where Cµν
s is the non-symmetric real matrix of elements(︂

Cµν
s

)︂
ij

= ⟨s|σµi σνj |s⟩ (2.85)

i.e. the spin correlation matrix. Optimization with respect to both measurement

2As a counter example, the state 1
2
(︁
|0000⟩ + |0011⟩ + |1100⟩ − |1111⟩ has an EM with n = 2

blocks when ∀µ, vµ = (0, 0, 1), hence has Pe = 2 and yet is not biseparable.
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2. Entanglement in pure states

axis yields

Cµν
s vν = λvµ

(vµ)TCµν
s = λ(vν)T ,

(2.86)

where the superscript T stands for transpose. It can easily be checked by direct
calculation that the eigenvalues indeed coincide. By the insertion of the transpose
of these two equations, we infer the eigenvalue equations

(Cµν
s )TCµν

s vν = λ2vν

Cµν
s (Cµν

s )Tvµ = λ2vµ,
(2.87)

of which the largest eigenvalue solutions evidently correspond to the measurement
directions optimizing Eq.(2.84). Note that λ is not necessarily positive. However,
this is of no importance, as it is always enough, in order to recover a positive
correlator (2.84), to replace one of the two measurement vectors by its opposite.
For our analysis, negative correlations are in fact equivalent to positive ones, as
they possess the same significance relatively to entanglement and the effect of
projective measurement.

We can instead be interested in finding the measurement axis mν that optimally
disentangle the entire state |s⟩. Provided the latter is maximally entangled, we
have, as a consequence of Theorem 2.3.1

⃓⃓⃓
⟨s′|σµ |s′⟩

⃓⃓⃓2
=

3∑︂
i=1

⃓⃓⃓
⟨s′|σµi |s′⟩

⃓⃓⃓2
=

3∑︂
i=1

⃓⃓⃓
⟨s|σµi σνm |s⟩

⃓⃓⃓2
, (2.88)

as each ⟨s′|σµi |s′⟩ can simply be seen as a special case of Eq.(2.72), with vµj = δij.
Hence the total entanglement after the measure

E
(︂
|s′⟩

)︂
=
∑︂
µ

Eµ(|s′⟩) = N − 1−
∑︂
µ∈νC

| ⟨s′|σµ |s′⟩ |2

= N − 1−
∑︂
µ∈νC

3∑︂
i=1

⃓⃓⃓
⟨s|σµi σνm |s⟩

⃓⃓⃓2

= N − 1−
∑︂
µ∈νC

3∑︂
i=1
⟨s|σνmσ

µ
i |s⟩ ⟨s|σ

µ
i σ

ν
m |s⟩

= N − 1− ⟨s|σνm
(︃ ∑︂
µ∈νC

3∑︂
i=1

σµi |s⟩ ⟨s|σ
µ
i

)︃
σνm |s⟩

= N − 1−
3∑︂

j,k=1
mν
jm

ν
k ⟨s|σνj

(︃ ∑︂
µ∈νC

3∑︂
i=1

σµi |s⟩ ⟨s|σ
µ
i

)︃
σνk |s⟩ ,

(2.89)
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with νC = Q \ {ν}. Let us define Bν
s , the measurement-induced entanglement

breaking matrices (MIEB) of the state |s⟩, of elements(︃
Bν
s

)︃
jk

= ⟨s|σνj ΣνC

s σνk |s⟩ , (2.90)

with ΣνC

s = ∑︁
µ∈νC

3∑︁
i=1

σµi |s⟩ ⟨s|σ
µ
i . Its diagonalization straightforwardly yields the

results of the optimization problem, as the eigenvectors ˜︂mν associated with the
largest (resp. smallest) eigenvalue of Bν

(︂
|s⟩
)︂

corresponds to the minimum (resp.
maximum) of Eq.(2.89). The eigenvalues themselves simply equate the total
additional loss of entanglement after the corresponding measurement. It results
that a comparison of the spectra of the N MIEB matrices allow to easily find
the “weak spots” of |s⟩, that is the qubits of which the measurement can break
entanglement the most.

Interestingly, the largest eigenvalue of Bν
s might have multiplicity greater than

one. In such cases, any of the corresponding eigenvectors or linear combination of
them maximize Eq.(2.89).

This result can straightforwardly be adapted to find the measurement axis op-
timizing the entanglement breaking of a subset Q′ ⊂ Q with ν /∈ Q′, by simply
replacing ΣνC

s with ΣQ′
s = ∑︁

µ∈Q′

3∑︁
i=1

σµi |s⟩ ⟨s|σ
µ
i .

The question naturally arises as to know whether the solutions of Eq.(2.84)
correspond in general to those of Eq.(2.89).

Remark. The existence, in the general case, of one (or several) set of measurement
axes {vν}optν optimizing simultaneously every correlator in the EM remains unclear.
3

• If {vν}optν indeed always exists, it would be enough, to completely probe the
pairwise correlation patterns of a given state, to solve ⌈N/2⌉ equations of the
form of Eq.(2.84) or, equivalently, to diagonalize N MIEB (2.90).

• If, on the contrary, it does not, such a complete probing requires to solve all
of the N(N − 1)/2 equations of the form of Eq.(2.84).

Yet, in all of the examples we considered, the solutions of Eq.(2.84) equate those
of Eq.(2.89), hence we were able to determine {vν}optν . We were not able to find
any counter-example. We will thus assume from now on that this set exists, in
particular in Section 2.3.3, as this assumption allows us to remain much more
concise, by only diagonalizing the N MIEB.

3To clarify the meaning of this problem, let us imagine a state |s⟩ such that ∄{vν}opt
ν . Then

there exists some qubit µ of which the correlation with ν is maximal in a direction vµ
1 , and

the correlation with η ̸= ν is maximal in a direction vµ
2 ̸= vµ

1 .
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2.3.3. Examples
2.3.3.1. Briegel-Raussendorf states

The Briegel-Raussendorf states (BRS) form a family of quantum states, introduced
in [25], They are, up to LU transformation, equivalent to cluster states (also
coined as graph states in the literature), which were proposed as a model for the
measurement-based quantum computer [64, 63, 66, 65].

BRS are defined, for an arbitrary number of qubits N on a d-dimensional lattice,
as

|ϕ(φ)⟩ = U(φ) |+⟩⊗N , (2.91)
where |+⟩µ is the eigenstate of the operator σµ1 of eigenvalue 1, and

U(φ) = exp
{︃
− iφ

∑︂
<µ,ν>

P µ
0 P

ν
1

}︃
, (2.92)

where the summation runs over all the pairs of nearest neighbours, and P µ
0(1) is the

projector onto the eigenstates of σµ3 of eigenvalue ±1. We are solely interested in
the case φ = π, as it results in a maximally entangled state. We will, furthermore,
restrict ourselves to the study of the 1-dimensional case.

|ϕN⟩ =
N−2∏︂
µ=0

1
2
(︂
I− σµ3 + σµ+1

3 + σµ3σ
µ+1
3

)︂
|+⟩⊗N . (2.93)

It has been shown in [56] that the Eµ(|ϕN⟩) = 0, ∀µ.

N = 3. It is known that the 3-qubit BR state is LU equivalent to the Greenberger-
Horne-Zeilinger state [25], a prototypical example of maximally entangled and
maximally correlated state. We hence expect that ∃{vµ} such that ∀µ, ν, gµν = 1.

We only need to compute the three following MIEB matrices (2.90)

B0
ϕ3 = B2

ϕ3 =

⎛⎜⎝2 0 0
0 0 0
0 0 0

⎞⎟⎠ , hence v0 = v2 = (1, 0, 0), and

B1
ϕ3 =

⎛⎜⎝0 0 0
0 0 0
0 0 2

⎞⎟⎠ , hence v1 = (0, 0, 1).

(2.94)

The maximal eigenvalues of these matrices equate 2 because each qubit is maximally
correlated with two others.
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This yields the optimal EM

g̃
(︂
|ϕ3⟩

)︂
=

⎛⎜⎝ 1 1 −1
1 1 −1
−1 −1 1,

⎞⎟⎠ (2.95)

thus, evidently, n(|ϕ3⟩) = 1, hence saturating the inequality (2.83): k(|ϕ3⟩) =
Pe(|ϕ3⟩) = n(|ϕ3⟩) = 1. A single measurement is thus sufficient to completely
disentangle |ϕ3⟩, and this state is genuinely entangled.

N = 4. In this case, we have

B0
ϕ4 = B3

ϕ4 =

⎛⎜⎝1 0 0
0 0 0
0 0 0

⎞⎟⎠ , hence v0 = v3 = (1, 0, 0), and

B1
ϕ4 = B2

ϕ4 =

⎛⎜⎝0 0 0
0 0 0
0 0 1

⎞⎟⎠ , hence v1 = v2 = (0, 0, 1),

(2.96)

thus the optimal EM writes

g̃
(︂
|ϕ4⟩

)︂
=

⎛⎜⎜⎜⎝
1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

⎞⎟⎟⎟⎠ , (2.97)

hence n(|ϕ4⟩) = 2, so k(|ϕ4⟩) ≤ Pe(|ϕ4⟩) = n(|ϕ4⟩) = 2. Entanglement can be
broken with at least two measurements, and it is genuinely entangled or biseparable.

N > 4. In general, for a chain of N qubits, we have

B0
ϕN

= BN
ϕN

=

⎛⎜⎝1 0 0
0 0 0
0 0 0

⎞⎟⎠ , hence v0 = vN = (1, 0, 0), and

B1
ϕN

= BN−1
ϕN

=

⎛⎜⎝0 0 0
0 0 0
0 0 1

⎞⎟⎠ , hence v1 = vN−1 = (0, 0, 1),

(2.98)

while Bν
ϕN

= 0, ∀ν /∈ {0, 1, N − 1, N}.
The EM hence contains two 2 × 2 blocks in its upper left and lower right

corners, while the remaining part is just a diagonal filled with ones (which
can be seen as trivial blocks of size 1 × 1), hence the number of its blocks is
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n(|ϕN⟩) = N − 2 ≥ Pe(|ϕN⟩) ≥ k(|ϕN⟩). Its persistency of entanglement is known
to be Pe(|ϕN⟩) = ⌊N2 ⌋ [25].

Let us investigate further this discrepancy. From Eq. (2.93), it can be easily
verified that the projective measure of qubit 1 along the axis (0, 0, 1) yields

P 1
3 |ϕN⟩ = |+⟩ ⊗ |0⟩ ⊗

(︂
σ2

3 |ϕN−2⟩
)︂
, (2.99)

where σ2
3 applies to the third qubit of the N -long chain, hence to the first of the

(N − 2)-long chain. Such a post-measurement state is hence LU equivalent to a
product of two separated qubits with one BR chain of size N − 2. Considering
for instance N = 5 we have, using the measurement axis’ determined above, the
optimal EM

g̃
(︂
|ϕ5⟩

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎠ (2.100)

thus n(|ϕ5⟩) = 3. Yet, after a projective measurement of σ1
3, the optimal EM of

the new state is, up to some irrelevant signs, the same as Eq.(2.95), added with
the two extra qubits now disentangled from the rest of the chain.

g̃
(︂
P 1

3 |ϕ5⟩
)︂

=

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 1 −1 1
0 0 −1 1 −1
0 0 1 −1 1,

⎞⎟⎟⎟⎟⎟⎟⎠ (2.101)

so n(P 1
3 |ϕ5⟩) = n(|ϕ3⟩) = 1. Thus we have Pe(|ϕ5⟩) = 2.

This constitutes a paradigmatic example of the fact that Theorem 2.3.3 is in
general insufficient to capture exactly Pe. Measurements can indeed be performed
on |ϕN⟩, after which some elements of the EM will cease to be null. The post-
measurement EM thus exhibits some new non-trivial blocks, accounting for this
discrepancy.

2.3.3.2. Supersinglet States

The supersinglet states, first introduced in [67], form a class of maximally entangled
pure states with the property of being invariant under any simultaneous LU
operation acting on all qubits, i.e. U⊗N |SN⟩ = eiϕ |SN⟩, with U an arbitrary LU
operator. [67, 68].

From this sole property, a number of facts can be drawn.
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First, ∀U , ∀vν , we have

⟨SN |σνv |SN⟩ = ⟨SN |U †⊗NσνvU
⊗N |SN⟩

= ⟨SN |Uν†σνvU
ν |SN⟩ = ⟨SN |σνv′ |SN⟩ ,

(2.102)

yet Pauli expectation values cannot be isotropic unless null, hence Eν(|SN⟩) = 1, ∀ν.
Theorem 2.3.1 hence applies here and, choosing U to be a rotation around the

axis mν , hence leaving σνm unchanged, we can write

⟨S ′
N |σµv |S ′

N⟩ = ⟨SN |σµvσνm |SN⟩
= ⟨SN |U †⊗Nσµvσ

ν
mU

⊗N |SN⟩
= ⟨SN |

(︂
Uµ†σµvU

µ
)︂
σνm |SN⟩

= ⟨SN |σµv′σνm |SN⟩ = ⟨S ′
N |σ

µ
v′ |S ′

N⟩ ,

(2.103)

where |S ′
N⟩ is the state post-measurement of σνm. The same argument as above

leads to ⟨SN |σµvσνm |SN⟩ ≠ 0 if and only if vµ = vµ′, that is if vµ = ±mν .
It results Bµ

SN
∝ I, ∀µ ∈ Q. This means that, provided that the qubits are

measured along the same axis, the correlators are always maximal. The optimal
set of measurement axis is thus any uniform set {vµ}uni.

The whole class of supersinglet states of four qubits is spanned by the following
two states

|S1
4⟩ = 1√

3

(︃
|0011⟩+ |1100⟩ − 1

2
(︂
|0101⟩+ |0110⟩+ |1001⟩+ |1010⟩

)︂)︂
|S2

4⟩ = 1
2

(︃
|0101⟩+ |1010⟩ − |0110⟩ − |1001⟩

)︂)︂
.

(2.104)

We can hence write a general 4-qubit supersinglet state as |S4(a, b)⟩ = a |S1
4⟩+b |S2

4⟩,
with |a|2 + |b|2 = 1.

We can choose arbitrarily a single measurement axis, for instance x = (1, 0, 0),
and straightforwardly compute the optimal EM

g̃
(︂
|S4(a, b)⟩

)︂
=

⎛⎜⎜⎜⎝
1 α γ β
α 1 β γ
γ β 1 α
β γ α 1

⎞⎟⎟⎟⎠ , (2.105)
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with

α = |a|
2

3 − |b|
2,

β = 2
3(
√

3 Re(āb)− |a|2), and

γ = −2
3
(︂√

3 Re(āb) + |a|2
)︂
,

(2.106)

where the bar over a letter denotes complex conjugation and Re(āb) is the real part
of the complex number āb.

This simple expression for the EM allows us to remark some interesting cases
arising for specific values of the parameters a and b.

Trivially, if a = 0 and |b| = 1, we immediately get a block diagonal matrix
containing two blocks, as is to be expected, since |S(2)

4 ⟩ is a tensor product of
two Bell states |ϕ−⟩ = 1√

2(|01⟩ − |10⟩). In this case, we thus have n(|S4(0, 1)⟩) =
Pe(|S4(0, 1)⟩) = 2 and the state is, of course, biseparable.

Setting a =
√

3eiϕa

2 and b = eiϕb

2 , a few calculations lead to

g̃
(︂
|S4(ϕa, ϕb)⟩

)︂
=

⎛⎜⎜⎜⎝
1 0 −c2 −s2

0 1 −s2 −c2

−c2 −s2 1 0
−s2 −c2 0 1

⎞⎟⎟⎟⎠ , (2.107)

with c = cos
(︂
ϕa−ϕb

2

)︂
and s = sin

(︂
ϕa−ϕb

2

)︂
. Thus, for ϕa = ϕb and for ϕb =

ϕa + π, the optimal EM of this state, up to qubits permutations, contains two
blocks, thus n(|S4(ϕa, ϕa)⟩) = Pe(|S4(ϕa, ϕa)⟩) = 2 and n(|S4(ϕa, ϕa + π)⟩) =
Pe(|S4((ϕa, ϕa + π)⟩) = 2.

2.3.4. Discussion
In this section, we showed how, in pure quantum states, entanglement entails a
strong link between correlations and post-measurement expectation values.

The EMs, i.e. covariance matrices, contain valuable information on the statistics
of post-measurement states, and on the patterns that can emerge from projective
measurements of entangled states. In particular, its block structure is directly
linked to the persistency of entanglement.

We further provided two straightforward procedures of optimization of the
Pauli correlators, and observe that they might not, in principle, yield equivalent
results. By doing so, we unravel an opened problem, which hasn’t, to our best
knowledge, been tackled with yet, namely the existence of a set of measurement
axes simultaneously optimizing all of these correlators.

These procedures further allow us to recover, if it exists, the optimal EM, along
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2. Entanglement in pure states

with an upper bound for the persistency of entanglement.

Unfortunately, as previously emphasized, the information retrieved by the use
of the EM is incomplete: since the effect of more than one measurement are not
accounted for in this framework, our approach fails to recover a number of important
features of some complex entangled states (as BR states or cluster states), amongst
which the exact persistency of entanglement.

Multipartite maximally entangled states might indeed possess qubits with only
vanishing two-point correlations, regardless of the choice of measurement axes.
Somehow counter-intuitively, the measurement of such qubits, though disentangling
the concerned qubit from the rest of the system, do not break any entanglement
on the latter. Yet it modifies the state, and in particular might bring along some
new non-vanishing correlators (i.e. off-diagonal terms in the EM).

This observation motivates the study of higher order measurement schemes.
Let us consider an ordered subset M ⊂ Q of M qubits on which successive

projective measurements are performed.
The generalization of (2.70) then yields

|s⟩ −→ |sM⟩ =

∏︁
ν∈M

P ν
m |s⟩√︃

⟨s| ∏︁
ν∈M

P ν
m |s⟩

, (2.108)

and, accordingly, the expectation value of an arbitrary unmeasured qubit µ after
such a series of measurement

⟨sM |σµv |sM⟩ =

M−1∑︁
k=0

∑︁
X∈[M]k

⟨s|σµv
∏︁
ν∈X

σνm |s⟩

M−1∑︁
k=0

∑︁
X∈[M]k

⟨s| ∏︁
ν∈X

σνm |s⟩
, (2.109)

where [M]k is the set of all the unordered k-subsets (i.e. subsets of cardinal k) ofM.

It results that, if all the two-point correlators vanish, we can examine higher order
correlators to investigate the breaking of entanglement after a series of measurement
rather a single one.

It would be of great interest to pursue the work introduced in the present section
by a thorough study of higher order covariance tensors, or to devise new procedures
and methods, in order to grasp the effects of series of measurements on entangled
states, in a more exhaustive fashion.
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3. Quantum Correlation and
Entanglement in Mixed States

The following chapter addresses the problem of measuring entanglement and
quantum correlation in mixed states, mainly reproducing the original work we
published in [34].

We start in Section 3.1, by adapting the construction developed in Chapter 2 to
the framework of mixed states, thus obtaining a measure of quantum correlation, the
Quantum Correlation Distance (QCD), and show that it fulfils most requirements
for a bona fide measure. Section 3.2 proposes an original method to build, from the
QCD, a measure of entanglement for mixed states, the Regularized Entanglement
Distance, and shows that it is bounded from above by the quadratic-weights convex
roof extension of the pure state Entanglement Distance. We apply in Section 3.3
these two measures to a series of simple examples. In Section 3.4, we present the
so-called local ancilla problem that affects these two measures, and propose a simple
modification to address it. Finally, we summarize and discuss our results in Section
3.5,

3.1. The Quantum Correlation Distance
We consider the Hilbert space H = H0 ⊗H1 · · ·HM−1 tensor product of M two
qubits Hilbert spaces. The Hilbert-Schmidt distance D between two general square
matrices, A and B, is given by

D(A,B) =
√︄

1
2 Tr[(A−B)†(A−B)] . (3.1)

We derive from the latter, the distance between two close density matrices of a
quantum state in H, by

d2
dm

(ρ, ρ+ dρ) = 1
2 Tr

[︂
(dρ)†(dρ)

]︂
. (3.2)

The Hilbert-Schmidt distance is not the only possible choice, e.g. the Bures’
distance represents an appropriate alternative option. The infinitesimal variation
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3. Quantum Correlation and Entanglement in Mixed States

dρ of state ρ is

dρ =
M−1∑︂
j=0

dŨ
µ
ρ+ ρ

M−1∑︂
µ=0

dŨ
µ†

= −i
M−1∑︂
µ=0

3∑︂
j=1

[︂
σµj , ρ

]︂
nµj dξ

µ , (3.3)

where [,] is the commutator, and dŨ
µ is as defined previously in Eq. (2.14). Here

and in the following we use the notation (σn)µ = (nµ ·σµ), and for µ = 0, . . . ,M−1,
we denote by σµ1 , σµ2 and σµ3 the three Pauli matrices operating on the µ-th qubit,
where the index µ labels the spins. We have

d2
dm

(ρ, ρ+ dρ) =
M−1∑︂
µ,ν=0

gµν(ρ,n)dξµdξν , (3.4)

where
gµν(ρ,n) = 1

2

3∑︂
i,j=1

Tr
[︂
ρ
{︂
σµi , σ

ν
j

}︂
ρ− 2ρσµi ρσνj

]︂
nµi n

ν
j , (3.5)

with {,} we mean the anticommutator. In particular, we have

gµµ(ρ,nµ) = Tr
(︂
ρ2
)︂
−

3∑︂
i,j=1

Tr
[︂
ρσµi ρσ

µ
j

]︂
nµi n

µ
j . (3.6)

We can now define Cµ(ρ), a measure of QCs deriving from a distance, that we thus
name QC distance (QCD). The QCD of the subsystem µ for the state ρ is

Cµ(ρ) = inf
{nν}ν

gµµ(ρ,nµ))

= inf
{nν}ν

Tr
(︂
ρ2
)︂
− Tr[ρσµnρσµn] .

(3.7)

Finally, by defining the symmetric matrices Aµ(ρ), for µ = 0, . . . ,M − 1, whose
entries are

Aµij(ρ) = Tr
[︂
ρσµi ρσ

µ
j

]︂
, (3.8)

we obtain the closed-form expression for the QCD of ρ,

Cµ(ρ) = Tr
(︂
ρ2
)︂
− λµmax(ρ) (3.9)

where λµmax(ρ) is the maximum of the eigenvalues of Aµ(ρ). The QC is the minimum
value of the trace of g under the variation of the unit vectors, and its value is
therefore invariant under LU transformations.
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We further define the total QCD

C(ρ) =
M−1∑︂
µ=0

Cµ(ρ). (3.10)

The QCD is a directly computable measure of the degree of QCs of ρ. Remarkably,
Eq. (3.9) contains two competing terms. The first term is named Purity, which
takes account of the degree of statistical mixing of ρ, its upper bound 1 corresponds
to a pure state. The second term ranges between 0 and 1, and derives from the
degree of correlation of ρ, with the lower value, 0, corresponding to the higher
correlation.

The time complexity of the closed-form formula for the QCD is that of D ×D
matrix multiplications, that is o(D3), where D is the dimension of the full Hilbert
space. In particular, the QCD possesses a closed formula and does not require any
optimization (other than finding the largest eigenvalue of 3× 3 matrices). This is
in contrast with other measures of QC which, to our best knowledge, all require
time-costly optimization procedures, except for some specific classes of states [23].

The QCD (3.9) fulfils requirements C1, C2 and C3 for a bona fide measure of
QC [23]:

1. Cµ(ρ) = 0 if ρ ∈ Cµ, i.e. if ρ is classical in the subsystem µ. Indeed, ∀ρ ∈ Cµ
we can write ρ = ∑︁

k pkρ
µC
k ⊗ |k⟩⟨k|µ, where the {|k⟩µ} form an orthonormal

basis in Hµ, µC is the complement of the subsystem µ and ∑︁k pk = 1. Then
∃nµ such that ∀k, nµ · σµ|k⟩µ = ±1, hence λµmax(ρ) = 1 and Cµ(ρ) = 0. It
results that C(ρ) = 0 if ρ ∈ C, i.e. if ρ is fully classical.

2. C(UρU †) = C(ρ), i.e. it is invariant under LU transformations.

3. In the case of a pure state ρ = |ψ⟩ ⟨ψ|, C (|ψ⟩ ⟨ψ|) reduces to the ED for pure
states defined in section 2.2.

Requirement C4 is not per se satisfied by the QCD, because of the local ancilla
problem arising from the use of the Hilbert-Schmidt distance. We address this
particular issue in Section 3.4, by defining the modified QCD C̃(ρ) = C(√ρ) and
showing that it fulfils requirement C4.

Yet, in the remainder of this chapter, we kept employing the original QC, as
our results are not, in all the cases considered, impacted by the local ancilla problem.

Additionally, the following proposition holds.

Proposition 3.1.1. If Cµ(ρ) = Tr(ρ2) then all of its realizations {pk, |k⟩} contain
only pure states maximally entangled in µ. Formally,

Cµ(ρ) = Tr
(︂
ρ2
)︂

=⇒ ∀k such that pk ̸= 0, Eµ(|k⟩) = 1 (3.11)
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Proof. For any mixed state ρ = ∑︁
k pk |k⟩ ⟨k|,

Aµii(ρ) =
∑︂
k,l

pkpl |⟨k|σµi |l⟩|
2

(3.12)

It follows that, if ∀i = 1, 2, 3, Aµii(ρ) = 0, then ∀k, l such that pk, pl ̸= 0, ∀i = 1, 2, 3,
⟨k|σµi |l⟩ = 0, which in turn implies that Aµ(ρ) = 0, where 0 is the null matrix. In
particular, ⟨k|σµi |k⟩ = 0, and from Eq.(2.21), we can write

Aµ(ρ) = 0 =⇒ ∀k such that pk ̸= 0, Eµ(|k⟩) = 1, (3.13)

Hence the proposition.

3.2. Generalized Entanglement Distance
As stated above, for a mixed state, the existence of QC is not a sufficient condition
to guarantee the presence of entanglement, even less to precisely measure it. To
extract this information from a given state ρ, we propose a procedure of regular-
ization for density operators ρ, with the aim of repurposing the QCD to obtain a
novel entanglement monotone. We have hope that this somewhat unconventional
method would allow for a much simpler optimization process, at least in some cases
and under some conditions that are yet to be determined precisely.

Given a state ρ, we consider all of its possible decomposition {pk, ρk}, such that

ρ =
∑︂
k

pkρk , (3.14)

where ∑︁k pk = 1 and Tr[ρk] = 1. Also, we consider all the possible local partial
transformation on qubit µ:

ρU ({pk, ρk, Uk}) =
∑︂
k

pkUkρkU
†
k , (3.15)

where, ∀k, Uk is an SU(2) LU operator. To avoid this transformation to trivially
send any state to a classical state, we impose the restriction ∀ρk = ρl, Uk = Ul. We
define the entanglement measure

E (ρ) = inf
{pk,ρk}

⎧⎨⎩
M−1∑︂
µ=1

inf
{Uk}

Cµ (ρU ({pk, ρk, Uk}))
⎫⎬⎭ . (3.16)

Since this measure is issued by a regularization procedure, applied to the QCD, we
call it, in the remaining of this work, the regularized entanglement distance (RED),
to distinguish it from the convex roof extension of the ED to mixed states. Remark
that the RED applied to a pure state reduces to the ED (2.20); both can hence be
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3. Quantum Correlation and Entanglement in Mixed States

denoted E. Since the convex roof extension of the ED to mixed states (2.22) is
in general intractable, we will not employ it in the remaining of this work, thus
avoiding risk of confusion.

Note that, similarly to the QCD, we can define Eµ(ρ) as the RED of the subsys-
tem µ, simply discarding the complement in the sum on µ in (3.16).

The RED (3.16) fulfils the strong version of requirement 2, namely

Proposition 3.2.1. E (ρ) = 0 if and only if ρ ∈ S.

Proof. Let ρ ∈ Sµ. It then admits a decomposition {pk, ρk}, where, ∀k, ρk =
ρµk ⊗ ρ

µC

k , where the ρµk do not necessarily form an orthonormal basis. It is always
possible to determine local partial operators Uk, such that, after transformation
(3.15) it results ρµU = ∑︁

k pk|k⟩⟨k|µ ⊗ ρµ
C

k , where the |k⟩ are orthonormal and, since
the QCD fulfils property C1, it follows Eµ (ρ) = 0. This property straightforwardly
extends to the full measure, that is if ρ ∈ S, then E(ρ) = 0.

Now, let ρ be such that E (ρ) = 0. First of all, we note that, for each µ =
0, . . . ,M − 1, λµmax(ρ) ≤ Tr(ρ2). In fact, for each µ and for each unit vector nµ it
is possible to determine a unitary local operator U , so that

Tr[(ρσµnρσµn)] = Tr[ρ̃σµ3 ρ̃σµ3 ],

where ρ̃ = UρU †. Furthermore

Tr[ρ̃σµ3 ρ̃σµ3 ] =
∑︂
j

ρ̃2
jj + 2

∑︂
i ̸=j
±|ρ̃ij|2 ≤

∑︂
j

ρ̃2
jj + 2

∑︂
i ̸=j
|ρ̃ij|2 = Tr

[︂
ρ̃2
]︂

= Tr
[︂
ρ2
]︂
.

Moreover, for each pair i ̸= j, ∃µ such that the term |ρ̃ij|2 appears in Tr[(ρ̃σµ3 )2]
with a negative sign. Yet, E (ρ) = 0 implies that there exist a decomposition of ρ,
let’s say ρ, for which

sup
nµ

Tr[ρσµnρσµn] = Tr
[︂
ρ2
]︂

for each µ. We hence have |ρij|2 = 0 for each i ̸= j. But this implies that ρ is
diagonal, hence ρ ∈ S, which concludes our proof.

Furthermore, the following holds

Proposition 3.2.2. The RED is convex, i.e. ∀{pk, ρk} such that ρ = ∑︁
k pkρk,

Eµ(ρ) ≤
∑︂
k

pkEµ(ρk) (3.17)

Proof. Let us choose a decomposition {pk, ρk}, where the ρk are pure states, and
let ρ̃k = UkρkU

†
k . Eq. (3.16) can be rewritten, discarding all of the minimization
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procedures and considering a single qubit µ∑︂
kl

pkpl (Tr [ρ̃kρ̃l]− Tr [ρ̃kσµnρ̃lσµn])

=
∑︂
k

p2
k

(︂
1− Tr

[︂
(ρ̃kσµn)2

]︂)︂
+
∑︂
k ̸=l

pkpl (Tr [ρ̃kρ̃l]− Tr [ρ̃kσµnρ̃lσµn]) .
(3.18)

We now consider, as in Eq. (1.7), the formulation of the ρk in terms of summations of
Pauli matrices combinations, and define ∀k, nµ

k = Tr [ρ̃kσµ]. The transformations
Uk can be chosen so that ∀k, l, Tr [ρkρl] = δkl, and that ∀k, nµ

k ∝ uµ, where
uµ is a unit vector defining the axis with which all substates are now aligned.
nµ = uµ appears quite a natural candidate to minimize Eq.(3.18), and yields
Tr
[︂
(ρ̃kσµn)2

]︂
= |nµ

k |2, ∀k. With these choices, Eq.(3.18) rewrites
∑︂
k

p2
k

(︂
1− |nµ

k |2
)︂
−
∑︂
k ̸=l

pkpl Tr [ρ̃kσµnρ̃lσµn] . (3.19)

Evidently, the left-hand term is the sum of the ED (2.21) of the pure states ρk,
weighted by the p2

k, while the right-hand term remains strictly negative, hence

Eµ(ρ) ≤
∑︂
k

p2
kEµ(ρk)−

∑︂
k ̸=l

pkpl Tr [ρ̃kσµnρ̃lσµn] ≤
∑︂
k

p2
kEµ(ρk) ≤

∑︂
k

pkEµ(ρk) (3.20)

For a given density matrix decomposition {pk, ρk}, the minimization on the LU
partial transformations, entailed by Eq. (3.16), can be addressed by studying the
local minima of C (ρ ({pk, ρk, Uk})) under variation of {Uk}. Nevertheless, it can be
shown that such fixed points do correspond only to cases where E (ρ) = 0, hence to
separable states. Therefore, the minima of (3.16) in the case of non-separable states,
do not correspond to fixed points, but rather to nonlocal (boundary) minima.

Remarkably, the minima of the minimization procedure (3.16) can, at least
in some cases, be realized by a decomposition {pk, ρk} including entangled pure
states ρk. In particular, for two-qubit states diagonal in the Bell basis (the Bell-
diagonal (BD) states, see [52, 45]) the minima can always be realized on the
eigendecomposition (hence, where the ρk are Bell states).

This, of course, greatly simplifies the problem, as the full exploration of the
{pk, ρk}-space is avoided. It is worth emphasizing that BD states are representative
of the larger class of two-qubits states of maximally mixed marginals (that is, for
which ∀µ and ∀j = x, y, z, Tr

[︂
ρσµj

]︂
= 0, see [52]), hence (3.16) is tractable in the

same manner for this class of states.
Leaning on numerical evidences, we further conjecture that, for a given state ρ(γγγ)

depending on parameters γγγ = (γ1, γ2, ...), the decomposition realizing the minimum
(3.16) is the same in the whole parametric domain of γγγ, and can hence be inferred
from the fixed points found in the domains where this state is separable, if such a
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domain exists. This suggests that the minimization over all possible decompositions
{pk, ρk} might in fact possess non-trivial general solutions, depending on the class
of states under consideration. Here, by “non-trivial solutions” of the minimization
procedure, we mean solutions which do not require to find the decomposition of ρ
in terms of pure product states ρk = ⨂︁

µ |k⟩ ⟨k|
µ.

A subsequent more thorough work on such a classification of the solutions of this
procedure could thus lead to an entanglement measure of relatively low compu-
tational cost, in particular for systems symmetric under qudit permutations, and
with low rank(ρ).

3.3. Examples

3.3.1. Bell-Diagonal States
As a first and seminal example of application of this procedure, we consider general
BD states. They can be expressed as:

ρBD({pα}) =
4∑︂

α=1
pα|ψα⟩⟨ψα|

= 1
4

⎛⎝I +
∑︂

i=x,y,z
ciσ

0
i σ

1
i

⎞⎠ , (3.21)

where the |ψα⟩ are the four Bell states: |ψ±⟩ = 1√
2(|00⟩ ± |11⟩) and |ϕ±⟩ =

1√
2(|01⟩±|10⟩). Furthermore, we have ∀i, |ci| ≤ 1, and the ci are such that the vector

(c1, c2, c3), fully characterizing the state, belongs to the tetrahedron T of vertices
(−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1). The separable BD states belong to
the octahedron O of vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1), corresponding to the
condition ∀α, pα ≤ 2, and the classical BD states are located on the Cartesian axis
(c1, 0, 0), (0, c2, 0), (0, 0, c3) [52, 45, 69, 70]. Direct calculation yields the following
result for the QCD of general BD states

C(ρBD({pα}) = 2
4∑︂

α=1
p2
α − 4 max

P{i,j,k,l}
{pipj + pkpl} , (3.22)

where the maximum is taken on all permutations P{i, j, k, l} of the indices {1, 2, 3, 4}.
Figure 3.1 shows the QCD of BD states on a face of T .
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Figure 3.1.: QCs C[ρBD](c1, c2 = c1, c3)/2 for a face of the BD state tetrahedron T ,
corresponding to a mixture of three Bell states. The red dotted line
defines the smaller triangle where the state is separable, according to
the PPT criterion [71, 60]. The vertices of the larger triangle correspond
to pure Bell states. Those of the red dotted triangle, of vanishing QCD,
correspond to equal-weight mixtures of two Bell states, which are
evidently the three only classical states in the domain represented
here.

We were not able to find a simple analytic solution of the minimization procedure
for the most general case of BD states. However, numerical minimization (for these
calculations, we have applied a gradient steepest-descent method) provided us with
empirical evidence that the procedure (3.16), applied on the eigendecomposition
(i.e. the decomposition into a mixture of BD states) also leads for these states to
the squared concurrence, as shown in Figure 3.2, which represents a face of the
tetrahedral domain of BD states. It is interesting to note that the ED, as the
concurrence and unlike the QCD, is constant on planes parallel to the boundary
faces of the separability region: the ED of any given state indeed equates the QCD
of the closest point located on a hinge of T , hence the closest mixture of only two
Bell states.
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Figure 3.2.: Entanglement distance E[ρBD](c1, c2 = c1, c3)/2 for a face of the BD
state tetrahedron T , corresponding to a mixture of three Bell states.
The red dotted line defines the smaller triangle where the state is
separable, according to the PPT criterion [71, 60] and a number of
alternative derivations available in the literature (see e.g. [52]). Values
below the threshold of 10−3 have been represented in black to emphasize
that they correspond to a numerical zero, given the level of precision
allowed by such time-costly minimization. The vertices of the large
triangle correspond to pure Bell states, and those of the smaller black
triangle to equal-weight mixtures of two Bell states.

3.3.2. Werner states
Let us now consider the two-qubit Werner states (WS) [72], which stems as a
special case of BD state, for which a simple analytical solution for the proposed
procedure is available. WS are used as a test bed since they illustrate many features
of mixed-state entanglement [19]. It is well-established that Werner states are
separable in the parametric region p ≥ 1/2 [72]; yet, in Appendix A, we propose a
new demonstration of this fact, highlighting how the internal statistical structure
of a state can be analysed to evidentiate its alternative realizations.
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Using Eq. (3.21), WS can simply be expressed as

ρW (p) = ρBD

(︃
p

3 ,
p

3 ,
p

3 , (1− p)
)︃
. (3.23)

Via direct calculations, we get for the QCD of the WS

C(ρW (p)) = 2(1− 4
3p)

2 . (3.24)

WS yields a relatively simple solution to the minimization procedure (3.16). In
fact, leaning on our previous knowledge of the separability region of WS, we were
able to analytically retrieve the optimal local partial transformations (3.15), as
depicted with more details in Appendix A. It can be easily verified that, setting

U|ψ+⟩(θ) = Uµ
z (θ)Uµ

x (π),
U|ψ−⟩(θ) = Uµ

z (π − θ)Uµ
x (π), and

U|ϕ+⟩ = U|ϕ−⟩ = I, (3.25)

with µ = 0, 1 arbitrarily chosen, the fixed points are found for θ = arccos ( 3
2p − 2).

This last expression has a solution if and only if p ≥ 1/2, which is the parametric
region of separability for ρW (p) (as can be verified by the application of the positive
partial trace criterion (PPT), see [60]). Hence, E(ρW ) = 0 for p ≥ 1/2. For p < 1/2
numerical minimization yields E(ρW ) = 4p2 − 4p+ 1. This corresponds to θ = 0
uniformly on this whole domain, which is also the value previously determined
at p = 1/2: hence, the minimum after this point cease to be a fixed point, but
keeps the last position in terms of the parameters governing the rotations. We can
understand this as the fixed point reaching the boundary of the parametric domain
as the geometry of the state is changing continuously, becoming a simple point on
a slope, located at this boundary. Altogether, for Werner states, the result of our
entanglement measure exactly equates twice the square of the concurrence [18],
that is

E(ρW (p)) = 2Θ(1/2− p)(1− 2p)2 , (3.26)
Fig. 3.3 shows C(ρW (p))/2 versus p, there it is clear that the only state with no
QC, i.e. classical state according to the conventional terminology [23], is the one
corresponding to the value p = 3/4, whereas the maximally quantum-correlated
state is that of p = 0. On the other hand, the state is entangled only in the region
p < 1/2, and separable otherwise, a well-known fact that can be easily checked
by the application of the PPT criterion [71, 60]. Alternatively, we can find, in
the separable region, the expression of ρW convex combination of (non-orthogonal)
product states, using a more involved calculation resorting to the so-called Bloch
representation.
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Figure 3.3.: C[ρW ](p)/2 and E[ρW ](p)/2 versus p for state (3.23). It is clear that the
state ρW (p = 0) is, as expected, the maximally-entangled, and that the
states ρW (p > 1/2) are fully-separable, as can be verified using the PPT
criterion [71, 60]. This plot emphasizes that separable states can contain
QC (i.e. not be classical). Note that, here E[ρW ](p)/2 = C2

2 [ρW ](p),
that is, the ED equates twice the squared concurrence for 2-qubits
Werner states.

3.3.3. Generalized Werner states
Let us now consider as a multipartite example the following one-parameter density
matrix

ρW3(p) = p|GHZ+⟩⟨GHZ+|+
(1− p)

8 I8 , (3.27)

where |GHZ+⟩ = (|000⟩+ |111⟩)/
√

2, I8 is the identity operator of the three-qubit
Hilbert space and 0 ≤ p ≤ 1. This is a generalization of the Werner states to
three qubits, termed generalized Werner states [73, 74, 75]. The states ρW3(p) are
known to be fully separable for 0 ≤ p ≤ 1/5 [73, 76, 74] and genuinely multipartite
entangled states in the region 3/7 < p ≤ 1. In the region 1/5 < p ≤ 3/7 the states
ρW3(p) are bi-separable yet inseparable under any fixed bipartition [77]. Via direct
calculations, we get

C(ρW3(p)) = 3p2 . (3.28)
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Numerical minimization provided the values for the ED shown in Fig. 3.4. There,
we report in dotted line the QCD per qubit and continuous line the ED per
qubit for the states ρW3(p). Fig. 3.4 clearly shows that ED(ρW3(p)) > 0 only
for p > 3/7, that is when the states are generally entangled. As for the region
1/5 < p ≤ 3/7 where ED should not be zero according to ii), we got numerical
zero which we assume corresponds to very weak, but finite values. We interpreted
this as a consequence of the fact that, in this region, the states ρW3(p) are not
separable under any fixed bipartition, thus assuming the decomposition of the form∑︁
j ρ

1
j ⊗ ρ23

j + ρ2
j ⊗ ρ13

j + ρ3
j ⊗ ρ12

j . Hence the regularization procedure reaches easily
small values for the ED.

Figure 3.4.: C[ρW3 ](p)/3 (dotted line) and E[ρW3 ](p)/3 (continuous line) versus p
for state (3.27). It is clear that the state ρW3(p = 1) is, as expected,
the maximally entangled, and that the states ρW3(p > 3/7) are not
separable. The latter are genuine three-partite entangled states.

3.3.4. Three-qubit States Interpolating Between Bi-separable
and Genuine Entangled States

Let consider a further multipartite example, that is the one-parameter density
matrix

ρ3(p) = w+|GHZ+⟩⟨GHZ+|+ w2|ψ2⟩⟨ψ2|+ w
(1− p)

8 I8 , (3.29)
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where

w+ = p[1− 4p(1− p)] ,
w2 = (1− p)[1− 4p(1− p)] ,
w = 4p(1− p) ,

(3.30)

|ψ2⟩ = |0⟩(|00⟩ + |11⟩)/
√

2 and 0 ≤ p ≤ 1. For p = 0, ρ3(p = 0) is a pure
bi-separable state, for p = 1/2, ρ3(p = 1/2) is a maximally mixed state of three
qubits and for p = 1, ρ3(p = 1) is a pure maximally entangled state. Via direct
calculations, we get

C(ρ3(p)) = (1− 2p)4

2

[︃
5− 10p+ 11p2 − (1− p)

√︂
1− 2p(1− p)

]︃
. (3.31)

Using numerical minimization, we have obtained the results for the ED shown in Fig.
3.5. In this figure, we report as a dotted line the QCD per qubit and as a continuous
line the ED per qubit, for the states ρ3(p). Fig. 3.5 shows that E(ρ3(p)) > 0 for
0 ≤ p ⪅ 0.18 and for 0.81 ⪅ p ≤ 1. Furthermore, the maximum value for ED per
qubit in the region 0 ≤ p ⪅ 0.18 is located at p = 0 and has the value 2/3. 2/3 is
the maximum value for ED per qubit, in the case of bi-separable three-qubit states.
This confirms that the states of this region are stably bi-separable and that the
state |ψ2⟩⟨ψ2| has the maximum local degree of entanglement. The maximum value
for ED per qubit in the region 0.81 ⪅ p ≤ 1 is located at p = 1 and has value 1.
Therefore, the states of this region are not separable and, at least close to p = 1, are
certainly genuinely entangled. For 0.18 < p < 0.81 the entanglement is numerically
null, thus suggesting the states of this region are separable or bi-separable yet
inseparable under any fixed bipartition, hence not genuinely three-partite entangled
states. Remarkably, the QCD is null only for the state corresponding to p = 1/2,
which is the maximally mixed one.
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Figure 3.5.: C[ρ3](p)/3 (dotted line) and E[ρ3](p)/3 (continuous line) versus p
for state (3.29). It is clear that the state ρ3(p = 1) is, as expected,
the maximally entangled one, and that the states ρ3(p > 0.81) or
ρ3(p < 0.18) are not separable.

3.4. The Local Ancilla Problem
We were able to express the QCD, our measure of QCs, in the simple closed form
(3.9), owing to the simplicity of the Hilbert-Schmidt distance (3.1). As we saw
in the above, this simplicity allows ease of computation, but also direct analysis
and interpretation of its behaviours relative to the considered states and their
decompositions.

However, it has been argued that the Hilbert-Schmidt norm is unfit to define
distance-induced entanglement or QC measures [23, 78, 79, 80].

This is due to the fact that, in contrast with the Bures distance or the trace
distance, it is not contractive under the addition or removal of an uncorrelated
ancilla.

In fact, consider the product ρ⊗ ρa, where ρa is a possibly mixed arbitrary local
ancilla. Then, reminding that Tr[O1 ⊗O2] = Tr[O1] Tr[O2], it is straightforward to
see that, ∀µ /∈ a

Cµ (ρ⊗ ρa) = Cµ (ρ) Tr
[︂
(ρa)2

]︂
. (3.32)
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In turn, this implies that, in general, discarding the uncorrelated ancilla ρa using
the partial trace operation can increase the value of Cµ, namely

Cµ(ρ⊗ ρa) ≤ Cµ(ρ) (3.33)

Yet, as pointed out in references [23, 78, 79, 80], this property violates requirement
C4. Clearly, the ED inherits this undesirable property from the QCD it is built from.

One may claim that Eq. (3.33) remains a somewhat benign pathology, as it
amounts to a scaling problem, which can be easily overcome, or even discarded as
an irrelevant detail. On the contrary, this problem is in fact quite serious. First, it
was shown in [81] that a mere rescaling by the purity C (ρ) /Tr [ρ2] does not fully
solve the issue. Second, Eq. (3.33) implies in fact a more systematic issue.

As an example, let (A,B) be a bipartition of Q such that µ /∈ B, and ρ be a
biseparable state ρ = ∑︁

k pkρ
A ⊗ ρB. For such a state, Eq. (3.7) may be rewritten

Cµ(ρ) = inf
nµ

∑︂
kl

pkpl Tr
[︂
ρBk ρ

B
l

]︂ (︂
Tr
[︂
ρAk ρ

A
l

]︂
− Tr

[︂
ρAk σ

µ
nρ

A
l σ

µ
n

]︂)︂
. (3.34)

It can be verified that the following is a CPTP map acting on B

IA ⊗MB [ρ] = TrB [ρ]⊗ |0⟩ ⟨0|B =
∑︂
k

pkρ
A
k ⊗ |0⟩ ⟨0|

B = ρA ⊗ |0⟩ ⟨0|B . (3.35)

Evidently, C
(︂
ρA ⊗ |0⟩ ⟨0|B

)︂
= C

(︂
ρA
)︂
≥ C (ρ).

Nevertheless, this drawback can be overcome by defining the modified measure

˜︁C (ρ) = C (√ρ) , (3.36)

as was already proposed for the geometric discord (Ref. [79]).
As noted in [79], the insertion of √ρ in the QCD appears in fact quite natural.

Square root of density matrices are evocative of probability amplitudes, and are
widely employed in the field of quantum information, for instance in the celebrated
Wigner-Yanase skew information [82].

Recall that, for any pure state |k⟩,
√︂
|k⟩ ⟨k| = |k⟩ ⟨k|, implying that √ρ retains

the spectral properties of ρ, namely, for any ρ = ∑︁
k
pk |k⟩ ⟨k|, where {pk, |k⟩} is the

spectrum of ρ, we have √
ρ =

∑︂
k

√
pk |k⟩ ⟨k| . (3.37)

It immediately results that ˜︁C(ρ) inherits properties C3 and C2. Requirement C1
is also fulfilled, because the square root of a classical-quantum state can always
be written as

√︂
ρAB = ∑︁

k
ΠA
k ⊗

√︂
pkρBk with {ΠA

k } an orthonormal basis for A,
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hence the argument drawn in Section 3.1 still holds. While ˜︁C (ρ) clearly does not
suffer the local ancilla problem, it remains unclear if there exists some other CPTP
channels ΛCPTP

ν ̸=µ such that ˜︁Cµ (︂ΛCPTP
ν ̸=µ [ρ]

)︂
> ˜︁Cµ (ρ); yet Refs. [79, 23] claims that

unitary response measures, such as ours, are indeed fully fixed by the square root
trick; hence the modified QCD satisfies C4.

It is not clear whether inserting the modified QCD in place of the QCD, into the
regularized ED (3.16), yields the same results. Unfortunately, while √ρ and ρ share
the same eigenvectors, √ρ cannot in general be written as a linear combination
of arbitrary realizations of ρ. Formally, ρ = ∑︁

k
pkρk does not necessarily imply

√
ρ = ∑︁

k
p̃kρk, except in the special case where the ρk form an eigenbasis. In

particular, nothing guarantees that the optimal realization {pk, ρk} that minimizes
(3.16) can be used to minimize E(√ρ). As a result, we cannot straightforwardly
extend our results showing the monotonicity of E(ρ), to E(√ρ).

However, given the large dimensionality of the space which is explored by the
minimization procedure (3.16), added with the deep informational meaning of the
concept of matrix square root, it is not improbable that E(√ρ) is an entanglement
monotone, and that further research could isolate subspaces of minimization in
which the procedure is tractable in practice.

3.5. Discussion
Our goal in this work has been to derive a directly computable and genuine QC
measure and a numerically affordable entanglement measure, from the geometric
properties of the projective Hilbert space describing a quantum multipartite system.

In our derivation, to extract from a given state ρ its entanglement essence, we
have defined a regularization procedure for the density matrix that turns our
measure of QC into a measure of entanglement. This regularization is applied to a
given realization of ρ in terms of pure states; in the absence of further clues, it hence
involves, as the overwhelming majority of mixed state entanglement monotones do,
an additional minimization over all the possible decompositions of ρ, that in the
general case requires a practically intractable numerical optimization. However,
relying on the results we obtained on a few examples, we have hope that further
research in this direction will, at least for some classes of states, identify the optimal
realization, thereby significantly relieving the total computational cost.

We have proved that the entanglement and quantum-correlation measures derived
do satisfy the most important requirements for suitable measures of these quantities;
we further shown that the remaining local ancilla problem should not be considered
a significant drawback, as it can be solved resorting to the square root of the density
matrix, though the latter technique makes it difficult to analytically prove LOCC
monotonicity.

To test our QC and entanglement measures, we have applied them to two classes
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of mixed two-qubit states of which the entanglement properties are well-known,
and we have verified the accordance between our measures and the expected results.
Furthermore, we have applied the QC and entanglement measures to Werner
state generalization to three qubits, and to a one-parameter family of three-qubit
mixed states. The latter interpolate between a bi-separable state and a genuine
multipartite state, passing through a fully separable state. Also in these cases of
multipartite states, then we have verified a satisfactory agreement between the
behaviours of our measures and the ones expected or already known from the
literature.
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4. Entanglement, quantum
correlators and connectivity in
graph states

In this chapter, we depict the work we issued in [37], presenting a novel analysis of
the structure of Graph States, that employs an original perspective.

We start in Section 4.1 by introducing the framework of Graph States and Pseudo
Graph Gtates, presenting how the former stem as the key resource in measurement-
based quantum computation. Then, in Section 4.2, we quantify the entanglement
of Pseudo Graph States, using the entanglement distance (2.21). In Section 4.3,
we present a novel approach to probe the underlying graph connectivity of gen-
uine Graph States, using correlators of Pauli matrices; we first do so by studying
correlations of pairs of qubits (i.e. two-point correlators), revealing how these
quantities solely depend on the relation between their respective neighbourhoods
(namely, in the language of graph theory, if they are twins, adjacent twins, leaf
vertices, etc...); we then notice the possibility of more general probing of graph
properties, through the use of higher order correlators (i.e. involving more than
two qubits). In Section 4.4, we further remark interesting implications in terms of
measurement processes, namely how our approach can highlight the equivalence
of some projective measurements. We conclude in Section 4.5, by underlining the
simplicity of data analysis in this context, coming from the fact that all of the
correlators derived take values −1, 0 or 1, and by summing up the advantages of
our method, with respect to the stabilizer formalism, and highlighting how both
complete each other in the aim of characterizing GS and use them as building
blocks for quantum algorithms.

4.1. Definition of graph states
Graph States (GSs) constitute a class of maximally entangled pure quantum states
that have emerged as a powerful resource for quantum information processing [25,
83, 84, 85]. Indeed, they are valuable for realizing quantum gates and enabling
fault-tolerant quantum computation. Additionally, GSs serve as the foundation
for various quantum computing protocols, especially for the one-way quantum
computer, also known as the measurement-based quantum computer [83, 84, 85, 63].
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4. Entanglement, quantum correlators and connectivity in graph states

It can be shown [63] that any quantum circuit can be efficiently simulated using a
GS, on which appropriate measurements are performed; as such, GSs represent a
universal resource for quantum computing. Therefore, any result obtained for the GS
model can, in principle, be extrapolated to other models of quantum computation.
GS are complex high-dimensional superpositions of states of N qubits, prepared as
follows.

Let V be the set of indices that identify a set of N qubits and let E be a set
of pairs of indices (a, b), with a, b ∈ V . Let’s start with the initial product state
|Ψ⟩ = |+⟩V := ⨂︁

µ∈V |+⟩µ, where every |+⟩µ = 1√
2(|0⟩µ + |1⟩µ) is the eigenstate

of σµx with eigenvalue +1, for µ ∈ V . For each pair (a, b) ∈ E, we consider the
fine-tuned unitary operator

Uab(φab) = e−iφab
4 ei

φab
4 σa

z ei
φab

4 σb
ze−iφab

4 σa
zσ

b
z , (4.1)

where φab ∈ R. For sake of simplicity we will assume here ∀(a, b), φab = φ. The
pseudo-graph state (PGS) is defined as

|G(φ)⟩ =
∏︂

(a,b)∈E
Uab(φ)|Ψ⟩ , (4.2)

while the genuine GS correspond to the case φ = π

|G⟩ =
∏︂

(a,b)∈E
Uab(π)|Ψ⟩ . (4.3)

Note that all the operators (4.1) commute with each other.
Each of the operators (4.1) entangles a pair of qubits1.

It has been shown that a general GS does not correspond to the ground state of
a physical system. However, a GS can be obtained artificially in a physical system
that allows the activation of Ising-like interactions σazσbz. In this case, the time
duration of the interaction determines the value of φ (hereinafter referred to as
interaction strength). Physical implementations of such systems were performed on
some of the quantum computer prototypes developed by IBM [86, 87]. In practice,
any physical device for universal quantum computing, can be used to realize GS in
the way described above [84].

Since a GS is uniquely defined by a couple of sets (V,E), it is uniquely defined
by a undirected graph G(V,E), where each qubit (associated with an element of

1As an example to clarify this point, consider the simplest case V = {a, b}, E = {(a, b)} and
φab = π. We have:

|G⟩ = Uab(φ = π)|+ +⟩ = 1
2 (|+ +⟩+ | −+⟩+ |+−⟩ − | − −⟩) = 1√

2
(|+ 0⟩+ | − 1⟩) ,

a maximally entangled state of two qubits.
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V ) is a vertex, and each pair in E is an edge (or a link) of the graph. In most of
the literature, the preferred terminology is to refer to GSs defined on lattices as
cluster states. However, in the present work, we address the study of GS in the
general case and therefore associated with generic graphs.

The genuine GS |G(π)⟩ = |G⟩ of a given graph G(V,E) is the unique common
eigenvector with eigenvalue +1 of the operators

Kµ = σµxσ
N(µ)
z , (4.4)

where µ ∈ V and N(µ) denotes the set of neighbours of µ. The group S generated
by the set

{︃
Kµ

}︃
µ∈V

is called the “stabilizer” of the GS. Clearly, ∀g ∈ S, g|G⟩ = |G⟩,

and the projector onto a GS can be expressed as |G⟩⟨G| = 1
2N

∑︁
g ∈ Sg.

GS vectors are thus in one-to-one correspondence with their stabilizer S, and
any operation applied to |G⟩ can be mapped to an operation applied to S. For
example, for any unitary operation U (i.e., any quantum gate), if S stabilizes |G⟩,
then USU † stabilizes U |G⟩ [88].

The group S is completely determined by its N generators
{︃
Kµ

}︃
µ∈V

(which
belong to the Pauli group and thus have a simple algebra). On the other hand, to
explicitly write the corresponding state vector, it is necessary to determine the 2N
amplitudes. For this reason, the stabilizer formalism usually provides a significant
computational advantage.

Furthermore, the stabilizer formalism is often used as a preferred framework to
compare different models of quantum computation, for example, for implementing
error-correcting codes or examining the effects of quantum gates and measurement
processes [88, 63].

However, we believe that, while the stabilizer representation is more useful for
studying known initial states and how they transform under the action of such
operations, it proves to be an unnecessary complication in other contexts, such as
the probing and tomography of unknown states. This is because the calculation of
correlations and expectation values requires taking into account all elements of S
rather than its mere generators.

Thus, in this work, we do not resort to the stabilizer formalism but rather employ
more intuitive notion of correlation and expectation values.

We start by quantifying the entanglement in the general case of PGS using the
ED, previously defined in Section 2.2. Subsequently, we explore a novel approach
to investigate the underlying graph connectivity of genuine GS using correlators of
Pauli matrices. In particular, we compute correlations between pairs of qubits (i.e.,
two-qubit correlators) and demonstrate that these quantities depend exclusively on
the relation between their neighbourhoods (i.e., in graph theory language, whether
they are twins, adjacent twins, leaf vertices, etc.). We discuss the possibility of a
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more comprehensive exploration of graph properties through the use of higher-order
correlators (involving more than two qubits). Furthermore, we show that our
approach can highlight when two projective measurements are equivalent. Also, we
emphasize the simplicity of data analysis offered by our approach in this context, as
all correlators can only assume the values of −1, 0, or 1. We conclude this work by
summarizing the advantages of our method with respect to the stabilizer formalism,
by showing that these two approaches offer a complementary characterization of GS.

4.2. Entanglement in Pseudo Graph States
The ways of quantifying entanglement in multipartite states are manifold [10, 13].
In this work, we will solely refer to qubit-wise entanglement, that is entanglement
of bipartitions (µ, µC), where µ is a qubit, and µC is its complement relative to the
set of all qubits in the system.

The Entanglement Distance (ED), first defined in Ref. [56], is an entanglement
measure for general multipartite pure states; it has been adapted in Ref. [34] to the
more general framework of multipartite mixed states. It has already found since
then some interesting applications [12, 11, 34]. It finds its theoretical grounds on
the Fubini-Study metric associated to the local-unitary invariant projective Hilbert
space, called in this context the Entanglement Metric, of which deep geometric
meaning has been further explored in Ref. [35].

The single-qubit ED is defined as

Eµ(|s⟩) := 1−
∑︂

j=x,y,z
| ⟨s|σµj |s⟩ |2, (4.5)

which equates 1 if µ is maximally entangled with the rest of the system, and 0 if it
is fully factorizable. Eq. (4.5) thus stems as a measure of bipartite entanglement
on the bipartition (µ, µC).

We choose here to use the latter definition of entanglement, which possesses the
advantage of being very easy to compute, relative to the von Neumann entropy.
We further define the total entanglement of a state as ∑︁

µ∈Q
Eµ(|s⟩).

From the anticommutation relations of the Pauli matrices

{σµi , σνj } = 2Iδijδµν + 2σµi σνj (1− δµν), (4.6)
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we straightforwardly derive

σaxUab(φ) = e−iφ
2 σ

a
z ei

φ
2 σ

a
zσ

b
zUab(φ)σax

σayUab(φ) = e−iφ
2 σ

a
z ei

φ
2 σ

a
zσ

b
zUab(φ)σay

σazUab(φ) = Uab(φ)σaz
σνjUab(φ) = Uab(φ)σνj , ∀j = x, y, z, ∀ν ̸= a, b

(4.7)

Defining U
G
(φ) = ∏︁

(a,b)∈E Uab(φ), we obtain

σaxUG
(φ) = U

G
(φ)

(︃ ∏︂
b∈N(a)

e−iφ
2 σ

a
z ei

φ
2 σ

a
zσ

b
z

)︃
σax

σayUG
(φ) = U

G
(φ)

(︃ ∏︂
b∈N(a)

e−iφ
2 σ

a
z ei

φ
2 σ

a
zσ

b
z

)︃
σay

σazUG
(φ) = U

G
(φ)σaz

(4.8)

The expectation values of the first Pauli matrix hence write

⟨G(φ)|σνx|G(φ)⟩ = ⟨Ψ|U †
G
(φ)σνxUG

(φ)|Ψ⟩

= ⟨Ψ|U †
G
(φ)U

G
(φ)

(︃ ∏︂
µ∈N(ν)

e−iφ
2 σ

ν
z ei

φ
2 σ

ν
zσ

µ
z

)︃
σνx|Ψ⟩

= ⟨Ψ|e−inν φ
2 σν

z

(︃ ∏︂
µ∈N(ν)

ei
φ
2 σ

ν
zσ

µ
z

)︃
|Ψ⟩

= cos(nνφ/2) cosnν (φ/2) ,

(4.9)

where N(ν) is the set of the first neighbours of ν, and nν = |N(ν)| is its cardinality.
We used the fact that all the terms including a Pauli matrix σµz acting on some
µ ∈ N(ν) vanish, since they appear only once and ∀µ, ⟨Ψ|σµz |Ψ⟩ = 0.

The expectation value of the second Pauli matrix write

⟨G(φ)|σνy |G(φ)⟩ = ⟨Ψ|U †
G
(φ)σνyUG

(φ)|Ψ⟩

= −i⟨Ψ|
(︃ ∏︂
µ∈N(ν)

e−iφ
2 σ

ν
z ei

φ
2 σ

ν
zσ

µ
z

)︃
σνy |Ψ⟩

= −i⟨Ψ|e−inν φ
2 σν

z

(︃ ∏︂
µ∈N(ν)

ei
φ
2 σ

ν
zσ

µ
z

)︃
|Ψ−

ν ⟩

= − sin(nνφ/2) cosnν (φ/2),

(4.10)

where |Ψ−
ν ⟩ = |+⟩V \{ν} ⊗ |−⟩ν , that is, the pure product state with every qubit in

the state |+⟩ except for qubit ν which is in the state |−⟩. The final result stems
from the fact that the only non-vanishing terms are the ones including one and
only one Pauli matrix σνz acting on ν, since ∀µ, ⟨Ψ|σµz |Ψ−

ν ⟩ = δµν .
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Finally, the commutation relations (4.8) trivially imply

⟨G(φ)|σνz |G(φ)⟩ = ⟨Ψ|U †
G
(φ)σνzUG

(φ)|Ψ⟩
= ⟨Ψ|σνz |Ψ⟩ = 0

(4.11)

Figure 4.1.: The ED of a single qubit, as a function of the interaction strength
(or duration), for different numbers nν of nearest neighbours. The
numerical results agree perfectly with the analytical one of Equation
(4.12).

It results that the single-qubit ED of a given qubit ν in a PGS depends on both
the interaction strength φ and on the number nν of its nearest neighbours

Eν(|G(φ)⟩) = 1− cos(φ/2)2nν (4.12)

The numerical confirmation of this result is displayed in Figure 4.1.
As stated before, the value φ = π corresponds to the genuine GS, in which

every non-isolated qubit is maximally entangled, regardless of the number of its
neighbours. Consider a PGS close to the genuine GS, i.e. where this typical
interaction strength is added with a small error δφ, we retrieve

Eν(|G(π + δφ)⟩) ≈ 1−
(︄
δφ

2

)︄2nν

, (4.13)
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Figure 4.2.: The entropy of entanglement for a bipartition (ν, νC), as a function
of the interaction strength (or duration), for different numbers nν of
nearest neighbours, numerically computed. The scaling and behaviour
of this well-known measure of bipartite entanglement is evidently very
similar to that of the ED.

hence the qubits in a quasi GS get exponentially closer to the maximal value
of entanglement as the number of their nearest neighbours increases; this is in
agreement with previous results presented in the literature, where it has been
found that the entanglement of single qubits in GS depends on the degree of the
corresponding vertex (i.e. on nν) [86, 87]. The only non-trivial case where the
small error could be relevant is the one of a qubit with only one link, where the
correction is of o(δφ2).

It results, as Figure 4.3 emphasizes, that the limit for a large number of bounds
writes

Eν(|G(φ)⟩) −→
nν→∞

⎧⎨⎩0 if φ = 2nπ, ∀n ∈ N
1 else.

(4.14)

i.e., up to a null measure set of values of φ, the ED of a single qubit approaches
1 when the number of its neighbours becomes very large. In other words, even if
the pairwise interaction is very weak, the qubit-wise entanglement, in the sense of
(4.5), can be very close to its maximal value.

Note that, as can be seen in Figure 4.2 the entropy of entanglement shows
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Figure 4.3.: The ED of a single qubit, as a function of the interaction strength (or
duration), for different numbers nν of nearest neighbours.

the same behaviour and scaling as the ED, suggesting that the later stems as a
valid alternative to the former as a measure of bipartite entanglement. It also has
the benefit of being easier to compute, both numerically and analytically, as it
only requires the calculation of expectation values, in contrast with the entropy of
entanglement, which requires to compute partial trace and matrix logarithms.

4.3. Correlators and the Effects of Measurement in
Graph States

We now focus on the case of genuine GS, i.e. when φ = π. In particular, we want
to compute the various two-point correlators. We denote

U
G

:=
∏︂

(a,b)∈E
Uab(φ = π) =

∏︂
(a,b)∈E

I + σaz + σbz − σazσbz
2 . (4.15)

77



4. Entanglement, quantum correlators and connectivity in graph states

From (4.8), we derive the commutation relations

σaxUG
= U

G
σN(a)
z σax

σayUG
= U

G
σN(a)
z σay

σazUG
= U

G
σaz ,

(4.16)

Note that, for two ensembles A and B, we have

σAz σ
B
z = σA∪B

z = σA△B
z ,

where A△B = (A ∪B) \ (A ∩B) is the symmetric difference between sets A and
B.

This operation is commutative and associative. Remark that A△B = ∅ if and
only if A = B. Furthermore, ∆

i

Ai := A0△ A1△ · · · △ Ak △ · · · = ∅ if and only if
∀ν, there is an even number k of sets Ai containing ν.

We can now calculate the correlators, taking advantage of the fact that ∀A ̸=
∅, ⟨Ψ|σAz |Ψ⟩ = 0.

4.3.1. Two-point correlators
We start here by computing pairwise correlations.

⟨G|σνxσµx |G⟩ = ⟨Ψ|U
G
σνxσ

µ
xUG
|Ψ⟩

= ⟨Ψ|σN(ν)
z σN(µ)

z |Ψ⟩
= ⟨Ψ|σN(ν)△N(µ)

z |Ψ⟩

=
⎧⎨⎩1 if N(ν) = N(µ),

0 else.

(4.17)

since (N(ν) ∪N(µ)) \ (N(ν) ∩N(µ)) = ∅ if and only if N(ν) = N(µ). In terms of
graph theory, ⟨G|σνxσµx |G⟩ = 1 if and only if µ and ν are twins (see Figure 4.4 for
a visual example.).

⟨G|σνxσµy |G⟩ = ⟨Ψ|U
G
σνx(−iσµz σµx)U

G
|Ψ⟩

= −i⟨Ψ|σN(ν)
z σN(µ)

z σµz |Ψ⟩
= −i⟨Ψ|σN(ν)△N(µ)△{µ}

z |Ψ⟩
= 0,

(4.18)

because, the graph being undirected, if ν ∈ N(µ) then also µ ∈ N(ν), hence
N(ν)△N(µ) ̸= {µ}, where {µ} is the singleton set containing the qubit µ only.
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⟨G|σνxσµz |G⟩ = ⟨Ψ|U
G
σνxσ

µ
zUG
|Ψ⟩

= ⟨Ψ|σN(ν)
z σµz |Ψ⟩

= ⟨Ψ|σN(ν)△{µ}
z |Ψ⟩

=
⎧⎨⎩1 if N(ν) = {µ},

0 else.

(4.19)

In terms of graph theory, ⟨G|σνxσµz |G⟩ = 1 if and only if ν is a leaf vertex (or
pendant vertex) attached to G through µ (see Figure 4.4 for a visual example.).

⟨G|σνyσµy |G⟩ = ⟨Ψ|U
G
(iσνxσνz )(−iσµz σµx)U

G
|Ψ⟩

= ⟨Ψ|σN(ν)
z σνzσ

µ
z σ

N(µ)
z |Ψ⟩

= ⟨Ψ|σN(ν)△{ν}△N(µ)△{µ}
z |Ψ⟩

= ⟨Ψ|σ

(︂
N(ν)∪{ν}

)︂
△
(︂
N(µ)∪{µ}

)︂
z |Ψ⟩

=
⎧⎨⎩1 if N(ν) ∪ {ν} = N(µ) ∪ {µ},

0 else.

(4.20)

In terms of graph theory, ⟨G|σνyσµy |G⟩ = 1 if and only if µ and ν are adjacent twins
(see Figure 4.4 for a visual example.).

⟨G|σνyσµz |G⟩ = ⟨Ψ|U
G
(iσνxσνz )σµzUG

|Ψ⟩
= i⟨Ψ|σN(ν)

z σνzσ
µ
z |Ψ⟩

= i⟨Ψ|σ

(︂
N(ν)∪{ν}

)︂
△{µ}

z |Ψ⟩
= 0,

(4.21)

⟨G|σνzσµz |G⟩ = ⟨Ψ|σνzσµz |Ψ⟩ = 0, (4.22)
For two arbitrary measurements, performed in the directions determined by the

unitary vectors vν and vµ, the correlation then writes

⟨G|σνvσµv |G⟩ =
∑︂

i,j=x,y,z
vνi v

µ
j ⟨G|σνi σ

µ
j |G⟩

= vνxv
µ
x if N(ν) = N(µ)

+vνxvµz if N(ν) = {µ}
+vνzvµx if N(µ) = {ν}
+vνyvµy if N(ν) ∪ {ν} = N(µ) ∪ {µ},

(4.23)
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where we denoted σµv = ∑︁
j=x,y,z v

µ
j σ

µ
j . It is fairly obvious that any such correlator

can henceforth be fully determined by a quick inspection of the adjacency matrix
AG associated to G. For instance, the condition N(ν) = N(µ) is equivalent to
Aν = Aµ.

Figure 4.4.: Example of a graph. Here, vertices 3 and 5 are twins, 1 and 2 are
adjacent twins and 4 is a leaf.

This result makes it clear that non-vanishing pairwise correlations arise only for
very specific connectivity properties of the sites being considered. More precisely,
graphs which contain neither twins, nor adjacent twins, nor leaf vertex, have only
vanishing pairwise correlations. This is for instance the case for regular lattices.

Quite interestingly, this also implies that, in GS, most measurements that can be
performed on one qubit yield no information on other qubits, and leaves the rest of
the system entangled. Such entangled states hence contain persistent entanglement:
a relatively large number of measurements are necessary to completely break their
entanglement.

One can also exploit the properties of these correlators to probe the connectivity
properties of a graph. Such a procedure could be for instance useful to check that,
in a physical apparatus realizing the GS, the implementation of the link operators
Uab was successful and free of errors (that would be, the unwanted presence or
absence of some of them).

From the above results, checking for twins, adjacent twins and leaf vertices will
follow a fairly obvious measurement procedure. Yet it is possible to go further and
check for instance for the mere pairwise neighbourhood, by removing irrelevant
vertices from the graph. To do this, we can use the well-known fact that projective
measurement of a single qubit in the direction z effectively removes it from the
graph, i.e. isolates it [84]. Formally,

P a
z±|G⟩ = P a

z±UG
|Ψ⟩ = U

G
P a
z±|+⟩a ⊗ |+⟩V \{a}

=
⎧⎨⎩

1√
2UG
|0⟩a ⊗ |+⟩V \{a} = 1√

2 |0⟩
a ⊗ |G \ {a}⟩

1√
2UG
|1⟩a ⊗ |+⟩V \{a} = 1√

2 |1⟩
a ⊗ σN(a)

z |G \ {a}⟩.
(4.24)
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Since σN(a)
z |G \ {a}⟩ is local-unitary equivalent to |G \ {a}⟩, such projective mea-

surement results in an equivalent statistics as the desired GS with graph G \ {a},
up to some rotations of the measurement axis.

With a few computations, it can easily be checked that

⟨G|

⎛⎝ ∏︂
µ̸=a,b

P µ
z±

⎞⎠σayσby
⎛⎝ ∏︂
µ̸=a,b

P µ
z±

⎞⎠ |G⟩
=
⎧⎨⎩±1 if b ∈ N(a) (↔ a ∈ N(b))

0 else.

(4.25)

It is hence enough, in order to examine the existence of a given link (a, b), to
perform a projective measurement on the rest of the graph, or at least on the sites
that may be linked to a or b, prior to measuring the correlator ⟨σayσby⟩.

4.3.2. Higher order correlators
The inspection of higher order correlators can be used to retrieve information on
more general properties of the graph.

4.3.2.1. Neighbourhood probing

Given an educated guess ˜︂N(ν) for the neighbourhood of ν, one can check its validity
by computing the correlator

⟨G|σνxσ
˜︁N(ν)
z |G⟩

⎧⎨⎩1 if ˜︂N(ν) = N(ν)
0 else,

(4.26)

4.3.2.2. Topological probing

The correlator

⟨G|σVx |G⟩ =
⎧⎨⎩1 if ∆µ∈V N(µ) = ∅

0 else,
(4.27)

results in 1 if and only if every site has an even number of neighbours.

Furthermore,

⟨G|σVy |G⟩ =
⎧⎨⎩i|V | if ∆µ∈V (N(µ) ∪ {µ}) = ∅

0 else,
(4.28)

results in ±1 if and only if every site has an odd number of neighbours. It is 1 if
|V | mod 4 = 0, −1 if |V | mod 4 = 2.
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Euler’s handshaking lemma states that, in any undirected graph, there is always
an even number of vertices ν such that nν is odd. This guarantees that, as expected,
this correlator never takes imaginary values.

In particular, if both (4.27) and (4.28) are null, G is not a regular graph (i.e.
for which ∃k ∈ N such that ∀ν, nν = k). For instance, it can’t be a lattice with
periodic boundary conditions.

4.4. Relation to measurement processes
As already mentioned in the introduction, GS were proposed as a support for
measurement-based quantum computation. To this aim, the system is first prepared
in a GS of which the associated graph G(V,E) is a regular lattice (usually, a finite
square lattice). Then, a quantum circuit is built from this state by performing
series of local projective measurements.

Hereafter, we thus investigate the effects of such measurements on the overall
state, in the light shed by the above results.

As noticed in Ref. [34], if the expectation value of a product of Pauli observables
(i.e. any product of Pauli matrices) on a given pure state |s⟩, i.e. a generalized
correlator, equates 1, then these observables are equivalent with respect to this
state. Namely, they act on the state in the same fashion, and the associated
projective measurements are themselves equivalent.

Formally, for any couple of observables A, B such that A2 = B2 = I, ⟨s|AB |s⟩ =
1 implies

AB |s⟩ = |s⟩
B |s⟩ = A |s⟩
PB |s⟩ = PA |s⟩
PB |s⟩ = PBPA |s⟩ ,

(4.29)

where PO = 1
2 (I +O) are projectors onto the eigenstates of O of eigenvalue +1.

The projective measurement of A is thus equivalent to that of B.

For instance, Equation (4.17) implies that, if µ and ν are twin vertices, the
projective measure of σνx is equivalent to that of σµx .

The case of higher order correlators leads to somewhat less trivial observations.
Consider a measurement of σνx with an outcome of +1. Formally, this corresponds
to applying the projector P ν

x = 1
2 (I + σνx) to the GS |G⟩, up to renormalization. Yet

Equation (4.26) together with Equation (4.29) tells us that this is in fact equivalent
to applying PN(ν)

z = 1
2

(︂
I + σN(ν)

z

)︂
. Notice that the latter projector is a non-local
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one, as it can’t be written as the product of local single-qubit projectors; its effect
is to project |G⟩ onto the subspace

{︃
|φ⟩

⃓⃓⃓⃓
σN(ν)
z |φ⟩ = |φ⟩

}︃
.

Non-locality implies that it does not correspond in itself to any physical mea-
surement process, and rather stems as an entangling operation. It may indeed map
a product state to an entangled state.

Let us examine further the effect of this projector on a GS. Omitting the
renormalization factor, we obtain

P ν
x |G⟩ = PN(ν)

z |G⟩ = PN(ν)
z U

G
|Ψ⟩ = U

G
PN(ν)
z |Ψ⟩

= 1
2UG
|+⟩V \N(ν) ⊗

(︂
|+⟩N(ν) + |−⟩N(ν)

)︂
.

(4.30)

It results that, as can also be seen by considering the commutation relations
(4.8), the operation U

G
P ν
xUG

effectively entangles every qubit µ ∈ N(ν) in a state
local-unitary equivalent to the Greenberger–Horne–Zeilinger state of nν qubits, a
prototypical case of maximally entangled state.

4.5. Conclusion
In an ideal setting, relatively few measurements should, in principle, be enough to
compute all of these correlators.
This is due to the fact that, for perfect GS, their outcomes can only be 1, −1 or
0. Yet the measurement of a Pauli observable can only result in outcomes of ±1,
whether it is a single-qubit or a multi-qubit (i.e. correlator) observable.

Hence if the statistics yields, for a given Pauli observable P , an expectation
value of ⟨G|P |G⟩ = 1, we expect to measure only ones. It is thus enough to have
measured a single −1 to conclude that ⟨G|P |G⟩ = 0. The same reasoning obviously
applies to the case of opposite value ⟨G|P |G⟩ = −1.

Conversely, if the statistics yields an expectation value of 0, the probability of a
measurement outcome ±1 is 1

2 , hence a uniform series of measurement outcomes be-
comes exponentially less likely as the number of measurements M grows. Precisely,
if the value 1 has been measured M times in a row (and the value −1 has never
been measured) the statistics yields ⟨G|P |G⟩ = 1 with a probability of 1− 2−M .
Hence one would need at most M = − log2 (ϵ) measurement samples to retrieve
the true statistics with a confidence of 1− ϵ.

In a quasi GS (i.e. φ = π + δφ), the link operators write Uab(π + δφ) = Uab δUab,
with

δUab = I− iδφ4
(︂
I− σaz − σbz + σazσ

b
z

)︂
, (4.31)
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up to o(δφ2). The resulting commutation relations write

σakUab δUab = Uab δUab

(︄
σbz + i

δφ

2 σaz − i
δφ

2 σazσ
b
z

)︄
σak , (4.32)

for k = x, y, while [σaz , Uab δUab] = 0.
Yet expectation values are always real, thus only even powers of iδφ can appear

in their final expression.
It results that the error on the correlators computed above is at most of order

o(δφ2).

Throughout this work, we have developed a new approach to characterize GS.
This approach is complementary to the stabilizer formalism widely used in the
quantum computing community. While the stabilizer approach is a powerful tool
for the analysis and construction of quantum algorithms with GS, the approach
we propose relies on quantities, such as correlators, with a more straightforward
interpretation.
Formally, a pure quantum state constitutes a statistical distribution for all possible
measurement outcomes. As such, it is entirely determined by its statistical moments.
In other words, knowing all possible expectation values and correlators of a state is
equivalent to knowing the whole state. Although characterizing a pure state solely
through expectation values may seem unreasonable from a computational point of
view, a number of relevant partial information can be obtained this way.
Correlators possess the desirable property of being both easily calculable and
physically meaningful. In fact, they allow encoding the complexity of a graph state
in terms of experimentally accessible quantities, revealing the structure of interac-
tions between the composing qubits. Using this framework, we have been able to
highlight simple relations between correlators and the connectivity properties of
the graph defining a given graph state. The presented results offer a toolbox to
investigate the topological structure of GS that can be used to verify the presence
of local errors in their physical implementation. Moreover, since GS represents a
universal resource for quantum computations, these results can be exported to any
other universal resource, provided the appropriate mapping is carried out.
Furthermore, we have shown that correlators have the additional advantage of
highlighting when pairs of projective measurements are equivalent with respect to a
given state. This provides a new approach to understanding the effects of projective
measurements on GS, revealing how multipartite entanglement emerges from simple
binary interactions. Additionally, it could potentially enable determining simpler
ways to implement quantum gates.
A follow-up to this work would be to thoroughly examine the formal connec-
tions between stabilizer-based and correlator-based approaches to improve the
characterization of GSs and their structure.
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5. Quantum Phase Transition in the
Tavis-Cummings Model

The past few years, quantum correlation (QC) and, more specifically, entanglement
has been proposed as fundamental resources for the realization of high-efficiency
quantum batteries [89, 90, 91]; more specifically, it has been shown that a quantum
speedup, resulting in super-extensive power of quantum batteries, could theoretically
be achieved by entangling operation[92]s. Some of the models adopted as promising
candidates to realize quantum batteries are inspired by the Tavis-Cummings (TC)
and Dicke models[93, 94, 95, 96]. It was shown in [89] that the extensive advan-
tage could not be achieved without global operations, that is, formally, non-local
operators acting on the whole system at once; it is, however, not clear if systems
such as the TC model fall into this category, as the interaction between the atomic
degrees of freedom is somewhat indirect, mediated by an electromagnetic cavity. It
is therefore of great interest to assert if, the superradiance is accompanied by entan-
glement between the atoms, thus producing an effective global entangling operation.

In this study, we limit ourselves to the zero-temperature regime, thus only
investigating the ground state of the model and its dependence to the control
parameters; thus, thermal decoherence effects are not taken into account.

We start by fully introducing the TC model in Section 5.1. In Section 5.2, we
show that, despite its finite number of degrees of freedom, the model undergoes a
Quantum Phase Transition (QPT), the superradiant phase transition, that has the
shape of a spontaneous symmetry breaking (SSB) and corresponds to successive
crossings, in a narrow region, of the subspaces of minimal energy. Resorting to
the QCD (3.10), we further show in Section 5.3 that this QPT is accompanied
by a crossover in the QCs between the atoms (i.e. qubits); this behaviour of the
QCD, persistent when the system size is increased, can henceforth be considered
a suitable order parameter for this transition. In Section 5.4, we discuss how the
concurrence computed in the two-atom system, added with the application of an
entanglement criterion to several finite-sized systems, and with the QCD previously
calculated, all strongly suggest that the superradiant phase transition in this model
is accompanied by a transition in the entanglement between the atoms. We finally
discuss our results in Section 5.5.

An article presenting the following results is in preparation [38].
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5.1. The Tavis-Cummings Model
The Rabi model, describing the dynamics of a two-level atom coupled with a
single-mode quantized field [97, 98], raised a lot of attention since it was formulated.
While not exactly solvable, its dynamics was extensively studied, for instance
through perturbative analysis [99, 100]. Previous work on the Rabi model [101], it
has been shown that also the Rabi model undergoes a QPT for finite systems.

On the contrary, the Dicke model [102, 98], the multi-atom generalization of the
Rabi model, is known to display a QPT only in the limit of an infinite number of
atoms.

The Jaynes–Cummings (JC) model was initially proposed in 1963 [103] to
describe the interaction of a two-level atom with an electromagnetic field. It is
a fully solvable quantum model of a qubit in interaction with a quantized single-
mode field. The technical progress nowadays achieved, has made this system
experimentally realizable [104, 105], and, this has given new interest to this model.
Besides the applicative interest, the JC model is still considered an intriguing
model by virtue of the many physical effects it exhibits, like, for instance, Rabi
oscillations, collapses and revivals of Rabi oscillations and the superradiant QPT
[106, 107, 108, 109].

Recently, in Ref. [110] , it has been shown that the JC model exhibits a QPT at
a finite number of components. In particular, it has been shown that this model
undergoes a superradiant second-order QPT. In the broken-symmetry phase, the
ground state forms a photon condensate characterized by a macroscopic photon
occupation number.

The TC model is a generalization of the JC model, where M two-level atoms
(qubits) interacting with a single mode of a quantized electromagnetic field are
considered [111]. The TC model, indeed, gives the opportunity to observe further
non-classical effects, such as state squeezing and quantum state entanglement.
These latter phenomena, in particular, are considered of primary importance, for
instance, in pushing the performance of optical atomic clocks toward the Heisenberg
limit [112]. The TC model Hamiltonian reads

H = ωca
†a+ ωzS3 −

λ√
M

(a†S− + aS+) , (5.1)

where a† and a are the creation and annihilation operators of photons in the cavity
and satisfying [a, a†] = 1. The total spin operator components Sj, j = x, y, z,
satisfy the usual commutations [Si, Sj] = iϵijkSk and S± = Sx ± iSy. Here and in
the following we consider units in which ℏ = 1. In terms of the Pauli matrices
σαj (j = x, y, z), where α = 0, . . . ,M − 1 runs on the index of the -distinguishable-
atoms, we have Sj = ∑︁M−1

α=0 σαj /2. The model has three tuning parameters, the
photon frequency ωc, the atomic energy splitting ωz, and the photon–atom coupling
λ.
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The calculation of the eigenstates can be made easier by writing down the
Hamiltonian of the full system as a sum of two commuting terms. It results
H = HI +HII , where HI = ωc(a†a+ Sz), HII = ∆Sz − λ/

√
M(a†S− + aS+) and

∆ = ωz − ωc is the detuning.

5.2. Quantum Phase Transition
The TC model has an infinite-dimensional Hilbert space, due to the unbounded
number of photons. However, [HI , H] = 0, thus one can choose a (finite dimension)
basis of states which are -simultaneous- eigenstates for H and HI .

The eigenvalues of the conserved quantity HI are EI
k = ωc(k − M/2), their

corresponding multiplicities dIk = min(k+1,M +1), with k ∈ N the total excitation
number. Therefore, to determine the energy spectrum of the full Hamiltonian, one
has to diagonalize HII in each of the eigenspaces HI

k (of dimension dIk) associated
with the eigenvalues of HI , for k ∈ N. Let us denote with |n,Mz⟩ the tensor product
of a n-photon Fock state and a normalized eigenstate of Sz with eigenvalue Mz,
−M/2 ≤Mz ≤M/2. Note that the states |n,Mz⟩ are obviously also eigenstate of
S2 with eigenvalues M/2(M/2 + 1). The k-th eigenspace HI

k is spanned by the
vectors |k,−M/2⟩, . . . , |0, k −M/2⟩, for k ≤M and |k,−M/2⟩, . . . , |k −M,M/2⟩,
for k > M . Let us denote with Ek the lowest eigenvalue of H in each HI

k. The
full-Hamiltonian spectrum can be determined via numerical methods. Nevertheless,
we can catch some hints about the mechanism at the base of the quantum phase
transition that the system undergoes, by investigating the properties of the lowest
levels of HI

k, for k = 0, 1.
The vacuum state |E0(g)⟩ = |0,−M/2⟩ is the eigenstate in HI

0 with eigenvalue
E0(g) = −ωzM/2. The minimum energy level of H in HI

x reads

E1(g) = ωc
2 + ωz

2 [1−M ]− ωz
2

⌜⃓⃓⎷(︄1− 1
η

)︄2

+ 4g2

η
, (5.2)

where we have introduced the dimensionless parameters η = ωz/ωc and g =
λ/
√
ωcωz. The corresponding eigenstate is

|E1(g)⟩ = sin(β/2)|0, 1−M/2⟩ − cos(β/2)|1,−M/2⟩ , (5.3)

where
β = arccos[(1− η−1)/

√︂
(1− η−1)2 + 4g2η−1] . (5.4)

For g < 1, the ground state for the full Hamiltonian (5.1) is |E0(g)⟩. Yet, at
g = g1 := 1 level E0(g) crosses level E1(g). This first level crossing is followed
by further crossing between minimum energy levels of successive multiplets: by
increasing the magnitude of g, the minimum energy level Ek(g) of HI

k crosses the
minimum energy level Ek+1(g) of HI

k+1 in g = gk, ∀k. Figure 5.1 shows the crossing
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of the minimum energy eigenvalues of the multiplets of Hk, for k = 0, . . . , 50.
Figure 5.2 shows a zoom of the crossing of the levels E0, E1, E2, E3, E4.

Figure 5.1.: Minimum energy eigenvalues versus g, for the first fifty multiplets. The
figure refers to a system of M = 8 qubits and with η = 10.

88



5. Quantum Phase Transition in the Tavis-Cummings Model

Figure 5.2.: The figure shows a zoom the energy levels E0 (continuous line), E1
(dashed line), E2 (dotted line), E3 (dot-dash line), E4 (gray dot-dash
line) versus g. The parameters are the same as for Figure 5.1.

At g = 1, the system undergoes a QPT under the form of a spontaneous
symmetry breaking. In fact, Hamiltonian (5.1) is invariant under the continuous
U(1) symmetry group associated to the unitary operators eiTϕ, where T = HII +
I∆M/2 and ϕ ∈ R, since [H,T ] = 0. Now, for g < 1 the ground state is invariant
under the action of such operators, since T |E0⟩ = 0, on the contrary, for g > 1 the
ground state is no longer invariant under the same symmetry, bringing the system
to a spontaneous symmetry breaking.

In the asymptotic limit k ≫M , the following approximation for the full Hamil-
tonian holds

H ≈ ωc

(︃
k − M

2

)︃
I + ωz

(︄
1− 1

η

)︄
Jz − 2ωzg

√︄
k

ηM
Jx , (5.5)

where the operators Jj, for j = x, y, z, are the usual angular momentum operators.
We introduce the usual basis of eigenstates for J2 and Jz derived from the basis
vectors of HI

k, according to the following mapping

|J = M/2; Jz = Mz⟩ := |k −M/2−Mz,Mz⟩ , (5.6)

for Mz = −M/2, . . . ,M/2. The minimum energy level of the approximated Hamil-
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tonian (5.5) in each eigenspace HI
k is

Ẽk(g) = ωc

(︃
k − M

2

)︃
− ωz

M

2

⌜⃓⃓⎷(︄1− 1
η

)︄2

+ 4g2k

ηM
, (5.7)

and the corresponding eigenvector is

|Ẽk(g)⟩ =
M/2∑︂

n=−M/2

(︄
M

M/2 + n

)︄1/2

c
M/2−n
k s

M/2+n
k |k −M/2− n, n⟩ , (5.8)

where ck = cos(βk/2), sk = sin(βk/2) and

βk = arccos [(1− η−1)/
√︂

(1− η−1)2 + 4g2η−1k/M ] . (5.9)

Figure 5.3.: The figure compares the plots of the energy level E150 versus g, cor-
responding to the minimum energy eigenvalue of the eigenspace HI

k,
k = 150. Here we have considered a system with M = 8 qubits and
with η = 10. In a continuous line, we report E150(g) derived by numeric
diagonalization of the full Hamiltonian (5.1) and in dashed line the
approximated level given in Eq. (5.7). The agreement between the
two curves is very good.

In Fig. 5.3 we compare the plots of the minimum energy eigenvalue of the
eigenspaceH150, E150(g) as a function of g, derived by direct numeric diagonalization
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of the full Hamiltonian (5.1) and the approximated level Ẽ150(g) of Eq. (5.7). The
agreement between the two plots is very good on a wide range of values for g.
Furthermore, after Eq. (5.7) it is easy to prove that the crossing between the
approximated minimum level in HI

k, Ẽk(g), and the one in HI
k+1, that is Ẽk+1(g),

corresponds to the following value for g

gk ≈
{︄

2k
ηM

[︃
1 +

√︂
1 + (M(η − 1)k−1/2)2

]︃}︄1/2

. (5.10)

Thus, for each k ≫ M , for g ≲ gk, Ẽk(g) < Ẽk+1(g) is the energy of the ground
state |Ẽk(g)⟩ and, beyond the level crossing, for g ≳ gk, Ẽk+1(g) is the subsequent
energy for the new ground state |Ẽk+1(g)⟩. Remarkably, in the limit of strong spin
energy separation, that is η →∞, all the crossing-level points merge at the QPT
point g = 1.

5.3. Quantum Correlations
The QCD between the atoms is computed by applying definition (3.10) to the
atomic density matrix ρs(g). The latter is a function of the coupling parameter g
and is derived from the density matrix ρ(g) = |GS(g)⟩⟨GS(g)| of the ground state
of the full system, by tracing out the photons’ degrees of freedom, therefore we
have ρs(g) = trph[ρ(g)]. The g-dependent ground state of the full system is

|GS(g)⟩ = |Ek(g)⟩ such that Ek(g) = min
n
{En(g)} . (5.11)

In the general case, we compute the QCD by numeric calculations. Nevertheless,
to better explain our method we consider the explicit calculation in three cases:
when g < 1, in the vicinity of the first level crossing g ≳ 1, and in the k ≫ M
limit. In our calculation we will resort to the Dicke states |DM

n ⟩ of M -qubits. A
state |J = M

2 ,Mz = n− M
2 ⟩ is in fact one (degenerate) state of n excited qubits, in

one-to-one correspondence with the Dicke state |DM
n ⟩. These latter are defined as

|DM
n ⟩ =

(︄
M

n

)︄−1/2∑︂
j

Pj{|1⟩⊗n ⊗ |0⟩⊗M−n} , (5.12)

here we denote with ∑︁
j Pj the sum over all the possible permutations and, for

µ = 0, . . . ,M − 1, |0⟩µ and |1⟩µ are the eigenstates of σµz with eigenvalues +1 and
−1, respectively.

Case g < 1 In this case, the full system ground state is |E0(g)⟩ and ρs(g) =
trph[|E0(g)⟩⟨E0(g)|] = |DM

M ⟩⟨DM
M |, thus ρ2

s = ρs. Furthermore, by placing

⟨DM
M |σ

µ
j |DM

M ⟩ = −δj,3 (5.13)
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in Eq. (3.8) we get Aµij = δi3δj3. Thus, finally we have C(ρs(g))/M = 0 for g < 1.

Case g ≳≳≳ 1 |GS(g)⟩ = |E1(g)⟩ reported in Eq. (5.3) and we have

ρs = s2|DM
M−1⟩⟨DM

M−1|+ c2|DM
M ⟩⟨DM

M | , (5.14)

where s = sin(β/2), c = cos(β/2) and β is given in Eq. (5.4). Remarkably, the
fact that the partial trace operation results in a mixed state, highlights that the
photonic and atomic parts of the system are entangled in this case. By direct
calculation one derives tr(ρ2

s) = s4 + c4. Furthermore, by plugging in Eq. (3.8) the
following identities

⟨DM
M−1|σ

µ
i |DM

M ⟩ = (δi,1 − iδi,2)/
√
M ,

⟨DM
M−1|σ

µ
i |DM

M−1⟩ = δi,3(2−M)/M ,
(5.15)

one can derive λµmax(ρs), the maximum eigenvalues of the matrices Aµ(ρ). It results

λµmax(ρs) = s4 + c4 − 4s4(1− 1/M)/M . (5.16)

Thus, we have
C(ρs(g))/M = 4s4

M

(︃
1− 1

M

)︃
. (5.17)

Case k ≫ M We now consider the approximated ground states of Eq. (5.8),
|GS⟩ = |Ek⟩. In this case, one can perform some analytical computation. From Eq.
(5.8), we draw the spin density matrix

ρs =
M∑︂
n=0

(︄
M

n

)︄
c2M−2n
k s2n

k |DM
M−n⟩⟨DM

M−n| . (5.18)

Once again, the mixedness of this state indicates a strong entanglement between
the photonic and atomic parts of the system. By direct calculation one gets

tr
(︂
ρ2
s

)︂
=

M∑︂
n=0

[︄(︄
M

n

)︄
c2M−2n
k s2n

k

]︄2

, (5.19)
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and

⟨DM
n |σµx |DM

n′ ⟩ =

⌜⃓⃓⎷(︄1− (n− 1)
M

)︄
n

M
δn,n′+1+

+
√︄(︃

1− n

M

)︃(︃
n+ 1
M

)︃
δn,n′−1 ,

⟨DM
n |σµy |DM

n′ ⟩ = i

⌜⃓⃓⎷(︄1− (n− 1)
M

)︄
n

M
δn,n′+1+

− i
√︄(︃

1− n

M

)︃(︃
n+ 1
M

)︃
δn,n′−1 ,

⟨DM
n |σµz |DM

n′ ⟩ =
(︃

1− 2 n
M

)︃
δn,n′ .

(5.20)

From the latter identities it is possible to derive the eigenvalues of the matrices
Aµ(ρ). After some calculation we get

λµzz(ρs) =
M∑︂
n=0

(︄
M

n

)︄2

c
4(M−n)
k s4n

k

(︃
1− 2 n

M

)︃2
,

λµxy(ρs) =2
M∑︂
n=0

(︄
M

n

)︄2

c
4(M−n)−2
k s4n+2

k

(︃
1− n

M

)︃2
.

(5.21)

Note that there is a crossover between the λµzz and λµxy+, in the region g ≳ 1, at
which the QCD displays a peak. Finally, we get

C(ρs(g))/M = min
⎧⎨⎩

M∑︂
n=0

(︄
M

n

)︄2

c4M−4n
k s4n

k × 4 n
M

(︃
1− n

M

)︃
,

M∑︂
n=0

(︄
M

n

)︄2

c4M−4n
k s4n

k ×
(︄

1− 2
(︃
s

c

)︃2 (︃
1− n

M

)︃2
)︄⎫⎬⎭ .

(5.22)
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Figure 5.4.: The figure plots the QCD per qubits C(ρs)/M versus g, derived by
numerical calculations. The lines refer to the cases of a system with
M = 2, 3, 4, 5, 6, 7, 8, 9 qubits. Line M∗ = 9 shows the asymptotic
prediction (5.22), valid in the limit k ≫ M . All the cases consider
η = 10.

Figure 5.5.: The figure reports a magnification of Fig. 5.4.

Figures 5.4 and 5.5 report the QCD per qubit C(ρs)/M as a function of g, achieved
by numerical calculations. The lines refer to the cases M = 2, 3, 4, 5, 6, 7, 8, 9 and
the asymptotic predictions, valid in the limit k ≫M , for the case M∗ = 9 (see the
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legend). The agreement between the numerical results and the analytical prediction
valid in the limit k ≫M is very good in the strong coupling regime.

Here, it is evident that the QCD is decreasing in average, as a function of M ,
even around the transition, at g ≳ 1. We however claim that this is primarily due
to the high degree of mixing of ρs(g > 1): as explained in Section 3.4, the QCD
being built using the Hilbert-Schmidt norm, it scales as the purity. We indeed
verified, as shown in Figure 5.6, that the purity tr(ρ2

s) is a decreasing function of g
and a decreasing function of M .

Figure 5.6.: The figure reports the purity tr(ρ2
s) as a function of the coupling g,

derived by numerical calculations, in the cases M = 2, 3, 4, 5, 6, 7, 8, 9.
Also in all these cases η = 10.

Motivated by the observations we made in Section 3.4, we thus deem especially
useful in this case to also consider the rescaled measure (3.36).

The Dicke states form an orthonormal basis, so √ρs is straightforwardly obtained
by substituting, in Eqs. (5.14) and (5.18), the probability weights (i.e. the
eigenvalues of ρs) by their square root, owing to (3.37). It results, in the case g ≳ 1,

˜︁C(ρs(g))/M = 4s2

M

(︃1
2 −

1
M

)︃
, (5.23)
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and in the case k ≫M ,

˜︁C(ρs(g))/M = min
⎧⎨⎩

M∑︂
n=0

(︄
M

n

)︄
c2M−2n
k s2n

k × 4 n
M

(︃
1− n

M

)︃
,

M∑︂
n=0

(︄
M

n

)︄
c2M−2n
k s2n

k ×

⎛⎝1− 2s
c

√︄
M − n
n+ 1

(︃
1− n

M

)︃⎞⎠⎫⎬⎭ .
(5.24)

Figure 5.7 and 5.8 report the rescaled QCD per qubit ˜︁C(ρs(g))/M as a function
of g, achieved by numerical calculations. Once again, the agreement between the
numerical results and the analytical prediction valid in the limit k ≫ M is very
good in the strong coupling regime. The rescaled QCD clearly converges, with
increasing M , toward a finite value both at g ≳ 1 (where it approaches a value
greater than 0.6) and for g ≫ 1 (where it approaches 0.5).

Figure 5.7.: The figure reports the rescaled QCD per qubit ˜︁C(ρs)/M as a function
of the coupling g, derived by numerical calculations, in the cases
M = 2, 3, 4, 5, 6, 7, 8, 9 and with the approximated relation for the
QCD of Eq. (5.22) in the case M∗ = 9. Also in all these cases η = 10.
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Figure 5.8.: The figure reports a magnification of Fig. 5.7.

In Figure 5.9, we show the behaviour of the excitation number k∗ of the ground
state as a function of g. We clearly see that the slope gets steeper with larger M .
We furthermore observed in Figure 5.10 that, in the region g ≲ 2.5, the curves
k∗/M all collapse onto the same straight line, showing that, in this region, k∗ is
roughly linear in M . This suggests that, in the thermodynamic limit, all the level
crossings collapse at g ≈ 1, and that k∗ diverges in this region, accounting for the
phenomenon of superradiance.
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Figure 5.9.: The figure reports the excitation number k∗ of the ground state, as a
function of the coupling g, derived by numerical calculations, in the
cases M = 2, 3, 4, 5, 6, 7, 8, 9. Also in all these cases η = 10.

Figure 5.10.: The figure reports the excitation number per qubit k∗/M of the
ground state, as a function of the coupling g, derived by numerical
calculations, in the cases M = 2, 3, 4, 5, 6, 7, 8, 9. Also in all these
cases η = 10.
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5.4. Quantum entanglement
In the case M = 2 we can compare with the concurrence C. (5.18),

Figure 5.11.: The figure plots the concurrence C(ρs) versus g, derived by numerical
calculations. In this case M = 2 qubits and η = 10.

It is clear on Figure 5.11 that C (ρs(g)) −→
g→+∞

0. This result can also easily be
retrieved analytically. Notice that k −→

g→+∞
∞, so the large k ≫M approximation

is valid for large g, thus Eqs. (5.9) and (5.18) hold. Yet βk −→
g→+∞

π/2, which yields

ρs −→
g→+∞

1
2M

M∑︂
n=0

(︄
M

n

)︄
|DM

M−n⟩⟨DM
M−n| , (5.25)

and in the case M = 2:

ρs2 −→
g→+∞

1
4
(︂
|D2

2⟩⟨D2
2|+ 2|D2

1⟩⟨D2
1|+ |D2

0⟩⟨D2
0|
)︂

= 1
4 (|00⟩ ⟨00|+ 2 |ϕ+⟩ ⟨ϕ+|+ |11⟩ ⟨11|) ,

(5.26)

where |ϕ+⟩ = 1√
2 (|01⟩+ |10⟩) is a Bell state. Direct calculation straightforwardly

then leads to C(ρs2) −→
g→+∞

0.
The fact that, in the 2-atom system, entanglement vanishes for large g, suggests

that it also vanishes for larger systems. We are naturally led to think that the
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parametric region that yields true entanglement is near the transition g ≳ 1.
In Ref. [59], a separability criterion for mixtures of Dicke states was pro-

posed. Given a state of the form ρ = ∑︁
j wj|DM

j ⟩⟨DM
j |, it relies on the positive

semi-definiteness of Hankel matrices formed with the weights wj; an equivalent
formulation of the same criterion involves the positive semi-definiteness of ρΓ, where
Γ stands for the partial transpose of

⌊︂
N
2

⌋︂
subsystems.

We applied both of these methods on the atomic reduced ground states ρs of
Eq. (5.18), and found that, for each considered M , it is entangled for g > 1, and
separable otherwise.
Unfortunately, this criterion, as effective as it may be, lacks a quantitative aspect.
Hence, though ρs(g > 1) is entangled for all of the values of Mwe considered, the
degree of entanglement could be tending to zero as we approach the thermodynamic
limit. However, for lack of a computationally affordable measure of entanglement,
considering the QCD and rescaled QCD provides valuable information. In fact,
entanglement is a type of QC; precisely, if a state is entangled, it has non-vanishing
QC, while the reciprocal isn’t always true. The behaviour of the QCD, and in
particular of the rescaled QCD, shown in Fig. 3.9, added with the exact result
obtained for the concurrence in the two-atom system, stem as strong clues suggest-
ing that entanglement isn’t asymptotically vanishing in large systems, and rather
attain a finite value, at least in the region g ≳ 1 where we found a prominent peak.

5.5. Discussion
The Tavis-Cummings model undergoes a superradiant QPT that we have shown to
be embodied in a spontaneous symmetry-breaking mechanism. Here, we have tried
answered the question if this phenomenon also generates entanglement between
the atoms.

We have shown that the mentioned QPT is associated with a crossover of the
QC of the M -qubit density matrix of the system ground state. By resorting to
the QCD we developed in Section 3.1, we have been able to quantify the degree of
QCs among the atoms, as a function of the atom-cavity coupling strength g. Our
study shows that there exists a critical value of g beyond which the T -symmetry
introduced above is broken, the cavity field is macroscopically occupied (hence
the superradiance) and the QCD acquires a finite value, which visibly does not
vanish in the thermodynamic limit. Therefore, in this view, the QCD (or any other
valid measure of QC) represents an order parameter for the superradiant phase
transition.

We further showed that, crossing the critical value of g, the system becomes
entangled, although we were not able to quantify it, and thus cannot verify if the
entanglement is an extensive quantity, thus if it is a meaningful feature in the large
N limit; the clues we obtained with our studies seem to indicate that it is the case
only around, or precisely at the critical value of the parameter g, hence requiring
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fine tuning.

We expect our results are valid in general in the superradiant phase transition,
thus further investigations i.e. on Dicke models are required.

A further interesting subject is to investigate the deep relation between quantum-
phase transitions and entanglement in general, we think that the general method
we have proposed here is suitable for this purpose. We believe that our method
can be profitably applied also in the study of superradiance at finite temperature,
where thermal decoherence effects take place.
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Conclusion of part I

The growing interest in quantum information experimental applications has created
a need for the development of effective measures of correlation and entanglement
in mixed multipartite states. These measures should be easily computable and
applicable to a wide range of scenarios. While several measures have been proposed
for pure states and mixed states, there are still challenges when applying them to
general multipartite mixed states; many of them are only applicable to bipartite
systems, while others lack a closed form.

In the present work, we have introduced a new entanglement measure, the
Entanglement Distance, applicable to general multipartite pure states. This measure
is based on an adapted application of the Fubini-Study metric, defined in projective
Hilbert spaces. We showed that the Entanglement Distance, along with its convex
roof extension to mixed states, is a valid entanglement monotone, according to the
criteria provided by the literature. We further validated the entanglement distance
measure, applying it to various examples.

We then showed how, in maximally entangled pure states, the structure of the
correlation matrix yields information on the persistency of entanglement, and thus
on the k-separability of the state. We drew simple relations showing the link
between pre-measurement correlators and post-measurement expectation values,
as well as projection equivalences, and devise a method to find the measurement
directions optimally breaking entanglement.

We investigated from a new point of view the graph states, a class of pure
quantum states often involved in measurement-based quantum computing schemes,
associated to a graph structure. We showed that the quantum correlators computed
on these states provide information on the connectivity properties of the associated
graphs.

We then extended our study to mixed quantum states. Using the same method
as for the entanglement distance, and resorting to the definition of distance implied
by the Hilbert-Schmidt norm, we built a measure of quantum correlation in mixed
multipartite states.

We further developed a regularization procedure, using the quantum correlation
measure to construct an entanglement measure applicable to mixed multipartite
states. This regularization procedure relies on an involved optimization procedure
that amounts to the usual convex roof optimization over all the realizations of
a mixed state; however, we found encouraging clues that, at least for classes of
states, optimal choices of mixed state decomposition can be identified, effectively
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reducing greatly the space to explore. We have tested these two measures on
specific examples, confirming their validity.

Finally, we studied the superradiant phase transition in the Tavis-Cummings
model, using our measure to show that it is accompanied by a transition of the
degree of quantum correlations between the atoms; we also discuss why, most
likely, entanglement between the atoms become extensive at the critical value of
the coupling constant g.

Overall, our work contributes to the development of measures for the correla-
tion and entanglement in mixed multipartite states. The entanglement distance
measure, along with the extension to quantum correlation and the regularization
procedure, offers valuable tools for characterizing and studying entanglement in
various quantum systems.
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Part II.

Metastability, dynamical freezing
and phase transitions in classical

systems
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Introduction of part II

“Real-life” many-body systems are often characterized by their complexity, that is
the difficulty to understand and predict their behaviour, due to very large numbers
of objects, often interacting in a nonlinear fashion. In fact, the physics of complex
systems stems as one of the great challenges of contemporaneous science, and many
associated issues are still out of the reach of our best computational abilities.

Though a wide variety of techniques have been developed to address complex
systems, they still, as of today, often require to be solved and studied on a case-by-
case basis, for the lack of general theories.

The foundational work of Ludwig Boltzmann in statistical physics provided
a wonderful toolbox allowing the study of many well-behaved many-body sys-
tems (that is, in particular, systems described by a quadratic Hamiltonian), at
thermodynamic equilibrium.

This conventional framework, despite its paradigmatic importance, fails to
describe a plethora of situations. Indeed, standard thermodynamics relies on a
number of hypotheses that are in practice violated by most physical systems.

First, while many fundamental results are valid only in the thermodynamic
limits, it is often the case that a system exhibits non-trivial emergent phenomena,
despite containing a number of degrees of freedom (DOF) much smaller than the
Avogadro number; in fact, there exists a range of system sizes, too small to be well
approximated by the thermodynamic limit, yet too large to be studied analytically,
considering the microscopic dynamics of each DOF.

Another important drawback of the conventional approach to statistical mechan-
ics is its appeal to the ergodic hypothesis, namely, the requirement that ensemble
average should equate the time average. Ergodicity-breaking, ubiquitous in nature,
originates from a high degree of constraint, the presence of time-dependent potential,
periodic behaviours or, to some extent, freezing of the dynamics. It is to be under-
stood as the trapping of the system in a subregion of state space. The structure
of the accessible state space, that is its geometric and topological characteristics,
in fact encodes all the information on a given system, and their study allows for
a better understanding of the profound mechanisms behind ergodicity-breaking
phenomena.

For instance, it can be separated into subregions, either connected by a bottle-
neck (that can reduce to a tunnel of null measure in the thermodynamic limit),
or not connected at all, as it is the case in the presence of symmetry breaking.
Its geometrical characteristics, i.e. the shape of its landscape (in terms of cur-

105



vatures), may also lead to dynamical freezing or periodic (or effectively periodic)
behaviours. Remark that periodicity may arise, in nonlinear systems, as a result
of the interactions between the DOFs, that can entail an emergent collective motion.

The search of a general theory of phase transitions constitutes a prototypical
example of a challenge of modern statistical physics. Indeed, PTs are generally
associated with the loss of analyticity of the derivative of thermodynamic potentials,
which can be explained by Yang-Lee theory only in the context of the thermody-
namic limit; it results that finite-sized systems exhibiting phase transitions are as
of yet not well understood either.

Furthermore, the elegant heuristic theory of Lev Landau, linking PT with
spontaneous symmetry breaking (characterized by an order parameter), despite its
great success, fails to explain all of them. Namely, a variety of PT is not accompanied
by symmetry breaking and are not associated with any order parameter; this is
for instance the case of the Kosterlitz–Thouless PT and topological PTs. It is also
true of the glass transition which, characterized by a diverging viscosity below the
transition temperature (hence in the glassy phase), doesn’t present any symmetry
breaking, as these materials are amorphous in both the liquid and glassy phase.

Interestingly, the latter can be understood as a result of ergodicity-breaking,
in the sense that vitrification is entailed by the freezing of the dynamics that
effectively breaks ergodicity. In turn, the dynamical freezing is most probably due
to the presence of a large number of local minima of the potential energy, namely,
a landscape of deep wells in which the system stays stuck.

A promising attempt to account for many of these limiting cases is the topological
theory of phase transitions. The latter is a relatively new theory, more general
and encompassing the previous ones, relying on the idea that phase transitions
can be seen as a mere consequence of changes of the topology of the iso-potential
hypersurfaces that foliate state space. It has been successfully tested on a variety
of models, from the Kosterlitz–Thouless PT to protein folding.

Arguably, the microcanonical ensemble is the most fundamental of Gibbs en-
sembles, as it describes isolated physical systems, thus approaching them with a
purely mechanical perspective. Furthermore, it is somewhat more natural to place
ourselves in the microcanonical ensemble, in order to study the structural properties
of the accessible state space. Indeed, the latter is, in this case, an hypersurface of
constant energy, of which the properties, as a Riemannian manifold, appear more
evident than in the canonical ensemble.

This part of the thesis is henceforth devoted to the study of two instances of
isolated systems, exhibiting ergodicity breaking, equilibrium or dynamical PT, and
characterized by a high degree of non-linearity.

First, in Chapter 6, we address the Hamiltonian Mean Field model, a mean-field
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instance of the celebrated XY-model, exhibiting a long-lived metastable state at low
energy; we manage to rewrite, using time-scale separation and averaging techniques,
the interactions of the system as single effective time-dependent potential, providing
an explanation for the observed frequencies and for occurrence of bimodal metastable
states (coined as a biclusters). In Chapter 7, we present the results of the numerical
simulation of a glass-forming binary Lennard-Jones mixture; resorting to parallel
tempering Monte Carlo scheme, we manage to sample the constant energy state
spaces, and evidentiate that, as suspected, the glass transition is accompanied by
changes of its topology.

Chapter 6 reports the work published in Ref. [113], while Chapter 7 presents
the preliminary results of an ongoing investigation on the topological origins of the
glass transition.
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6. Fast collective oscillations and
clustering phenomena in an
antiferromagnetic mean-field
model

In this chapter, we reproduce the results we published in [114], pertaining to the
occurrence of long-lived metastable states in the Hamiltonian Mean Field model at
low energy.

6.1. Introduction
The Hamiltonian Mean Field (HMF) model has raised much attention in the last
two decades [115, 116, 117, 118, 119, 120, 121, 122, 123, 124]. This simple toy model
indeed exhibits a plethora of phenomena going beyond the scope of equilibrium
statistical mechanics, as it is typically the case in long-range interacting systems.
As an interesting physical interpretation, the HMF model can be seen as the first
Fourier mode approximation of sheet models in one dimension; the antiferromagnetic
HMF model corresponds to a charged sheets model, while the ferromagnetic HMF
model corresponds to a massive sheets model [116, 125, 126].

The ferromagnetic HMF undergoes a second order phase transition in both
the canonical and microcanonical ensembles [115, 113], while, to the best of our
knowledge, there exists no equilibrium phase transition in the antiferromagnetic
HMF. However, both the ferromagnetic and the antiferromagnetic HMF are known
to present a variety of long-lived metastable states, with relaxation times diverging
with the size of the system, thus entailing ergodicity breaking [115, 119, 116, 118,
120, 127].
More recently, promising generalizations of the HMF model have been proposed,
in which some of these interesting features can be preserved. Notably, some of
the aforementioned long-lived metastable states have been shown to be robust
with respect to the addition of a (small enough) nearest-neighbour coupling to the
model. Phase transition phenomena are still observed in this extended framework
[119, 113]. Finite-range versions of the HMF model have also been considered [128,
129], as well as extensions with higher dimensional spins [120, 127], and quantum
versions [130], still presenting a rich phenomenology, namely the emergence of
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non-trivial collective behaviours.

Let us introduce the Hamiltonian of the model. We consider an assembly of N
planar classical rotators, endowed with a kinetic energy, subjected to an infinite-
range “antiferromagnetic" coupling. This system can also be seen as a collisionless
plasma in a one-dimensional ring, with an all-to-all repulsive interaction [117]. The
Hamiltonian coordinates of the rotators are {θj, pj}. The model can be defined
through the Hamiltonian

H =
N∑︂
i=1

p2
i

2 + V ({θi}) ,

with V ({θi}) = 1
2N

N∑︂
i,j=1

cos (θi − θj) = NM 2

2 ,
(6.1)

where M is the magnetization vector per rotator, defined as

M = 1
N

N∑︂
j=1

(︄
cos (θj)
sin (θj)

)︄
. (6.2)

The equations of motions are

ṗj(t) = Mx sin (θj)−My cos (θj) . (6.3)

The potential of this Hamiltonian is self-consistent, a feature characteristic of
mean-field models: the magnetization depends on the single rotator dynamics,
which in turn depends on the former.

A homogeneous distribution of the angles of the rotators, implying a vanishing
magnetization, is expected at equilibrium in both the canonical and the micro-
canonical ensemble. However, numerical studies have shown that a long-living
coherent structure, namely a bicluster, can spontaneously form in the Hamiltonian
dynamics at low energy [116, 117, 118, 121, 122]. This long-lived metastable state
consists in the gathering of an extensive quantity of rotators on two opposite angles,
and is quantified by the norm M2 of the vector

M2 = 1
N

N∑︂
j=1

(︄
cos (2θj)
sin (2θj)

)︄
. (6.4)

The parameter M2 varies from 0 in the homogeneous state, to 1 in a bicluster state
with no dispersion of the rotators [121, 116, 117].

Notably, bicluster states are also characterized by a non-zero magnetization, with
M ∼

√
e, where e = E/N is the total energy density, with E = H({θi(0), pi(0)}).

Using the kinetic definition of the temperature T = ⟨p2⟩, this entails an anomalous
energy-temperature relation, with respect to the expected equilibrium linear rela-
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tion T = 2e [121, 116].

Remark that this phenomenon is not compatible with linear stability analysis
of the Vlasov equation [115, 117]1, which predicts the homogeneous states to be
stable for all energies, for a wide class of initial distributions of momenta.

The class of initial conditions leading to a bicluster is yet not precisely known.
Let γ0 = V0/E, with V0 = V ({θi(0)}). Previous studies [122] have shown that, at a
given energy, for initially uniformly random distributions of angles and momenta
(i.e. waterbag distributions, defined later in Sec. 6.4), the closer we are to γ0 = 1,
the more likely is the formation of the bicluster, and the larger is the stationary
value of M2. We chose to use this ratio as a control parameter for our simulations
in section 6.4.
Nevertheless, it is worth noting that biclusters can also arise from initial sinusoidal
distributions of momenta (i.e. pi(0) ∝ sin (θi(0))), in which case the parameter γ0
becomes irrelevant [122]. In the present work, we will solely focus on waterbag
initial distributions.

Previously, a theory has been devised to explain the formation and stabilization
of a bicluster, as the equilibrium state of an averaged Hamiltonian [117], derived
by using a variational method inspired by Ref. [131]. The authors of Ref. [117],
separating fast and slow variables in the Lagrangian, notably predicted the occur-
rence of two collective high frequencies ω±, and gave accurate quantitative results.

In the following, we propose a new approach, to get a better understanding of
the dynamical mechanism at the base of the bicluster formation and stabilization.
We derive the same high frequencies ω± in Section 6.2, by directly studying the
dynamics of the magnetization vector, which is the driving force of the system (see
Eq. (6.3)). This allows us, in Section 6.3, to rewrite the equations of motions in a
non-autonomous form, and thereby perform an averaging over the fast variables in
a very simple fashion. An expression for the effective force is found, with associated
low frequency ω0, and its dependence to initial conditions is discussed.
Section 6.4 exposes our numerical results, showing excellent agreement with the
theory.
In Section 6.5, we discuss our results and develop a heuristic argument to explain
the birth and stabilization of the bicluster states. We conclude by mentioning
possible analogies with other models, and proposing further developments.

1In Ref. [115], linear stability analysis was performed for the ferromagnetic model. Stability in
the antiferromagnetic case can be retrieved by a simple change of sign.
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6.2. Dynamics of the Total Magnetization
We are interested in deriving a dynamical equation for the macroscopic quantity
M . We are considering here the low energy regime, for which biclusters are known
to occur. From Eq. (6.2), we get

d2

dt2
M (t) = 1

N

N∑︂
j=1

(︄
−ṗj sin (θj)− p2

j cos (θj)
ṗj cos (θj)− p2

j sin (θj)

)︄
. (6.5)

We identify in this expression the correlator ⟨p2 cos (θ)⟩ ∼ o(MT ) ∼ o(e3/2), that
we can neglect in the low energy regime, since the other term turns out to be of
order o(M) ∼ o(e1/2). We are left with

d2

dt2
M (t) ≈ 1

N

N∑︂
j=1

(︄
−ṗj sin (θj)
ṗj cos (θj)

)︄
. (6.6)

Then, inserting the equations of motion (6.3), we obtain the eigenproblem

d2

dt2

(︄
Mx(t)
My(t)

)︄
≈

⎛⎝−1−M(2)
x

2
M

(2)
y

2
M

(2)
y

2 −1+M(2)
x

2

⎞⎠(︄Mx(t)
My(t)

)︄
. (6.7)

The eigenvalues are −ω2
± = −1±M2

2 , of corresponding eigenvectors

M+ =
(︄

cos (ϕ2/2)
sin (ϕ2/2)

)︄
, M− =

(︄
− sin (ϕ2/2)
cos (ϕ2/2)

)︄
, (6.8)

where ϕ2 is defined as the phase of M2. We hence expect the system to globally
rotate with ϕ2/2, which already stresses the importance of M2 in the characteriza-
tion of the dynamics.
Let us emphasize the consistency of this result with that one of Ref. [117], in which
the modes ω± were found to be the eigenvalues of the fast Lagrangian, and where
ϕ2/2 was already recognized as the system’s center of mass. These frequencies,
arising from nonlinear mode interaction, can be seen as a splitting of the single
normal mode ω = 1/

√
2, present in the homogeneous state [122]. This normal

mode can also be found by linear analysis of the Vlasov equation [117].

Assuming M2 constant, after a global rotation of −ϕ2/2, we get

M =
(︄
M− cos (ω−t+ ϕ−)
M+ cos (ω+t+ ϕ+)

)︄
, (6.9)

where ϕ± are arbitrary constant phases. It is worth remarking that, in the ferro-
magnetic case, the eigenvalues read λ± ≈ 1±M2

2 , and under the same low energy
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hypothesis, M will rather converge to a constant, following a slow drift motion [116].

(a) (b)

(c) (d)

Figure 6.1.: The dynamics and histogram of ϕ, the phase of M , measured in a
simulation with γ0 = 1, M2 = 0.52 (see Sec. 6.4, Fig. 6.3a). A few other
examples are provided in Appendix B. We define a vector v according
to Eq. (6.9). The frequencies ω± are drawn from measurements of M2,
the amplitudes v−,+ respectively defined through max(Mx,y) (after M
was rotated of −ϕ2/2), and we finally rotate v of ϕ2/2, as suggested by
Eq. (6.8). We show in Cartesian coordinates the dynamic, measured
over the time interval t ∈ [10000, 10100], of M (resp. v) in Fig. 6.1a
(resp. c). The corresponding distributions P(ϕ) (resp. P(ϕv)) are
reported in Fig. 6.1b (resp. d). The histograms are derived from a
sample of values retrieved in the time interval t ∈ [10000, 11000]. We
used the time step ∆t = 0.05.

Fig. 6.1 shows the behaviour of M measured by numerical integration of the full
equations of motion (6.3), and the one of a vector v defined according to Eq. (6.9).
Namely, v =

(︂
v− cos (ω−t), v+ cos (ω+t)

)︂
, where ω± are computed from the average

value of M2 and v± are measured by taking the maximum value of Mx,y, after a
rotation of −ϕ2/2. Also, we present later, in Fig. 6.2a the frequency spectrum
of the components Mx, My, derived by a fast Fourier transform, also performed
after a rotation of −ϕ2/2. Better agreement is found for well-formed biclusters
(M2 ≳ 0.1), as we will discuss in Section 6.4. A few other examples are displayed
in B.

The parametric curves defined by Eq. (6.9) are named Lissajous curves. Such
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curves are bounded in the (Mx,My)-plane by a rectangle of sides M− and M+,
and are known to densely fill its area, provided that the ratio ω−/ω+ is irrational,
condition that is almost always fulfilled. The norm M evidently possesses four
maxima, each located at a fixed angular position. One can see from Eq. (6.9) that
Ṁ approaches 0 as M approaches (±M−,±M+) (when M is maximal), making
these regions favoured in terms of the amount of time spent there by the system,
as illustrated in Fig. 6.1b.
Note that, when M2 ≈ 0, the curve is an ellipse, hence M exhibits two maxima.
This is also the case when M− ≪ M+ (or M− ≫ M+). The probability density
function for M is hence bimodal (at least during a first transient phase) or quadri-
modal, in the considered low energy regime.

This simple derivation already provides us with a heuristic explanation for the
occurrence of a bimodal distribution of the rotators in the antiferromagnetic HMF
model. Indeed, as we will show below, if the rotators are slow enough with respect
to ω±, they effectively experience a bimodal potential.
It is fairly obvious from Fig. 6.1 that, as this regime persists for very long times, it
brings on a breaking of ergodicity. Indeed, the accessible state space is bounded
by the Lissajous curve, entailing a probability density P(ϕ,M) anomalous with
respect to the expected one from equilibrium statistics. In particular, while the
time average of M is null, the one of M is not. These coherent oscillations hence
allow for a non-vanishing (extensive) average potential energy.

6.3. Time Scale Separation
We found above an explicit time dependence for the bare potential. By doing this,
we also decoupled it from the generalized coordinates {θj}. This allows us to fully
take advantage of the mean-field nature of the model, hence to actually consider
single rotators as uncoupled pendula, evolving under the action of an external
potential driven by the oscillating “magnetic field" M .

We first insert Eq. (6.9) in Eq.(6.3), thus

ṗj(t) = ϵa− cos (ω−t+ ϕ−) sin (θj)− ϵa+ cos (ω+t+ ϕ+) cos (θj) , (6.10)

with ϵa± = M±, so that we have a2
+ + a2

− = 1, and ϵ =
√︂
M2

+ +M2
− ∼
√
e.

We are now able to perform a simple approximation, related to the ponderomotive
effect, well-known in the area of plasma physics [132]. As the one employed in Ref.
[117], it relies on the clear separation of time scales between fast and slow variables,
and is somehow analogous to the method first proposed by Landau and Lifshitz to
solve systems exhibiting two distinct time scales [133]. The prototypical example
of such systems is the Kapitza pendulum [134].

Our use of this approximation method is justified by the consideration that,
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already in Eq. (6.10), one can clearly identify the two time scales of the motion.
The first is a fast one, related to the motion of the phase, which is set by the
frequencies ω± ∼ 1. The second is a slow one, and is proportional to the square
root of the amplitude of the acceleration, giving a time scale of the order

√
ϵ, which

in fact characterizes the motion of a pendulum at the bottom of the potential.
Let us decompose the variables in a fast and a slow component. We set the
magnitude of the fast component to be o(ϵ), and introduce a “slow time" τ = ϵt,
associated with the slow oscillations, insuring ⟨ṗ2

j⟩ ∼ ϵ2,

θj(t) = θ0
j (τ, t) + ϵfj(t) . (6.11)

The single rotator dynamics thus presents a fast motion of small amplitude, super-
imposed with a slow motion of large amplitude.

Expanding Eq. (6.10) up to first order in ϵfj, we obtain

ϵ2 d
2

dτ 2 θ
0
j (τ, t) + ϵ

d2

dt2
fj(t)

=ϵ
(︃
a− cos (ω−t+ ϕ−) sin (θ0

j (τ))− a+ cos (ω+t+ ϕ+) cos (θ0
j (τ))

)︃
+ϵ2fj(t)

(︃
a− cos (ω−t+ ϕ−) cos (θ0

j (τ)) + a+ cos (ω+t+ ϕ+) sin (θ0
j (τ))

)︃
.

(6.12)

By identifying terms order by order, we get the following expression for the fast
variables

d2

dt2
fj(t) = a− cos (ω−t+ ϕ−) sin (θ0

j (τ))− a+ cos (ω+t+ ϕ+) cos (θ0
j (τ)) , (6.13)

which we can straightforwardly integrate, since θ0
j (τ) is considered constant on the

time scale of fj(t). It results

fj(t) = −a−

ω2
−

cos (ω−t+ ϕ−) sin (θ0
j (τ)) + a+

ω2
+

cos (ω+t+ ϕ+) cos (θ0
j (τ)) . (6.14)

Then, by substituting this expression for fj(t) in Eq. (6.12), we obtain after some
manipulations (for convenience, we dropped the time dependence and the constant
phases ϕ±)

d2

dt2
θ0
j =1

4

⎡⎣M2
+

ω2
+

(︃
1 + cos (2ω+t)

)︃
−
M2

−
ω2

−

(︃
1 + cos (2ω−t)

)︃⎤⎦ sin (2θ0
j )

+1
4

⎡⎣M+M−

ω2
+

(︃
1 + cos (2θ0

j )
)︃
− M+M−

ω2
−

(︃
1− cos (2θ0

j )
)︃⎤⎦

×
(︃

cos ((ω− + ω+)t) + cos ((ω− − ω+)t)
)︃
.

(6.15)
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If M2 is of the order of ϵ then (ω+ − ω−) is of the order of ϵ, a low frequency that
cannot be neglected by averaging over the fast oscillations. Then, our computation
holds when M2 ≫ ϵ, and a priori does not account for the beginning of the transient.
By averaging over the fast oscillations, we get the expression for the slow variables

d2

dt2
θ0
j ≈

1
4

(︃
M2

+
ω2

+
−
M2

−
ω2

−

)︃
sin (2θ0

j ) . (6.16)

Assuming that the prefactor is negative, we can consider a rotator in the bottom
of one potential well, located at θ0

j ≈ kπ, with k ∈ Z, so sin (2θ0
j ) ≈ 2θ0

j − 2kπ. We
then have

θ0
j (t) ≈ kπ + Aj cos (ω0t+ ϕj), with (6.17)

ω0 = 1√
2

⌜⃓⃓⎷M2
−

ω2
−
− M2

+

ω2
+
. (6.18)

ω0 is of the order of M , namely the square of the natural frequency. This
emphasizes that the effective force emerges from the non-linearity, linked to the
self-consistency of the magnetization.

The attractive or repulsive nature of this bimodal effective interaction is related
to the sign of the prefactor in Eq. (6.16), namely

∆−M2 < 0 , (6.19)

with ∆ = M2
+−M2

−
M2

++M2
−

. The effective force is self-consistent, in the sense that its
strength is proportional to M2, which is governed by the force itself. Thus, we are
brought to assume that M+, M− and M2 are evolving during a transient phase in
an interdependent fashion, following a dynamics which is determined by the initial
conditions. In particular, we will comment in next section, based on numerical
observations that the bicluster forms and stabilizes when the initial condition is a
waterbag such that γ0 ∼ 1.

This result provides a dynamical explanation for the stabilization of biclusters
over very long times.

6.4. Numerical results
Our simulations were performed at energies ranging from 10−5 to 10−4, with
N = 1000. The equations of motions have been integrated using a fourth-order
sympleptic scheme [135]. For most of the figures, we used a time step ∆t = 0.05,
which gives a conservation of the energy up to ∆e ∼ 10−12. On the contrary, to
produce Fig. 6.5, we used a more efficient time step ∆t = 0.5, yielding ∆e ∼ 10−6.
For the purpose of measuring a low frequency, with an efficient integrating scheme
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and at these ranges of energy, such a time step remains of an acceptable precision.
We initially set a water-bag distribution, picking the positions and momenta
uniformly at random in a domain [−π, π]× [−p0, p0]. We used the prescription of
Ref. [122] to use γ0 as a control parameter. To do this, we first find, by iterating
multiple times, a distribution of positions giving a potential energy in the desired
range. Then we choose p0 to set T = ⟨θj̇

2⟩ accordingly, and globally shift the
momenta to set the constant of motion ⟨pj⟩ = 0.
The averages are taken after a transient, typically of the order of 10000 proper
times. We have checked that the averages do not change by increasing the duration
of the transient. By looking directly at the time series, we have also checked that
the system has reached a steady state after the transient.

(a) Frequency spectrum of Mx and My. (b) Short time phase trajectory of M .

Figure 6.2.: Power spectrum and detail of the trajectory of M , with γ0 = 1,
M2 = 0.52, ∆ = −0.09 (see Fig. 6.3a).

In the literature [117, 121, 116], as well as in our own simulations, the parameter
M2 has never been reported to exceed 0.8.

In Fig. 6.2 is shown an example of the short-term dynamics of M , along with the
corresponding Fourier spectra of its components, performed after a global rotation
of −ϕ2/2. Here, the agreement of experimental data with Eq. (6.9) is excellent.
For small M2, the agreement of M with Eq. (6.9) is not as good. Though collective
oscillations still occur, the envelopes M± fluctuate, and the trajectories of the
magnetization lose their regularity.
However, we observed the fast collective oscillations to be present from the begin-
ning, regardless of the later formation of a bicluster (hence of the value of γ0), and
before the system has reached a steady state.
The average value of M = M/

√
2e is related to γ0: a high initial value leads to an

accordingly high average of ⟨M⟩.

Fig. 6.3 shows the general dynamics of the system, at different values of the
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(a) γ0 = 1, M2 = 0.52, ∆ = −0.09 (b) γ0 = 1, M2 = 0.51, ∆ = −0.98

(c) γ0 = 0.46, M2 = 0.06, ∆ = −0.94 (d) γ0 = 0.05, M2 = 0.03, ∆ = −0.11

Figure 6.3.: Some rotators trajectories are shown in blue, along with the magneti-
zation in a red gradient; the color gradient indicates the rescaled norm
M = M/

√
2e. Energy was set to e ∼ 10−5.

parameters. Here, the existence of two distinct time scales is manifest: the one
associated to the fast oscillation of M , is visibly much smaller than the one
associated to the long-term behaviour of the single rotator dynamics. In this view,
it is evident that the dynamics associated to the slow variables is similar to one of
a rotator in a bimodal potential.
Indeed, we can clearly see two angular regions “favoured" by M in terms of the
time spent as well as in magnitude. These are the locations of the two clusters,
following as expected the same slow linear drift as ϕ2/2. Around these regions some
trapped rotators (below the separatrix) slowly oscillate, while some untrapped ones
(above the separatrix) are evolving in an almost ballistic fashion.

Note that well-formed biclusters seem to occur regardless of the value of ∆.
Indeed, we were not able to find a clear relation of the stationary value of ∆ neither
with γ0 nor with the stationary value of M2.
Although we have found that the effective force Eq. (6.16) can become very slightly
repulsive when γ0 ≈ 0, it ends up attractive in the vast majority of cases. Also, ∆
and M2 evolve, at a slow time scale with respect with ω±, towards values satisfying
Eq. (6.19).
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Figure 6.4.: Power spectrum of a sin-
gle trapped rotator from
figure 6.3a.

Figure 6.5.: Comparison of ω0 theo-
retical and experimental.
We performed Fourier
transforms on small ran-
dom subsets of trapped
rotators, at energies rang-
ing from 10−5 to 10−4.

To investigate the spectral properties of the rotator trajectories, we focused
on initial conditions leading to sufficiently well-formed biclusters, i.e. M2 ≳ 0.2
(γ0 > 0.7), and performed the global rotation of −ϕ2/2 to follow the center of mass.

Fig. 6.4 shows an example of a single rotator Fourier spectrum, trapped in a
potential well and oscillating with a small amplitude. The slow mode ω0 is not
present in the spectra of the untrapped rotators, or is very weak and with a higher
discrepancy with Eq. (6.18).

In the considered regime, the low frequency observed in simulations agrees with
our theoretical value, up to a multiplicative factor of order 1, namely ωexp0 ≈ 0.94ωth0 ,
as shown in Fig. 6.5.

6.5. Conclusions and Perspectives
In the light shed by these results, let us synthesize and propose a scenario account-
ing for the formation of biclusters in the antiferromagnetic HMF model, from a
waterbag initial distribution.

At low energy, an initial state of small but non-vanishing magnetization generates
a collective oscillatory regime. This is due to the self-consistency of M , which
repels all of the rotators, entailing its own motion towards the opposite angle, in
a periodic fashion. The time scale associated to this collective motion is much
smaller than the typical time scale of the individual rotators. We observe a cyclic
high frequency transfer of energy between kinetic and potential, and the system
periodically returns close to its initial high value of the γ = M2/2E ratio. This
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entails the non-vanishing ⟨M⟩. If, initially, the temperature is small with respect to
the potential energy, the magnetization vector M follows a Lissajous-type regular
curve parametrized by ω± =

√︂
1−M2

2 and M±, as described in Eq. (6.9). The phase
of M is rapidly oscillating between two or four symmetric angles, and we thus
have ⟨M⟩ = 0 and, near one of the maxima, rotators are subjected to repulsive
and attractive forces, alternatively.
In the very beginning, as M2 ≈ 0, ω− ≈ ω+ ≈ 1/

√
2, and M follows an almost

elliptic trajectory, and thus exhibits two maxima in magnitude at two opposite
angular positions. The variables ω±, M±, are evolving concomitantly with M2, at
a slow rate. As M2 increases, the unique frequency of M split into two, and the
two maxima (generally) split into four.
When the difference between the two frequencies becomes large enough, a bimodal
effective force can be derived, accounting for the stabilization of the bicluster.

The nature of this effective force is determined by Eq. (6.19). A full understanding
of the conditions leading to a stable bicluster would thus involve a thorough study
of the transient dynamics of the slow macroscopic variables M2, M+ and M−.
It would also require to explain how other types of initial distributions (in particular,
initial sinusoidal distributions of momenta, with vanishing initial magnetization)
relate to the processes described above.

The study of the dynamics of this simple mean-field model provides valuable
insights into the mechanisms leading to ergodicity breaking in long-range interacting
systems.
We have stressed the importance of the self-consistency of the potential, giving rise
to nonlinear effects, solvable through multiscale analysis. This self-consistency is
characteristic of mean-field models; an interesting development would hence be to
look for the presence of biclusters and collective oscillations in modified versions
of the antiferromagnetic HMF, weakening this self-consistency. This emergent
behaviour has been shown to be preserved in presence of a nearest-neighbour
ferromagnetic or antiferromagnetic perturbative interaction [113]; the phenomenon
is hence not specific of pure mean-field models.
In recent studies, it has been noticed that the HMF model presents strong similarities
with systems of cold atoms in optical cavities [136, 137]. Such systems can be
considered as almost isolated, thus opening the possibility of performing a “real-life
experiment" showing the non-trivial ordered phases discussed in this paper.
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7. Glass Transition

This chapter presents the preliminary results of our ongoing investigation of the
topological origins of the glass transition. Though incomplete, the data we managed
to acquire in the present day is very promising and already allows us to draw some
interesting conclusions.

7.1. Introduction
As of today, the glass transition still stems as an opened problem of contemporaneous
physics. Indeed, as glasses are amorphous solids, no symmetry breaking is associated
with this transition, which is hence not described by the theory of Landau [1]. It
has further been argued that glass forming materials (at least strong glass formers
in Angell’s classification [138]) do not even exhibit a transition in the conventional
sense, as it yields no dynamical singularity; the transition temperature Tg is in
fact purely conventional, usually defined by the passing of a threshold value of the
viscosity or of the relaxation time.

In a number of references [139, 140, 141], it has been shown that glass transitions
most likely correspond to geometric transition. Namely, the critical points of the
potential energy were studied, and in particular their instability index (i.e. the
number of negative eigenvalues of the Hessian matrix). It was found that the
average index density vanishes at the so-called mode-coupling temperature (MCT).

Yet it is known, from Morse theory [142, 1], that any change of stability indices
of a surface is accompanied by a change of its topology.

Furthermore, the relatively recent topological theory of phase transitions [1,
143, 144, 145], unravelled a deep link between classical phase transitions and
changes in the topology of the potential level sets (PLS) ΣΦ, i.e. the iso-energy
hypersurfaces. One advantage of this topological theory of phase transitions is
that it applies to small systems (mesoscopic and nanoscopic scales), thus escaping
the thermodynamic limit dogma upon which is built the Yang–Lee theory of phase
transitions. Furthermore, it applies to phase transitions in the absence of symmetry-
breaking (hence in the absence of a well-defined order parameter). That second
point is of great interest to us, as the glass transition notoriously falls in the latter
category.

These observations compel us to investigate glass-forming systems, resorting to
a few elegant theorems linking the topological invariants and geometric quantities
such as the mean curvature.
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In Section 7.2, we present the model of glass-former under investigation, express-
ing its potential energy. Section 7.3 is devoted to the presentation of geometric
quantities that are linked to topology by a handful of useful theorems; we show how
these quantities can be measured in our simulations. In Section 7.4, we present our
numerical results. We found a two-step transition marked by peaks of the specific
heat, that we classify as a second order transition, using analytic tools developed
specifically for the microcanonical ensemble; furthermore, we show that to this
transition correspond to jumps of the bond-orientational order parameters, and is
hence accompanied by modifications of the short-range structural properties of the
system. Finally, we observe singular behaviours of various geometric quantities, in
correspondence with the observed transition, conclusively implying an underlying
change in the topology of the potential energy level sets.

7.2. Model
The system we chose here to consider consists in a binary Lennard-Jones mixture,
first introduced in [146], of Hamiltonian H({qi}i=1,...,N) = K + Φ({qi}i=1,...,N),
where K is the total kinetic energy, the qi are the N 3-dimensional position
variables, and

Φ(Γ) = Φ11(Γ) + Φ22(Γ) + Φ12(Γ)

=
∑︂
i,j∈Λ1

4ϵ11

(︄
σ11

rij

)︄12

+
∑︂
i,j∈Λ2

4ϵ22

(︄
σ22

rij

)︄12

+
∑︂
i∈Λ1,
j∈Λ2

4ϵ12

⎡⎣(︄σ12

rij

)︄12

−
(︄
σ12

rij

)︄6
⎤⎦,

(7.1)
where we introduced the shorthand notation Γ = {qi}i=1,...,N for the instantaneous
configuration of the system, Λ1, Λ2 are the set of particles belonging to species 1
and 2 respectively, and rij = |qi − qj|. The interaction parameters are set as

σ22/σ11 = 0.85 σ12/σ11 = 0.49
ϵ12/ϵ11 = 6 ϵ22/ϵ11 = 1,

and ϵ11 = 1, σ11 = 1. The density ρ = 1.6 and the respective concentrations of the
two species are c1 ≈ 0.33 and c2 ≈ 0.67 (the latter are not exact because N × c1(2)
might not be an integer). As is it customary, we set the Boltzmann constant
kB = 1.

In this numerical study, we do not take into account the microscopic details
of the kinetic energy K; in the Monte Carlo scheme we employed, described in
Appendix C, K is in fact employed as a “demon”, allowing us to keep the total
energy E constant.
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7.3. Geometric Signatures of Topological Changes
Entropy stems as a fundamental building block of thermodynamics. In particular,
in the microcanonical ensemble, most macroscopic observables can be retrieved from
its derivatives. Furthermore, it has recently been proposed [147] a microcanonical
ensemble classification of phase transitions, analogous to the notorious classification
of Ehrenfest, heuristically associating first and second order phase transitions to
discontinuity of the second and third derivatives, respectively, of the entropy.

In standard Hamiltonian systems as ours, that is where H is a quadratic function
of the momenta, the kinetic part of the canonical partition is known to be trivial,
as it reduces to a constant factor. In the microcanonical ensemble, the dissociation
of the kinetic and configurational parts of the partition function is somewhat less
evident, but can nevertheless be performed through Laplace transform techniques
[148]; in particular, this separation allows for the practical expression of the
microcanonial probability density (C.2). It results that the relevant information is
entirely contained in the configurational entropy

S(φ) = 1
3N log

∫︂
dΓ Θ (φ− Φ(Γ)) , (7.2)

where Θ(x) is the Heaviside step function, which vanishes for x < 0 and equates
one for x ≥ 0. Yet the latter expression can be rewritten in terms of the PLS
volumes [149, 1]

S(φ) = 1
3N log

∫︂ φ

0
dϕ

∫︂
Σϕ

dσ

|∇Φ| , (7.3)

∇ being here the gradient operator, dσ is the elementary volume induced by the
immersion in R3N of the PLS Σϕ, hypersurface of dimension 3N − 1 defined as

Σϕ =
{︃

Γ ∈ Ω
⃓⃓⃓⃓
Φ (Γ) = ϕ

}︃
, (7.4)

where Ω is the full state space, and ϕ is the fixed value defining the PLS. Finally, it
has been shown that Eq. (7.3) can be expressed in terms of topological invariants,
namely [1]

S(φ) = 1
3N log

[︄
V ol(S3N−1

1 )
3N∑︂
i=0

bi(Σφ) +R1(φ)
]︄

+ 1
N

logR2(φ), (7.5)

where R1,R2 are smooth functions of the potential, V ol(S3N−1
1 ) is the volume

of the unit ball of dimension 3N − 1, and bi(Σφ) is the ith Betti number of the
manifold Σφ.

Eq. (7.3) highlights the dependence of the configurational entropy on topological
aspects of the PLS, encoded in the Betti numbers bi. This observation was at the
root of the topological hypothesis, stating that the deep mathematical origin of a
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phase transition was to be found in a topological change of the PLS. It is worth
noting that, whereas any phase transition is rooted in a topological change, not all
topological changes entail a phase transition.

In the present work, we thus aim at establishing a correspondence of the glass
transition with topological changes of the PLS.

Probing the topology of the high-dimensional manifolds that are the PLS is by
no means a simple task. To our best knowledge, there exists no way of fully charac-
terizing it by means of measurable average observables, namely the tools accessible
to us. For lack of a complete reconstruction of the topology of the submanifolds
of interest, it is however possible to probe topological changes, which are, in the
end, our true object of study. There fortunately exist a few theorems of differen-
tial topology drawing sufficiently strong links between geometrical and topological
quantities, allowing us to observe, when they are present, sharp topological changes.

We now introduce very roughly a few notions of differential extrinsic geometry,
that will be useful to the development of our topological probing. For a more
extensive development of this framework, we refer the reader to Ref. [150, 1, 149].

In order to alleviate our notations, we now drop the dependence in Γ.
We first present Pinkall’s theorem, relating the average dispersion of principal

curvatures with the weighted sum of the Betti numbers
∫︁

Σϕ
σ2
κ(Γ)dΓ∫︁

Σϕ
dΓ

=
[︄
V ol(SD1 )

D∑︂
i=1

(︃
i

D − 1

)︃D/2−i
bi(Σϕ)

]︄2/D

− r(Σϕ), (7.6)

where D is the dimension of the manifold, σ2
κ = ⟨κ2

i ⟩− ⟨κi⟩
2 is the dispersion of the

principal curvatures, and r(Σϕ) is a remainder, which stays small provided that σ2
κ

doesn’t exhibit too large variations on the submanifold Σϕ.

Another geometric quantity that connects to topological invariants is the range
of variability of the sectional curvatures ∆sec. Overholt’s theorem indeed states
that it provides an upper bound to the sum of Betti numbers

∆sec ≥
[︄
V ol(SD)∑︁D

i=0 bi(Σϕ)
2V ol(Σϕ)

]︄2/D

. (7.7)

In turn, ∆sec is related to the variance of the scalar curvature RΣ , as the latter is
simply defined as the sum of all the sectional curvatures at a given point Γ

RΣ =
∑︂
i ̸=j

Kij =
∑︂
i ̸=j

κiκj, (7.8)

where Kij is the sectional curvatureof sectional plane (ui, uj), and {uj}j=1,...,D forms
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an orthonormal basis in the tangent space at this point.
It results

⟨R2
Σ
⟩ − ⟨RΣ⟩

2

N(N − 1) ≈ ∆sec , (7.9)

Up to our best knowledge, the simplest way to compute these quantities in the
context of numerical simulations, is by considering the Weingarten operator, also
called shape operator. A most useful tool characterizing the extrinsic geometry
of hypersurfaces, it is the operator such that, for X ∈ TΣ a vector field in the
tangent bundle of Σ, we have

Wn(X) = −∇Xn, (7.10)

where ∇X is the Levi-Civita connexion on Σ, and

n = ∇ϕ

|∇ϕ|
(Γ)

is the normal to Σ at a given point Γ.

The trace of the shape operator and of its square can be expressed in terms of
mere derivatives of Φ, namely

Tr [Wn] = ∆Φ
|∇Φ| −

∇Φ∗ · Hess (Φ) ·∇Φ
|∇Φ|3

Tr
[︂
W2

n

]︂
=

Tr
[︂
Hess (Φ)2

]︂
|∇Φ|2 + |∇Φ∗ · Hess (Φ) ·∇Φ|2

|∇Φ|6 − 2 |Hess (Φ) ·∇Φ|2
|∇Φ|4 ,

(7.11)

where ∆Φ and Hess (Φ) denotes respectively the Laplacian and the Hessian of ϕ,
and “·” the scalar product.

The eigenvalues of Wn are the D principal curvatures κi. It results that the
above-mentioned geometric quantities can all be expressed with combinations of
Tr [Wn] and Tr [W2

n], namely

MΣ = Tr [Wn]
D

σ2
κ = Tr [W2

n]
D

− Tr [Wn]2

D2

RΣ = Tr [Wn]2 − Tr
[︂
W2

n

]︂
.

(7.12)

The combination of formulae (7.11) and (7.12) clearly provide a straightforward
way of obtaining the quantities of interest in the context of numerical simulations,
simply by computing and combining the gradient and Hessian of the potential
function Φ at each measurement step.
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The latter geometric quantities pertain to the geometrical characteristics of the
PLS, while our simulations are performed at constant total energy E. However,
at large N , the fluctuations of Φ and K tend to vanish, and surfaces of constant
K({pi}i=1,...,N) = ∑︁

i p
2
i /2 are diffeomorphic to 3N -hyperspheres; the energy level

sets can then be seen as product manifolds ΣE ∼ S3N
K ×Σϕ. We thus consider ϕ(E)

stable enough for the corresponding PLSs to be diffeomorphic to one another, and
for the general behaviour of the above-defined geometric quantities to be trusted.

7.4. Numerical results
Using an involved microcanonical ensemble Monte Carlo scheme described in the
appendix C, we explored the behaviour of the model defined by (7.1).

We simulated a system of size N = 216 particles and another of size N = 512
particles, hereafter denoted the smaller and larger system, respectively.

It is worth noting that these simulations were, as is often the case in so-called
glassy systems, very time consuming and hard to equilibrate.

An exact estimation of the total computation time is in practice difficult to assert,
partly due to the fact that the set of energies we considered was changed multiple
times during this extensive work. To provide an idea of the involved time scales, the
simulation of the larger system for performed for a duration exceeding 600 hours
in CPU time per replica, with 120 replicas; the workstation at our disposal being
endowed with only 64 processors, we only simulated 60 replicas in parallel at any
given time, so the real duration of the simulation was more than 1200 hours, that is
50 days. In this estimation, we only took into account the efficient simulation time,
disregarding earlier simulations employed to test the program for coding errors,
and to search for the set of energies optimizing the replica swapping rate.

In comparison, the smaller system evolved much faster, and only required 50
replicas, due to the larger dispersion of the distribution of potential energies (see
Section C.4. In this case, we estimate the efficient simulation time to be around
250 hours.

It appears that the larger system did not equilibrate well, in comparison with
the smaller one, as can be inferred from the large error bars in the specific heat
computed from kinetic energy fluctuations, as displayed in figure 7.1b, and the
overall less regular behaviour of the quantities displayed in the present section.

It is worth emphasizing that none of the two systems reached a perfect equilib-
rium. The results of various equilibration tests we performed were not completely
satisfactory.

Our parallel tempering algorithm (i.e. replica exchange) was quite efficient in a
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first phase of equilibration, with some replicas crossing the whole range of energies,
from the highest to the lowest; yet, in the second, current phase of equilibration,
it became restricted to the exchange of replicas of neighbouring energies, thus do
not achieve the desired retrieval of ergodicity we aim for. The continuation of our
quest for equilibrium would require new optimized choices of a set of energies to
simulate, perhaps accompanied by a increased number of parallel replicas.

We however claim that, at least in the case of the smaller system, we find
ourselves close enough to draw some interesting conclusions from what we could
observe.

7.4.1. Characterization of the phase transition
Preliminary to our analysis of the geometry and topology of the PLS, we show here
the that a phase transition is indeed occurring, and try to determine its precise
nature.

To this end, we examined quantities that are usually expected to exhibit singular
behaviour at the transition.

7.4.1.1. Specific heat, caloric curve and entropy derivatives

The specific heat cv typically displays these critical behaviours in most phase
transitions; this can be due to the presence of latent heat, in the case of first
order phase transition, or to critical fluctuations, in the case of continuous phase
transitions.

In the microcanonical ensemble, the specific heat can be computed according to

cv =
(︄
dT

dE

)︄−1

, (7.13)

where T = 2⟨K⟩
3N is the kinetic temperature. Alternatively, we can also use the

results of [148], which used the Laplace-transform techniques to propose a variety
of alternative definitions for usual thermodynamical observables. Amongst three
different formulas for cv, we only display one here, as we obtained with the others
the same results, up to the accessible precision.

cv = 3
2

[︄
1− 3N

2

(︄
⟨K2⟩
⟨K⟩2

− 1
)︄]︄−1

. (7.14)

The comparison of the curves obtained with both Eq. (7.13) and (7.14) is
commonly employed as an equilibration test (see for instance [151]).
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(a) (b)

Figure 7.1.: Specific heat cv as a function of the energy density ϵ = E/N , in the
systems with N = 216 (a)) and N = 512 (b). The blue squares were
obtained using Eq. (7.14), while the red circles were obtained using
Eq. (7.13). Because of its great sensitivity to the (arbitrarily chosen)
set of energies, we were not able to compute reasonable standard errors
for the latter.

Inspection of figure 7.1a shows two clear peaks of the specific heat, indicators
of a two-step transition occurring in the smaller system. Figure 7.1b shows that
the large system seems to roughly exhibit the same behaviour, though much less
pronounced, presumably due to the imperfect equilibration. Such a behaviour is,
according Ehrenfest classification of phase transitions, the marker of a second order
phase transition.

In the following graphs, for both system sizes, we flag the positions of the two
peaks of figure 7.1a with two vertical dotted lines. We denote ϵ1 and ϵ2 the critical
energy density of the first and the second peak, respectively.

Figure 7.2 makes it clear that, for the smaller system of best equilibration, to
E1 and E2 correspond jumps of the potential energy density, indicating a sensible
change of the internal arrangement of the Lennard-Jones mixture. These jumps
are accompanied by an inflexion of the slope; interestingly, an inflexion point is
found also in the larger system, positioned at E2.
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Figure 7.2.: Average potential energy ⟨Φ⟩ as a function of the average temperature
T , in the system with N = 216 (red circles) and the system with
N = 512 (blue squares).

Ehrenfest classification of order transitions relies on the loss of analyticity of
Helmoltz free energy. However, the relevant thermodynamic potential in the
microcanonical ensemble is the entropy, which is perhaps a quantity of deeper
physical and mathematical meaning. Yet, after (7.13), the microcanonical specific
heat can be rewritten as

cv(ϵ) = −
(︄
∂S

∂E

)︄2 (︄
∂2S

∂E2

)︄−1

, (7.15)

emphasizing that the observed singular behaviour of cv can, in principle, find its
origin in a divergence of the first order derivative of the entropy, or in the vanishing
of its second order derivative. To better understand the underlying phenomenon,
it is hence desirable to inspect more closely these quantities. Furthermore, while,
in the canonical ensemble, the average specific energy ⟨ϵ⟩ (T ) usually displays clear
critical behaviours at the transition temperature, the microcanonical ensemble
inverse temperature β(ϵ) = 1

T (ϵ) is often much less sensitive.
Motivated by these observations, in Refs. [152, 147, 153, 154], novel methods of

classification of phase transitions in the microcanonical ensemble were proposed,
relying on the analysis of inflexion points of the derivatives of the entropy. In fact,
in the absence of a phase transition, all derivatives of S of even order are strictly
concave, and those of odd order strictly convex.

In figure 7.3, we show the four lowest order derivatives of S with respect to ϵ,
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that is

β(ϵ) = ∂S

∂E
(7.16)

γ(ϵ) = ∂2S

∂E2 = ∂β

∂E
(7.17)

δ(ϵ) = ∂3S

∂E3 = ∂2β

∂E2 (7.18)

ω(ϵ) = ∂4S

∂E4 = ∂3β

∂E3 (7.19)

To retrieve these quantities, we departed from the kinetic temperature T straight-
forwardly obtained from simulation, and differentiated β with respect to the energy.

(a) (b)

(c) (d)

Figure 7.3.: β (a), γ(b), δ(c) and ω(d) as functions of the energy density ϵ = E/N .

No sensible inflection point can be found on the inverse temperature, which
stays convex on the whole range of energies considered. In the smaller system, γ(ϵ)
shows a local (negative) maximum at the low energy transition point, and another
“bump”, albeit less visible, at the high-energy transition point. This suggests,
once again, the occurrence of a second order phase transition, according to the
classification of [154]: γ(ϵ1), γ(ϵ2) approach 0, hence β(ϵ1), β(ϵ1) must display
corresponding sharply localized region of lesser sensitivity to energy changes.
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Furthermore, δ(ϵ) displays a local maximum and a local minimum, closely before
and after ϵ1, respectively, and a minimum at ϵ2. These critical points stem as
signatures of the local maxima of γ(ϵ) present at these points.

These results are remarkably similar to those displayed in [154] for the ferromag-
netic phase transition of the 2-dimensional Ising model.

Remarkably, δ(ϵ) and ω(ϵ) exhibit pronounced divergent behaviours at very low
energy, below E1, especially in the larger system. It is however likely to be an
artefact, confirming a serious lack of equilibration in this region: the system, due
to the frozen dynamics, remained stuck in the pseudo-crystalline configuration that
we implemented as an initial condition (for detail, see appendix C).

7.4.1.2. Orientational and Translational Order

Another set of quantities that we employed to study this transition are the bond-
orientational order parameters Ql, first defined in [155] to characterize crystalline
order in Lennard-Jones liquids. For a given l ∈ N, it writes

Ql =

⌜⃓⃓⎷ 4π
2l + 1

l∑︂
m=−l
|Qlm|2, (7.20)

with
Qlm = 1

nB

∑︂
(i,j)∈B

Ylm (θ(rij), φ(rij)) (7.21)

, where B is the considered set of bonds, nB its cardinality, θ(rij) and φ(rij) are
respectively the azymutal and polar angles of the bond vector rij in a fixed reference
frame, and the Ylm are spherical harmonics.

Two particles i, j are considered bonded if rij < cb, where cb is an arbitrary cutoff.
As is often prescribed [156, 157, 158], we set cb to be the approximate position of
the second minimum of the radial distribution functions right after the first peak.

The authors of Ref. [146] showed that this model exhibits a short to medium-
range order, namely a local tetrahedral ordering, coined as a tetrahedral network.
The results displayed in figures 7.4 and 7.5 seem to corroborate this observation,
as the order parameters defined in Eq. (7.20) exhibit clear steps at the transitions
energies ϵ1, ϵ2, for certain values of l.

Interestingly, in the smaller system, at energy density ϵ1, most of the Ql exhibit
singular behaviours, whether it be a positive of a negative peak, suggesting a
temporary rearrangement of the particles upon cooling.
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(a) (b)

(c) (d)

Figure 7.4.: Bond-orientional order parameters Ql as a function of the energy
density ϵ = E/N , for all bonds (7.4a), 1− 1 bonds (b), 2− 2 bonds
(c) and 1− 2 bonds (d), in the N = 216 system. Represented are the
parameters Q2 (yellow squares), Q4 (red circles), Q6 (blue triangles),
Q8 (green diamonds) and Q10 (purple pentagons). The value 1

√
nB

,

expected in a fully disordered system, is shown as a black line.
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(a) (b)

(c) (d)

Figure 7.5.: Bond-orientional order parameters Ql as a function of the energy
density ϵ = E/N , for all bonds (a), 1− 1 bonds (b), 2− 2 bonds (c)
and 1 − 2 bonds (d), in the N = 512 system. Represented are the
parameters Q2 (yellow squares), Q4 (red circles), Q6 (blue triangles),
Q8 (green diamonds) and Q10 (purple pentagons). The value 1

√
nB

,

expected in a fully disordered system, is shown as a black line.

A more exhaustive analysis has yet to be performed, in order to assert precisely
the kinds of local structures that emerge in our simulations. Yet, as expected, a
local ordering seems to have emerged in the smaller system, as exemplifies the
projective view of figure 7.6a, where we clearly see an aperiodic repetition of pen-
tagonal arrangements. On the other hand, figure 7.6b confirms, by its pronounced
regularity and the obvious periodicity it exhibits, that the larger system stayed
stuck, at low energies, in the initial lattice-like configuration; note that this too
regular pattern disappears at energies higher than ϵ ≈ 4.2.
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(a) (b)

Figure 7.6.: Instantaneous configuration in the systems with N = 216 (a) and
N = 512 (b), projected onto an arbitrary plane, at energy density
ϵ ≈ −4.75. Particles of species 1(2) are represented in red(blue)
respectively.

7.4.2. Topological Changes

(a) (b)

Figure 7.7.: Total mean curvature as a function of the energy.

Figure 7.7 shows, in correspondence with the two cv-peaks, inflexion points of the
total mean curvature of the submanifold Σϕ, indication of a change of the landscape
of this hypersurface. In the smaller system, these inflexion points correspond to a
local minimum and a local maximum, for the first and the second peak, respectively.
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In the larger system, though abrupt changes are still visible at the transitions,
the behaviour between the two critical points is sensibly different, and roughly
monotonous.

(a) (b)

Figure 7.8.: Dispersion of the principal curvatures as a function of the energy.

The average variance of the principal curvatures, shown in figure 7.8, also seems to
exhibit singular behaviours at these transition points, providing a strong indication
of a change of the topology of Σϕ, in virtue of Pinkall’s theorem (7.6). Namely,
such a change is necessarily due to a change in the values of the Betti numbers,
hence of the topological properties of Σϕ; though the precise nature of these changes
is not accessible to our analysis, we can expect that, from the high temperature
chaotic phase to the low temperature crystalline phase, Σϕ loses connectivity and
the system is more easily confined to restricted regions of state-space.

It is again worth noticing that the behaviour of ⟨σκ⟩ is quite different for the
larger, less well-equilibrated system, as it displays a sharp fall in the intermediary
region, not present in the smaller system. For the latter, ⟨σκ⟩ is almost everywhere
increasing with increasing ϵ, with a small plateau in the intermediary region.

Finally, the variance of the scalar curvature, shown in figure 7.9, jumps at the
low energy transition point, for both system sizes, exhibiting a wide peak in the
intermediary region, in the case of the smaller system.
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(a) (b)

Figure 7.9.: Variance of the scalar curvature as a function of the energy.

All of these observations suggest that there are indeed important changes in the
topology of Σϕ at play during this phase transition, particularly pronounced between
the two cv-peaks, hence in a finite range of energy density. In this intermediary
region, the overall shape of the manifold Σϕ most probably dramatically changes,
possibly in many steps of topological discontinuities. These changes correspond
to the rearrangement of particle configurations in a crystalline order, of which the
scale gradually increases up to the point of exhibiting a genuine long-range order,
with a high degree of global symmetry.
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Conclusion of part II

In this part of our thesis, we investigated ergodicity-breaking, phase transitional
phenomena, resorting to the analysis of the behaviour of the potential functions
defining the models.

We proposed a scenario explaining the formation of biclusters in the low energy
HMF model, showing how the non-linearity of its potential generates a collective
motion of the particles that amounts to a time-dependent effective force. Exploiting
time scale separation, and applying time-averaging techniques similar to these
employed in plasma physics, we were able to retrieve the characteristic frequencies
observed in this Hamiltonian system. We further proposed a scenario thoroughly
explaining the formation and stability of the biclusters by the stroboscopic and
bimodal nature of the effective force.

It would be of great interest to try and study the antiferromagnetic HMF under
the point of view of the topological theory of phase transitions. In fact, while
the apparition of biclusters does not stem as a phase transition in the conven-
tional sense, as it is a metastable, out-of-equilibrium state highly depending on
the initial conditions, its state-space topology might, however, exhibit non-trivial
behaviours that could improve our comprehension of metastability. Furthermore, it
has been shown in former work [118] that it can in fact be seen as the equilibrium
of an effective dynamics; this yields the possibility of applying phase transition the-
ories to such out-of-equilibrium features, with a wide range of potential applications.

We then studied a binary Lennard-Jones mixture, known to be a glass-forming
model, through an elaborate microcanonical Monte Carlo scheme. We found that
the model indeed exhibits a second order phase transition that occurs in two steps,
marked by two peaks of the specific heat; though no long-range order was found,
we identified short-range structures, corroborating the finding of previous studies.
We finally showed that, as was expected, it is accompanied by dramatic changes of
the topological properties of the potential level sets.

Though we were able to draw some conclusive results, it is worth noting that we
did not fully reach, in this work, the statistical equilibrium of this glass-forming
model at all considered energies. Achieving equilibrium in the systems we considered
will lead us to finer results, in particular concerning the behaviour of geometrical
quantities below the high energy transition. Another important follow-up would be
to duplicate our results for diverse system sizes, in order to decisively discard finite
size effects. Finally, it would be of great interest to perform similar analysis onto
other glass-forming models, and in particular inspect, under this geometrical prism,
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7. Glass Transition

glass transitions that are provoked by supercooling procedures (at variance with
the model we studied, which is frustrated and does not possess a crystalline phase).
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Discussion and future
developments

The work presented in this thesis focused, for the first part, on the characterization of
correlations and entanglement properties in quantum states and for the second part
on a study of classical phase transitions leaning on the geometric and topological
properties of the potential energy surfaces. Thus, as a follow up of this work, we
now aim at utilizing this dual approach, to develop tools and methodologies that
enable a comprehensive analysis of quantum phase transitions.

As demonstrated in the Tavis-Cummings model, we have observed that quantum
phase transitions can be accompanied by a sudden change in entanglement, which
can be regarded as an order parameter in this particular context. By further
exploring the topological properties of the accessible state space in the corresponding
quantum dynamics, we anticipate a deeper understanding of these phenomena and
the emergence of new avenues for research.

Evidently, it is not as straightforward to compute quantities as the gradient or
Hessian of a quantum Hamiltonian, as it is for a classical one. This is because
quantum Hamiltonians are operators acting on Hilbert spaces (i.e. matrices), rather
than functions of real variables. A possible workaround to this drawback is to apply
the time-dependent variational principle to such quantum models; thus doing, we
can approximate the state of the system as a time-dependent vector, from which
an effective, classical-like potential function can be derived.
Approaching in this fashion the quantum dynamics with a classical formulation
could allow us to perform the desired geometric analysis, and might provide more
fundamental explanation for the occurrence of quantum phase transitions and their
links to entanglement and quantum correlations.
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A. Separable Form of Werner
States

Hereafter, we show how Werner states (WS) can be expressed in the form (1.7), to
reveal some of its alternative realizations as a mixture of pure states. Doing so, we
retrieve the values of the probability weight at which it is separable, and further
find the local partial transformations (3.15) optimizing (3.16).

A.1. Pauli Matrix Formulation
To develop our proof, we will need to express a number a pure state density matrices
in terms of the Pauli matrices σx, σy, σz; in particular, we will use the products:

σxσx =
(︄

0 1
1 0

)︄
⊗
(︄

0 1
1 0

)︄
=

⎛⎜⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎟⎠

σyσy =
(︄

0 −i
i 0

)︄
⊗
(︄

0 −i
i 0

)︄
=

⎛⎜⎜⎜⎝
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎟⎠

σzσz =
(︄

1 0
0 −1

)︄
⊗
(︄

1 0
0 −1

)︄
=

⎛⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎟⎠

(A.1)

Consider the Bell states

|ψ±⟩ = 1√
2

(|00⟩ ± |11⟩)

|ϕ±⟩ = 1√
2

(|01⟩ ± |10⟩)
(A.2)
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A. Separable Form of Werner States

The corresponding density operators can be written [45]:

|ψ±⟩ ⟨ψ±| =
1
2

⎛⎜⎜⎜⎝
1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1

⎞⎟⎟⎟⎠ = 1
4(I4 ± σxσx ∓ σyσy + σzσz)

|ϕ±⟩ ⟨ϕ±| =
1
2

⎛⎜⎜⎜⎝
0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0

⎞⎟⎟⎟⎠ = 1
4(I4 ± σxσx ± σyσy − σzσz)

(A.3)

Finally, notice that

(|n⟩ ⟨n|)⊗ (|−n⟩ ⟨−n|) + (|−n⟩ ⟨−n|)⊗ (|n⟩ ⟨n|) = I + σn
2 ⊗ I− σn

2 + I− σn
2 ⊗ I + σn

2
= I⊗ I− σn ⊗ σn

2 ,

(|n⟩ ⟨n|)⊗ (|n⟩ ⟨n|) + (|−n⟩ ⟨−n|)⊗ (|−n⟩ ⟨−n|) = I + σn
2 ⊗ I + σn

2 + I− σn
2 ⊗ I− σn

2
= I⊗ I + σn ⊗ σn

2
(A.4)

where σn := n ·σ and the kets |±n⟩ represent opposite single qubits along the axis
n of the Bloch sphere; in particular:

|+−⟩ ⟨+−|+ |−+⟩ ⟨−+| = I⊗ I− σxσx
2

|y+y−⟩ ⟨y+y−|+ |y−y+⟩ ⟨y−y+| =
I⊗ I− σyσy

2
|01⟩ ⟨01|+ |10⟩ ⟨10| = I⊗ I− σzσz

2 ,

|++⟩ ⟨++|+ |−−⟩ ⟨−−| = I⊗ I + σxσx
2

|y+y+⟩ ⟨y+y+|+ |y−y−⟩ ⟨y−y−| =
I⊗ I + σyσy

2
|00⟩ ⟨00|+ |11⟩ ⟨11| = I⊗ I + σzσz

2

(A.5)
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A.2. Separable form
Now consider the Werner state

ρW = 4p
3
I4

4 + (1− 4p
3 ) |ϕ−⟩ ⟨ϕ−|

=4p
3
I4

4 + (1− 4p
3 )I4 − σxσx − σyσy − σzσz

4

=I4

4

(︃4p
3 − 2(1− 4p

3 )
)︃

+ (1− 4p
3 )
⎛⎝I4 − σxσx

4 + I4 − σyσy
4 + I4 − σzσz

4

⎞⎠
=(4p− 2)I4

4 + (1− 4p
3 )1

2

⎛⎝ |+−⟩ ⟨+−|+ |−+⟩ ⟨−+|+ |y+y−⟩ ⟨y+y−|+ |y−y+⟩ ⟨y−y+|

+ |01⟩ ⟨01|+ |10⟩ ⟨10|
⎞⎠

=(4p− 2)I4

4 + 3− 4p
6

⎛⎝ |+−⟩ ⟨+−|+ |−+⟩ ⟨−+|+ |y+y−⟩ ⟨y+y−|+ |y−y+⟩ ⟨y−y+|

+ |01⟩ ⟨01|+ |10⟩ ⟨10|
⎞⎠

(A.6)

The last line is a decomposition of ρW in terms of separable pure state. This
decomposition corresponds to a physical realization if and only if p ≥ 1/2 and
p ≤ 3/4. It results that ρW (p) is separable ∀p ∈ [1

2 ,
3
4 ].
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A. Separable Form of Werner States

We can also write

ρW = 4p
3
I4

4 + (1− 4p
3 ) |ϕ−⟩ ⟨ϕ−|

=p3 |ψ+⟩ ⟨ψ+|+
p

3 |ψ−⟩ ⟨ψ−|+
p

3 |ϕ+⟩ ⟨ϕ+|+ (1− p) |ϕ−⟩ ⟨ϕ−|

=p3

(︃1
4(I4 + σxσx − σyσy + σzσz) + 1

4(I4 − σxσx + σyσy + σzσz)

+ 1
4(I4 + σxσx + σyσy − σzσz)

)︃
+ (1− p)1

4(I4 − σxσx − σyσy − σzσz)

=1
4

(︃
I4 + p

3(σxσx + σyσy + σzσz) + (1− p)(−σxσx − σyσy − σzσz)
)︃

=1
4

(︃
I4 + (4p

3 − 1)(σxσx + σyσy + σzσz)
)︃

=1
4

(︃
I4
(︂
1− 3(4p

3 − 1)
)︂

+ (4p
3 − 1)

(︂
(I4 + σxσx) + (I4 + σyσy) + (I4 + σzσz)

)︂)︃
=4(1− p)I4

4 + (2p
3 −

1
2)
(︃I4 + σxσx

2 + I4 + σyσy
2 + I4 + σzσz

2

)︃
=4(1− p)I4

4 + 4p− 3
6

(︃
|++⟩ ⟨++|+ |−−⟩ ⟨−−|+ |y+y+⟩ ⟨y+y+|+ |y−y−⟩ ⟨y−y−|

+ |00⟩ ⟨00|+ |11⟩ ⟨11|
)︃

(A.7)

This last decomposition corresponds to a physical realization if and only if p ≥ 3/4.
It results that ρW (p) is also separable in this region.

Hence, ρW (p) is separable for p ≥ 1/2.

A.3. Regularization
One can see from (A.6) and (A.7) that the separable forms of the Werner state
are not, in general, classical: their substates are not orthogonal. Hence, from
Definition 2, it is clear that a measure of quantum correlations like the QCD would
give non-zero values even in the separable region. One hence needs to apply the
regularization procedure (3.15). Consider the regularized Werner state:

˜︁ρW = p
(︃1

3U1 |ψ+⟩ ⟨ψ+|U †
1 + 1

3U2 |ψ−⟩ ⟨ψ−|U †
2 + 1

3U3 |ϕ+⟩ ⟨ϕ+|U †
3

)︃
+ (1− p) |ϕ−⟩ ⟨ϕ−|

= pρBD
U

+ (1− p) |ϕ−⟩ ⟨ϕ−| ,
(A.8)

where ρBD
U

is the regularization of a Bell-diagonal (BD) state (i.e. a mixture of
Bell states). We refer the reader to [45, 69, 70] for definition of the BD states and
the convention linking the coefficients ci and the spectrum of these states.
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A. Separable Form of Werner States

The Werner state is invariant with respect with qubit permutations; the operators
Uj realizing the minimization of E are hence joint identical local unitaries, i.e. of
the form Uj = UA

j (n, θ)⊗ UB
j (n, θ). Such unitaries send the original BD state of

the above equation to any other BD state. We hence can write

˜︁ρW = p
1
4

(︃
I + cxσxσx + cyσyσy + czσzσz

)︃
+ (1− p)1

4

(︃
I− σxσx − σyσy − σzσz

)︃
= 1

4

(︃
I + (p(cx + 1)− 1)σxσx + (p(cy + 1)− 1)σyσy + (p(cz + 1)− 1)σzσz

)︃
(A.9)

The regularization procedure can now be performed by tuning the ci’s; one possible
choice is to set, for some i, p(ci + 1)− 1 = −1 and ∀j ̸= i, p(cj + 1)− 1 = 0, so that

˜︁ρW = 1
4

(︃
I− σiσi

)︃
, (A.10)

which is classical. We hence have ci = −1 and cj ̸=i = 1
p
−1. Arbitrarily setting i = z,

we now consider the eigenvalues of a Bell-diagonal state; they can be expressed in
terms of the coefficients ci, using the formula λab = 1

4

(︂
1 + (−1)acx − (−1)a+bcy + (−1)bcz

)︂
.

In our case, we get

λ00 = λ10 = 0

λ01 = 1
2p

λ11 = 1− 1
2p

(A.11)

which corresponds to a physical BD state (so is realizable by ρBD
U

) if and only if
p ≥ 1

2 . In this range of p, it is hence possible to regularize ρW towards a fully
classical state, of null QC measure.
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B. Supplementary Figures of
Bicluster

Below are shown the dynamics of M in Cartesian coordinates, along with the
corresponding distributions P(ϕ), from different simulations. The histograms are
derived from samples of values retrieved in the time interval t ∈ [10000, 11000],
while the dynamics are bounded by the time interval t ∈ [10000, 10100]. We used
the time step ∆t = 0.05.
The upper figures display the dynamics directly retrieved from simulations, while
the lower ones show the same views of a vector v defined using Eq. (6.9). The
frequencies ω± are drawn from measurements of M2, v± = max(Mx,y) (with M
rotated of −ϕ2/2), and we finally rotate v of ϕ2/2, as suggested by Eq. (6.8).

Visibly, the discrepancy between the real dynamics and our analytical formula is
higher for less well-formed biclusters. This is due to the fact that, as mentioned
is Section 6.4, in this regime, the amplitudes M± are fluctuating, whereas our
parameters v± are constant.

(a) (b)

(c) (d)

Figure B.1.: γ0 = 1, M2 = 0.51, ∆ = −0.98, long-time behaviour shown in Fig. 6.3b
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B. Supplementary Figures of Bicluster

(a) (b)

(c) (d)

Figure B.2.: γ0 = 0.46, M2 = 0.06, ∆ = −0.94, long-time behaviour shown in
Fig. 6.3c

(a) (b)

(c) (d)

Figure B.3.: γ0 = 0.05, M2 = 0.03, ∆ = −0.11, long-time behaviour shown in
Fig. 6.3d
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C. Monte Carlo method

Simulating glass formers is a notoriously complex task. The main reason is that,
in the glass phase, these systems exhibit a large number of energy minima, and
tend to remain trapped in the surrounding potential wells. Therefore, gathering
a representative set of data points, i.e performing an importance sampling of the
energy surface, requires the use of numerous tricks and techniques.

The simulation scheme we developed belong to the class of Monte Carlo algorithm,
which are among the most commonly employed in simulations of systems at
equilibrium. In principle, Monte Carlo algorithms are ergodic: relying on random
displacements of the system rather than to its exact dynamics, they do not get
stuck as easily in potential wells and thus sample state space much more effectively.

Also, in contrast with molecular dynamics simulations, Monte Carlo algorithms
do not require the integration of the equations of motion at each time step, but a
mere update of the energy, which yields a considerable computational speedup.

C.1. Quick introduction to Monte Carlo algorithms
Monte Carlo algorithms form a class of numerical methods based on stochastic
procedures. The principle is to exploit the probabilistic properties of a mathematical
or physical object, in order to achieve calculations with precision strongly linked
to the number of iterations; this is, of course, due to the law of large numbers,
insuring that the outcome would converge to the exact result with the number of
iterations.

One should note that Monte Carlo methods can be applied as well to systems
of a stochastic nature as to totally deterministic systems, or to find mathematical
constants.

It is very much adapted to the study of random systems as statistical physics
models, since they come with well-defined probabilistic features.

Simulations of N -body systems are best achieve with Markov Chain Monte Carlo
methods (MCMC), through thermalization. Namely, in a MCMC, the system
evolves from state to state with some transition probability that is determined by
statistical constraints, converging to the equilibrium distribution.

The following introduction to Monte Carlo methods is mainly drawn from the
excellent manual [159].

The canonical ensemble average ⟨O⟩can of an observable O can be computed
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analytically by integration over the whole state-space Σ, weighted by the Boltzmann
distribution: p (Γ) = e−βE(Γ)

Z(β) , with Γ = {qi}i the instantaneous configuration of
the system (i.e. a microstate), qi being the 3-dimensional position vector of the
ith particle, and Z(β) =

∫︁
Σ dΓe−βE(Γ) is the partition function. In practice, the

latter is for some systems impossible to compute analytically, and very hard to
compute numerically in a reasonable time (except for systems of a very small size).
The goal of an MCMC algorithm is to allow the computation of ⟨O⟩ without any
knowledge of Z; namely, instead of integrating over Σ, we sum up measurement
of O taken on a discrete sample σ ⊂ Σ. Provided that the sample σ is represen-
tative enough of Σ, the average thus obtained converges to the canonical one ⟨O⟩can.

In order to do this without directly computing the equilibrium distribution p(x),
we consider the detailed balance condition, necessary and sufficient condition for a
Markov process to converge to p(x):

p(Γµ)P (Γµ −→ Γν) = p(Γν)P (Γν −→ Γµ), (C.1)

where Γµ and Γν denote two distinct microstates.

Now, as the following will make clearer, it is often meaningful to decompose the
transition probability P into a selection probability g and an acceptance rate A,
namely P (Γµ → Γν) = A(Γµ → Γν)g(Γµ → Γν). The acceptance rate represents,
once the spin has been chosen, the probability that the algorithm accepts the
transition and actually update the state.

For our purpose, and as it is often the case, the selection probability is taken to
be a constant (no given state is more likely to be selected than another).

From Eq. (C.1) we obtain

A(Γµ → Γν)g(Γµ → Γν)
A(Γν → Γµ)g(Γν → Γµ) = A(Γµ → Γν)

A(Γν → Γµ) = p(Γν)
p(Γµ) . (C.2)

Any Markov chain satisfying this condition, provided that ergodicity is insured
(in practice, this just means that every state must be accessible), converges to the
equilibrium distribution.

In the above formula, it is already clear that the partition function Z, entering
in the definition of p(Γ), cancels out as desired.

This leaves us with a great freedom in the construction of an algorithm. One
should always exploit this freedom to make the algorithm the most efficient possible,
by which we mean that the system should evolve as fast as possible, and avoid
wasting computation time because of too rare transitions. To this end, the optimal
choice is to set the largest of the two acceptance rates to 1 (the maximal possible
value), and deduce the smallest accordingly. That choice can be expressed through
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the formula
A(Γµ → Γν) = min

{︄
1, p(Γµ)
p(Γν)

}︄
(C.3)

For instance, in the case of a Boltzmann equilibrium distribution, we have
p(Γµ) = e−βϕµ/Z, where β is the inverse temperature and we abbreviated ϕ(Γµ) :=
ϕµ the potential energy of the system in the microstate Γµ. The optimal choice for
the acceptance rate is therefore

p(µ→ ν) = min
{︂
1, e−β(ϕν−ϕµ)

}︂
(C.4)

Remark that, as is made clear by the above equation, canonical Monte Carlo
algorithms use β as the control parameter. Even if the system possesses a kinetic
energy K = ∑︁

i p
2
i /2, the momenta pi are hence usually not considered in the

algorithm, as implied by the kinetic definition of the temperature T = 3NK/2.

C.2. Microcanonical Monte Carlo
Yet the microcanonical case is sensibly less common in the literature, and somewhat
less straightforward in its implementation. This is due to the fact that, in such a
framework, the system is strictly constrained to a surface of constant energy, hence
evolves in a subspace of null measure in Σ.

A possible workaround is to exploit independence of momenta and position,
namely the separability of the partition function. As, at equilibrium, momenta are
known to trivially follow the Boltzmann distribution, it is not necessary to imple-
ment random momentum changes at each step of the algorithm. Not investigating
these degrees of freedom leaves the kinetic energy available as a free parameter,
that we can use to maintain the total energy of the system at the desired value, by
compensating the energy change coming from the change in configuration.

The microcanonical probability density for a given microstate µ at energy E is
given by [148, 160, 161]

pE(µ) ∝ Θ (E − ϕµ) [E − ϕµ](3N/2−1) . (C.5)

Let us now consider a transition µ→ ν. For any physically relevant initial state,
we must have E ≥ ϕµ, hence Θ (E − ϕµ) = 1. Eq. (C.3) becomes

A(µ→ ν) = min
⎧⎨⎩1,Θ (E − ϕν)

[︄
E − ϕν
E − ϕµ

]︄(3N/2−1)
⎫⎬⎭ (C.6)
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C.3. Particle exchange and parallel tempering
As stated before, simulating the vitreous phase raises great challenges, as the system
tends to be stuck in potential wells for extensive amounts of time, preventing us
from efficiently sampling the configuration space Σ.

Overcoming this difficulty requires to fully take advantage of the Monte Carlo
framework, which allows us to perform updates of the system that do not follow
the conventional dynamics, provided that detailed balance is fulfilled. In fact, the
power of MCMC comes from the fact that any kind of move is allowed in principle,
and that the validity of the results is guaranteed by the sole choice of acceptance rate.

A first method that we put in place to overcome the problem of potential barriers
is the particle swapping move, first proposed in [151]. At each MC step, with
a probability that we (arbitrarily) set to p = 0.1, one particle of each species is
chosen at random, both their positions are swapped and displaced according to the
usual random displacement rule; with probability (1− p), a conventional MC step
is performed. Afterwards, the move is accepted according to the usual acceptance
rate (C.6).“

Another well-known and very elegant workaround is the method coined as parallel
tempering (PT), or sometimes replica exchange. We thereafter use the term PT, to
stick with the conventional terminology, even if it is somehow misleading, given
that the control parameter of our simulations is energy rather than temperature.

Using multiprocessing, we simulate M instances of the system (the so-called
replicas) in parallel, each at a different energy E0 < E1 < . . . < EM−2 < EM−1.
Above the transition, the system does not exhibit these potential wells, and is
hence much less constrained, rapidly exploring a variety of regions of Σ. The main
idea of PT is to exploit that fact by periodically attempt to exchange replicas of
neighbouring energies Ei, Ei+1, with an acceptance rate satisfying Eq. (C.2), insur-
ing convergence to the equilibrium distribution. Doing so, the low energy replica
can effectively jump out of potential wells, allowing a more thorough sampling.1

The probability of a microstate being a function of its associated potential energy,
it is clear that the average acceptance rate for the exchanges of two given replicas
depends on the overlap of their potential energy distributions pE(U). It results that,
the closer are the energies of the two replicas, the more likely in average are their
exchanges. In this context, the number M of replicas is thus a parameter of critical
importance. Furthermore, as we increase the system size N , the distributions
pE(U) become narrower, and an efficient algorithm would hence need neighbouring
energies to be even closer to one another, and M to be larger.

1The experimental equivalent of this technique is to simply melt and vitrify the sample many
times, performing the measurements of interest at each cycle. Doing so, one is able to capture
a great variety of configurations allowed in the vitreous phase.
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It is straightforward to apply the same reasoning, relying on the detailed balance
condition (C.1), as in the previous section, to compute the acceptance rate of the
exchanges.

Consider an initial state where a replica i of energy Ei is in the configuration µ,
and a replica i+1 of energy Ei+1 is in the configuration ν. As before, assuming this
initial state physically relevant, we have Ei > ϕµ and Ei+1 > Eν ; since Ei+1 > Ei,
this also implies Ei+1 > ϕµ. This remark will conveniently allow us to discard three
Heaviside functions among four.

We denote Ai,i+1(ϕµ, ϕν → ϕν , ϕµ) the acceptance rate for the exchange of the
configurations of these two replicas. The probabilities p(µ) in Eq. (C.1), (C.2)
and (C.3) should now be replaced by joint probabilities for the replica i to be
in the microstate ϕµ and the replica i + 1 to be in the microstate ϕν , namely:
pi,i+1(ϕµ, ϕν) = pi(ϕµ)pi+1(ϕν).

Eq. (C.3) then becomes

Ai,i+1(ϕµ, ϕν → ϕν , ϕµ) = min
{︄

1, pi(µ)pi+1(ν)
pi(ν)pi+1(µ)

}︄

= min
⎧⎨⎩1,Θ (Ei − ϕν)

[︄
(Ei − ϕν)(Ei+1 − ϕµ)
(Ei − ϕµ)(Ei+1 − ϕν)

]︄(3N/2−1)
⎫⎬⎭

(C.7)

The latter expression is scales exponentially with the system size N . Thus, even
if the system sizes are very far from the Avogadro number, the behaviour of this
acceptance rate in the thermodynamic limit is quite relevant to our understanding
of the performance of our PT scheme. It simply writes

lim
N→∞

Ai,i+1(ϕµ, ϕν → ϕν , ϕµ) = Θ (Ei − ϕν) Θ ((Ei − ϕν)(Ei+1 − ϕµ)− (Ei − ϕµ)(Ei+1 − ϕν))

= Θ (Ei − ϕν) Θ (−Eiϕµ − ϕνEi+1 + Eiϕν + ϕµEi+1))
= Θ (Ei − ϕν) Θ ((Ei+1 − Ei)(ϕµ − ϕν))
= Θ (Ei − ϕν) Θ (ϕµ − ϕν)
= Θ (ϕµ − ϕν) ,

(C.8)

where we used the fact that Ei+1−Ei > 0, and that Ei > ϕµ hence ϕµ > ϕν implies
Ei > ϕν .

C.4. Choice of energy arrays
As stated before, the choice of an array of energies {Ei}i=0,...,M−1 is of great impor-
tance, as it should roughly optimize the replica exchange rate, within the limitation
of the accessible number of processors (CPU). Note that this choice only affects
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efficiency, as the convergence of the Monte Carlo algorithm toward equilibrium
distributions is already insured by our choices of acceptance rates satisfying the
detailed balance condition (C.2).

In a first simulation, with a system of relatively modest size (i.e. N = 216) we
found that it was a good enough choice of an energy array to simply define a power
law:

Ei = Emin

(︃
Emax
Emin

)︃ i
M−1

, (C.9)

with i = 0, . . . ,M − 1.

Yet, as soon as we start tackling a larger system (i.e. N = 512), the replica
exchange rate becomes much lower. The first, obvious solution we set up was to
simulate a larger array of energies, namely 2× 60 different energies: as the work
station we were working on only has 64 CPUs, we simulate 60 energies, then 60
others, before attempting the replica exchanges. Yet we found that this wasn’t
enough, as some energies behaved as bottlenecks, through which replicas couldn’t
diffuse efficiently enough.

We hence resorted to a simple algorithm, described in Refs. [162, 163], in the
context of canonical ensemble simulations; the adaptation to the microcanonical
case is however straightforward. Given two fixed extremal energies E0, EM and
the number M of replicas we wish to simulate, it consists in finding the M − 2
intermediate energies such that the exchange rate between adjacent replicas is
uniform. In other words, we look convergence towards the fixed point

⟨Ai,i+1⟩ = ⟨Ai,i−1⟩ , ∀i = 0, . . . ,M. (C.10)

In principle, the closest we are to these fixed point (C.10), the more efficient is the
replica exchange algorithm in average.

Remark that, in contrast with Refs. [162, 163], we require equality of the average
acceptance rates rather than the equality of the acceptance rates, given the average
potential energy. This change is in fact necessary because we have in general
⟨ϕ⟩ (Ei) < ⟨ϕ⟩ (Ei + 1); yet, considering Eq. (C.8), it is clear that using average
potential energies will lead to vanishing or very small acceptance rates.

To get around this issue, we simply take into account the overlap of potential
energy distributions instead of the mere average, that is

⟨Ai,i+1⟩ =
∫︂ Ei+1

−∞
dϕ′

∫︂ Ei

−∞
dϕ pEi

(ϕ) pEi+1 (ϕ′)Ai,i+1 (ϕ, ϕ′ → ϕ′, ϕ) . (C.11)

We further use the approximation (C.8), which greatly accelerate the algorithm,
as it avoids many exponentiation and reduces the interval on which the above
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integral in computed. We end up with

⟨Ai,i+1⟩ ≈
∫︂ Ei+1

−∞
dϕ′

∫︂ Ei

−∞
dϕ pEi

(ϕ) pEi+1 (ϕ′) Θ (ϕ− ϕ′)

=
∫︂ Ei+1

−∞
dϕ′

∫︂ Ei

ϕ′
dϕ pEi

(ϕ) pEi+1 (ϕ′) .
(C.12)

We set an initial array of energies using Eq.(C.9), and run Monte Carlo sim-
ulations until we obtain a reasonable energy-temperature dependence. We then
compute and interpolate the average µϕ(E) and standard deviation σϕ(E) of
ϕ as functions of E, so that we are able to estimate the corresponding Gaus-
sian probability distributions pE (ϕ) for any E. The integrals (C.12) are com-
puted numerically, using a discrete set of 103 potential energies in the range
µϕ(Ei)− 2σϕ(Ei) ≤ ϕ ≤ µϕ(Ei+1) + 2σϕ(Ei+1).

Algorithm 1: E-range optimization through U -overlap method
Data: Initialize {Ei}i=0,...,M−1;
Interpolate µϕ(E) from data;
Interpolate σϕ(E) from data;
Set the number of iterations nmax ;
Initialize the number of repeats n = 1 ;
repeat

for i0 = 0, 1 do
i← i0;
while i < M do

f(Ei)← ⟨Ai,i+1⟩ (Ei)− ⟨Ai−1,i⟩ (Ei);
Ei ← (Ei + f−1(0)) /2;
i← i+ 1;

end
end

until n = nmax;

C.5. Initial configuration, periodic boundary
conditions and cutoff

The system is simulated in a cubic box of volume L3.
As we are working in the microcanonical ensemble, our control parameter is the

internal energy E = K + Φ. We tune it by an appropriate choice of initial configu-
ration, which determines the value of the potential energy Φ, and the subsequent
setting of a positive value for the kinetic energy K.
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The system we investigate is governed by the continuous potential (7.1), depend-
ing on negative powers of the interatomic distances rij and repulsive at short range.
When some rij become to small, the energy thus diverges. Since our simulations are
performed at high density (ρ > 1), totally random initial configurations typically
result in very high energies, which cannot be corrected by the choice of K, since
the latter is a positive quantity.

To get around this issue and have a sufficient control over the initial ϕ, we were
thus obligated to implement initial conditions with a high degree of symmetry.

Namely, we initially arranged the particles in a cubic lattice configuration, where
each particle’s first neighbours are of the other species. Then we randomly replaced
particles of species 1 by particles of species 2, until we reach the desired species ratio.

To avoid undesired boundary effects, we implemented, as is it customary, periodic
boundary conditions (PBC). Namely, ∀i, j = 1, . . . , N , the interatomic distance
along an axis γ = x, y, z is redefined as

∆γij =

⎧⎪⎪⎨⎪⎪⎩
(γi − γj) if − L/2 ≤ (γi − γj) ≤ L/2.
(γi − γj) + L if (γi − γj) < −L/2.
(γi − γj)− L if (γi − γj) > L/2.

(C.13)

Remark that the PBC entails a periodic pattern in the particles’ spatial distribu-
tion.

Smooth cutoffs must therefore be implemented, not only for performance purposes,
but also to avoid this unwanted symmetry introduced by the PBC. Since we aim
at computing quantities derived from both the gradient and the Hessian of ϕ(Γ),
we accordingly need cutoffs that is continuous up to the second order.

The non-monotonic, interspecies potential of Eq. (7.1) is redefined as⎧⎪⎪⎨⎪⎪⎩
ϕ12(r) = 4ϵ12 (σ12

12r
−12 − σ6

12r
−6) , 0 < r ≤ r(12)

c

ϕ12(r) = C(r − r(12)
m )4 +D(r − r(12)

m )3 , r(12)
c < r ≤ r(12)

m

ϕ12(r) = 0 , r(12)
m < r,

(C.14)

On the other hand, the monotonic, intra-species potentials are redefined as⎧⎪⎪⎨⎪⎪⎩
ϕαα(r) = 4ϵαασ12

ααr
−12 + Aα , 0 < r ≤ r(αα)

c

ϕαα(r) = Bα(r − r(αα)
m )3 , r(αα)

c < r ≤ rm

ϕαα(r) = 0 , r(αα)
m < r,

(C.15)

where α = 1, 2.

Following [164], we set r(12)
c =

(︃ 7
26

)︃1/6
σ12, i.e. the distance such that ϕ′′

12(r(12)
c ) =

0. Though this condition becomes meaningless for the monotonic potentials, we
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also, arbitrarily, chose r(αα)
c =

(︃ 7
26

)︃1/6
σαα.

From there, requiring the continuity, up to the second derivative, of these potential
functions at the first cutoff distance rc, straightforwardly implies the values of the
other constants of Eqs. (C.14) and (C.15).
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