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In this study, the problem of scheduling a set of jobs and one uncertain maintenance activity on a single
machine, with the objective of minimizing the makespan is addressed. The maintenance activity has a given
duration and must be executed within a given time window. Furthermore, duration and time window of
the maintenance are uncertain, and can take different values which can be described by different scenarios.
The problem is to determine a job sequence which performs well, in terms of makespan, independently on
the possible variation of the data concerning the maintenance. A robust scheduling approach is used for the
problem, in which four different measures of robustness are considered, namely, maximum absolute regret,
maximum relative regret, worst-case scenario, and ordered weighted averaging. Complexity and approximation
results are presented. In particular, we show that, for all the four robustness criteria, the problem is strongly
NP-hard. A number of special cases are explored, and an exact pseudopolynomial algorithm based on dynamic
programming is devised when the number of scenarios is fixed. Two Mixed Integer Programming (MIP) models
are also presented for the general problem. Several computational experiments have been conducted to evaluate
the efficiency and effectiveness of the MIP models and of the dynamic programming approach.

such problems, the aim is to find a job sequence that is robust against
the uncertainties concerning the maintenance task. In general, robust

1. Introduction

In this paper, the problem of scheduling a set of jobs and an
uncertain maintenance activity on a single machine with the objective
of minimizing the makespan is addressed. The maintenance activity
is flexible, that is, it must be executed within a given time window.
Furthermore, while the processing times of the jobs are deterministic,
the maintenance duration and the time window are uncertain, and can
take different values which can be described by various scenarios. The
problem consists of determining a job sequence which performs “well”,
in terms of makespan, independently on the possible variation of the
data concerning the maintenance.

These types of problems arise in manufacturing plants when a work-
station has to process jobs in a given sequence and, concurrently, has
to perform a precautionary maintenance task in order to prevent major
failures. Maintenance activities are usually carried out by an external
party which gives rough estimates of the time required for this task and
the time-interval in which it would be executed. In these conditions,
duration and starting time of the maintenance are not exactly known
a-priori, while the job sequence must be decided before the information
about the maintenance is disclosed. Hence, the actual schedule will
depend on the starting time and length of the maintenance activity,
and thus it can be established only once the data become apparent. In
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optimization deals with problems in which, due to uncertain input data,
a set of scenarios with possibly different optimal solutions exist. Most
of the approaches in the literature consist of trying to find a solution
satisfying given “robustness criteria”, which may be associated to an
average or a worst-case solution performance over all scenarios. In
this context, the addressed problem can be defined as a robust flexible
maintenance single machine scheduling problem with the objective
of minimizing the makespan. In this work, different variants of the
problems are studied and different robustness criteria are analyzed.

A similar scheduling problem in which uncertainty only affects
maintenance duration has been addressed in Detti, Nicosia, Pacifici,
and de Lara (2019). In the current work, a more general setting is
considered: The maintenance time window in addition to its duration
are regarded as varying parameters in the different scenarios. The main
contributions of this work are: (i) New complexity and approximation
results are provided for the general problem under four different robust-
ness criteria, namely, absolute and relative regret, worst case scenario,
and ordered weighted averaging. In particular, different from strictly
related problems previously addressed in the literature, we are able
to prove strong NP-hardness results for all the considered robustness
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criteria. Approximation results are also presented. (ii) Different variants
and special cases of the problem in which the uncertainty regards
one or both the extremes of the time window and/or the duration of
the maintenance activity are addressed and analyzed. (iii) An exact
pseudopolynomial dynamic programming algorithm for the case in
which the uncertainty can be described by a fixed number of scenarios
is devised, and two Mixed Integer Linear Programming (MIP) models
for the general case are proposed. (iv) A computational study on
randomly generated instances is presented, assessing the performance
of the above solution approaches.

The paper is organized as follows. In Section 2, a review of the lit-
erature is presented. Some preliminary concepts, definitions, a rigorous
statement of the problem together with a summary of the main theoret-
ical contributions are given in Section 3. Section 4 is devoted to present
the theoretical results on computational complexity and approximation
for all the considered robustness criteria, and to describe an exact
dynamic programming algorithm. In Section 5, some special cases,
which can be efficiently solved or that can be reduced to problems
already addressed in the literature, are investigated. In Section 6 two
MIP formulations are presented. The results of the computational ex-
periments on the MIP models, together with the dynamic programming
algorithm, are presented in Section 7. Finally, conclusions follow.

2. Literature review

In the literature, scheduling problems with maintenance activities
or unavailable periods have been addressed by several authors for the
deterministic case, i.e., in which the duration of the maintenance tasks
or unavailability periods are known. In Lee (1996) Lee considers several
deterministic scheduling problems with unavailability constraints both
in the resumable and in the nonresumable cases. (In the resumable
case it is possible to interrupt the processing of one job and resume
its execution after the completion of the maintenance activity. This is
not allowed in the nonresumable case.) In the resumable case many
single machine scheduling problems can be solved in polynomial time,
while the corresponding nonresumable versions of the same problems
often become NP-hard (Lee, 1996; Yang, Maa, Xu, & Yang, 2011). For
a survey of scheduling problems with availability constraints see Ma,
Chu, and Zuo (2010).

For the makespan objective function, the nonresumable determin-
istic non-flexible version (in which the maintenance must start at
a fixed given time) is proven to be binary NP-hard in Lee (1996).
Furthermore, Lee (1996) shows that the Longest Processing Time (LPT)
rule has a tight worst-case ratio of 4/3, and He, Ji, and Cheng (2005)
present a Fully Polynomial Time Approximation Scheme. Kacem and
Kellerer (2016) prove that a simple algorithm that schedules first the
longest job has a worst-case ratio of 3/2.

Yang, Hung, Hsu, and Chern (2002) address the problem of schedul-
ing jobs on a single machine with a flexible maintenance activity in
the nonresumable case, with the objective of minimizing the makespan.
They show that the problem is NP-hard and provide a heuristic algo-
rithm with complexity O(nlogn). The variant of the problem, in which
maintenance must be periodically performed is addressed in Chen
(2008), Ji, Yong, and Cheng (2007), Lee (1996) and Xu, Yin, and Li
(2009). Lee (1996) proves that the problem is strongly NP-hard even
in the non-flexible case, and Ji et al. (2007) show that LPT has a
tight worst-case ratio of 2. Chen (2008) proposes two mixed integer
linear programming models and a heuristic algorithm. Xu et al. (2009)
show that the heuristic proposed in Chen (2008) is 2-approximate and
that the bound is tight. In Luo, Cheng, and Ji (2015), the authors
consider the single machine problem of scheduling jobs and a variable
maintenance, which has to start before a given deadline and whose
duration is increasing with its starting time. They provide polynomial
solution algorithms for a few classical objective functions. A similar
problem with different objective is addressed in Ying, Lu, and Chen
(2016).
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In the literature, robust optimization problems have been addressed
in several fields by many authors, in order to take care of incomplete
or unreliable data. Mulvey, Vanderbei, and Zenios (1995) present a
general framework for addressing conflicting objectives and model
robustness, while Kouvelis and Yu (1997) propose different robustness
criteria. Robust scheduling problems have been addressed by different
works in the literature, too. Daniels and Kouvelis (1995) consider
single machine scheduling problems with the objective of minimiz-
ing total completion time, in which processing times may vary in a
given interval. They introduce different robustness criteria, measuring
worst-case absolute or relative deviation from the optimum over all
scenarios (i.e., maximum absolute or relative regrets), and establish
several properties of robust schedules. Lebedev and Averbakh (2006)
show that the problem of finding a schedule minimizing the maximum
regret on a single machine, with processing times varying in given
intervals, is NP-hard. For the same problem, Kasperski and Zielinski
(2014) propose an approximation algorithm, Pereira (2016) presents
an exact algorithm for the case with job weights and total weighted
completion time objective, and Wang, Cui, Chu, Yu, and Gupta (2020)
come up with an approximation algorithm and exact-solution methods
based on MIP formulations when the objective is total tardiness.

Robustness concepts have been also adopted in scheduling problems
with maintenance activities. For instance in Costa Souza, Ghasemi, Saif,
and Gharaei (2022), the authors study how machine unavailability,
due to a preventive maintenance with stochastic duration, affects the
performance of a job shop. The weighted sum of the expected values of
the makespan is used as a robustness criterion. In Golpira and Tirkolaee
(2019), Golpira and Tirkolaee present a bi-objective model which
incorporates the problem of scheduling a maintenance activity with
uncertain duration into a robust optimization framework. Different
solution techniques aiming at guaranteeing the stability of the output
schedule are proposed and evaluated. A recent survey by Shabtay
and Gilenson (2023) provides an interesting framework for scheduling
problems in which the multi-scenario approach is adopted to cope with
uncertain parameters or data.

Finally, in the above mentioned paper (Detti et al., 2019), the
authors investigate robust scheduling problems on a single machine
in presence of a flexible maintenance activity with uncertain dura-
tion: Four robustness criteria are analyzed when the objective is the
minimization makespan or total completion time.

3. Introductory concepts, definitions and notation

In the scheduling problem addressed in this paper, we are given a
set of n jobs, J = {1,2,...,n}, and a maintenance activity M, that must
be processed on a single machine. The jobs must be processed without
interruption, and the machine cannot process any of the jobs during
the execution of the maintenance activity. The maintenance M has a
duration P and must be performed within a time window [r, d], and the
jobs have processing times p;, j = 1,...,n. While the jobs processing
times p; are deterministic and known, the maintenance duration P and
the interval [r, d] are uncertain quantities, which take their values in a
finite and discrete set S = {s,,s,, ..., s, } of scenarios. For each scenario
s € S, we denote by r(s) and d(s) the realizations, i.e., the values, taken
by the extremes of the maintenance time window in s, and by P(s) the
realization of the maintenance duration. In the remainder of the paper,
it is always assumed that P(s) < d(s) — r(s) for all s € S.

In what follows, without loss of generality, let us assume that the
scenarios are ordered according to non-decreasing values of the latest
starting time of the maintenance M. Hence,

d(s;) — P(s)) <d(s) — P(sy) < -+ < d(sy) — P(sy). @

The problem consists in determining a job sequence z of the n jobs
which performs well, in terms of makespan (i.e., the completion time of
the last job in the sequence), independently on the possible variation
of the data concerning the maintenance. Namely, we want to find a
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Fig. 1. The realization schedules o(z',s,) and o(z',s,) of the sequence z' = (3,1,2,4) under the two scenarios of Example 1.

sequence that is robust against the uncertainties of M described by the
scenarios’ set S. To this aim, different robustness criteria, which are
rigorously defined below, are studied.

Given a job-sequence = = (z|,7,,...,...7,) and a scenario s € S
(defining the duration P(s) and the interval [r(s),d(s)] of the main-
tenance), the makespan of the solution is evaluated in the so-called
realization schedule o(r, s). Here, jobs are processed in the order spec-
ified by = and M is executed at the latest available time inside the
allotted time window so that unnecessary idle times are avoided (Detti
et al.,, 2019). More specifically, in a realization schedule o(z,s), the
crossover job h is the first job in the sequence r that could not be
completed before the maintenance period. Since jobs cannot be in-
terrupted,’ in o(x,s), the crossover job is always scheduled after the
completion of M and the maintenance activity is scheduled at the
earliest possible time between the (2 — 1)-th and the A-th jobs. The
resulting sequence is then (7, ... 7;_;, M, 7y, ... 7).

For the jobs scheduled before the crossover job, the completion time
of the hth job in o(x.s) is C,, (6(7.5)) = X)_, p,,» for h=1,....h— 1.
For the other jobs, the completion time is the sum of the processing
times of preceding jobs, plus the maintenance duration, plus possible
unavoidable idle time. Then, for h = &, ..., n, C,, (o(m,9) = Z;=1 Pr, +
P(s) + max {0, r(s) — Zf:ll Px, } If, in the latter term, r(s) — Zf’: Py, is
positive we have an idle time before the earliest possible start r(s) of
the maintenance activity. In the remainder of this paper, the makespan
of the realization schedule of a sequence z in scenario s € S is referred
to as Cy (7, 5) = max e, {Cj(a(fr, s)}.

Example 1. Let us consider a problem instance with a set of four
jobs {1,2,3,4}, with processing times p; = 51, p, = 73, p; = 100, and
ps = 125, and two scenarios s; and s,, with r(s;) = 100, d(s;) = 200,
r(sp) = 130, d(s;) = 230, P(s;) = P(s,) = 80. Let us consider the
job sequence z! = (3,1,2,4). In Fig. 1, the two realization schedules
o(z',s;) and o(x!,s,) in the two scenarios are reported. Note that, job
1 is the critical job in both scenarios s, and s,. Also observe that, while
z! is an optimal solution sequence in scenario s; (producing no idle
time), it is not in s,, in which the optimal solution is 7% =(4,1,2,3).

Note that, despite the ordering defined by Eq. (1), in general it is
not possible to establish domination criteria among the values of the job
completion times in different scenarios s € S: For instance, sequence
z! of Example 1 obtains a worse makespan in the “ampler” scenario s,
(i.e., such that d(s;) — P(s;) < d(sy) — P(s5)).

Robustness criteria. As already stated, for a certain scenario s, the
performance of a solution r is measured by the makespan of the realiza-
tion schedule, i.e., the completion time of the last job in the schedule.
To assess whether a schedule is satisfactory in all the scenarios, four
robustness criteria have been considered (to be minimized). Namely,
min-max (M M), maximum absolute regret (ABS) and relative regret
(REL), and ordered weighted averaging (OW A), that are defined in the
following. Given a job sequence =, let C,,, (7, s) be the makespan of the

1 This situation is referred to in the literature as “non-resumable” case.

realization schedule o(z, s), and let C; (s) be the minimum makespan
value for scenario s € S. Then:

MM (x) = ma;_( Chax (7, 8) (min — max);
se

@

(maximum absolute regret);

3

ABS(r) = max{Cp, (7, 5) — Ci_(5)}
SES

Crax (7, 8)

RE L(r) = max
SES Cr;ax(s)

(maximum relative regret);
@

k
OW A(m) = Y B Conax (7. 5717)

i=1

(ordered weighted averaging);

(5)
where, in (5), s;) € S is the scenario producing the ith largest value
of the makespan C,,,y, i.€., Cpu (7, 5;1) 2 Crpa (7, 85415 i = 1, k= 1,

and f; is a given weight assigned to scenario s;.

The min-max and the maximum absolute and relative regret criteria
are widely used criteria in robust optimization (see Aissi, Bazgan, &
Vanderpooten, 2009) and have been also applied in the scheduling
literature, see e.g., Daniels and Kouvelis (1995). In the M M criterion,
one has to find a sequence whose maximum makespan among all
scenarios is minimum. ABS and REL provide information on how a
given realization schedule is far from the optima of all the scenarios.
OW A has been introduced in Yager (1988) and it is a generalization
of the min-max criterion: In fact, OW A with g, = 1 and g, = 0 for
i=2,3,...,k reduces to M M.

Given a job sequence, i.e., a solution z, and a certain criterion
c € {ABS,REL, MM,OW A} (defined in Egs. (3)—(5)), we indicate by
c(r) the value of the robustness criterion ¢ associated to solution z. As a
consequence, we may rigorously define the addressed robust scheduling
problem as follows.

ROBUST SINGLE-MACHINE SCHEDULING WITH MAINTENANCE ACTIVITY PROBLEM
(RSM P(c)): Given a set J of n jobs with deterministic processing
times p;, j = 1,...,n, and a set S of discrete scenarios, corresponding
to |S| possible realizations of the triple (r,d, P); find a sequence «
of the jobs such that c(r) is minimized.

An optimal solution of the above problem RSM P(c) is called a robust
solution.

Example 2. Let us consider the instance of Example 1. As we already
observed, the sequence minimizing the makespan for scenario s, is 7!
(3,1,2,4), providing C}_ (s;) = Crax(7!,51) = 429 (with no idle time,
see Fig. 1), while the optimal solution for scenario s, is 7% =(4,1,2,3),
for which C}_ (sy) = Cpuc (7%, s;) = 434. Let us also consider a third
solution sequence 7> = (2,1,3,4).

In this case, a robust solution under the min-max criterion M M is
not optimal in any of the two scenarios. In fact, we have:

Coax (@', 51) = 429, Cpox (', 55) = 459, MM (z') = 459,

Coax (2, 51) = 529, Cpux (72, 55) = 434, M M (z%) = 529,
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Table 1
Summary of used notation.

n Number of jobs

p; Processing time of job j=1,2,....n
k Number of scenarios

S Set of k scenarios

M Maintenance activity

P(s) Duration of M in scenario s

r(s) Release date of M in scenario s
d(s) Due date of M in scenario s
A(s) Window slack = d(s) — P(s) — r(s)
r Job sequence

o(m,s) Realization schedule of r in s
Chax (7, 5) Makespan of schedule o(x, s)

Cr k() Opt. makespan in scenario s

c Generic robustness criterion
c=MM min-max

c=ABS Maximum absolute regret

¢=REL Maximum relative regret
c=0WA Ordered weighted averaging
c(m) Criterion objective value of 7
RSMP(c) Addressed robust problem

Cooax (3, 51) = 456, Cpox (73, 55) = 435, MM (x>) = 456.

Considering that the only subsets of jobs which may be accommo-
dated before M are {1}, {2}, {3}, {4}, and {1,2}, the only sensible
sequence beside 7', z2, and z> is 7z = (1,2,3,4). But MM (z°) = 478
and hence 73 corresponds to a robust solution according the MM
criterion.

Regarding the ABS criterion, the robust solution is the optimal
solution for scenario s, z' = (3, 1,2,4). Indeed, for the three sequences
we have:

ABS(x") = max{Cpy (', 5)) = C2_ (51); Cox (@', 52) = C2_ (55)} =
= max{429 —429;459 — 434} =25

ABS(7*) = max{Cpy (72, 5)) = C% (513 Conax (72, 55) = € (59)} =
= max {529 —429;434 — 434} = 100

ABS(7*) = max{Cpyy (7, 51) = Ck (51); Couax (2, 55) = € (59)} =
= max{456 — 429;435 — 434} = 27.

Analogously, for the REL criterion we have:

REL(z") = max{Cpa (7', 51)/C . (51): Coan (7', 52)/C (55)} =
= max({429/429;459/434} = 1.057
REL(7?) = max{Cpuy (%, 5)/C. (51); Conax (72, 52)/CF (59)} =
= max{529/429;434/434} = 1.233
REL(7®) = max{Cpa (7, 51)/C, (51): Conan (73, 52) /. (55)} =
= max{456/429;435/434} = 1.063.
Hence, in this case ! is the robust solution.
Finally, the solution for OW A criterion depends on the weights g;.

As an example, it can be easily verified that, when g, =1 and 4, = 10,
we have

OW A(x') = 4749, OW A(z?) = 4869, OW A(z>) = 4806,

implying that ! is the robust solution. While, if #; = 10 and 8, = 1, we
have

OW A(x') = 5019, OW A(x?) = 5724, OW A(x>) = 4995,
and, hence, 73 is the robust solution for OW A criterion.

For the sake of clarity, in Table 1 some of the notation introduced
above is summarized.

In this work, for each of the four robustness measures (2)-(5), we
derive several complexity and approximation results. Table 2 reports a
summary of the main theoretical contributions presented in the paper.

Computers & Industrial Engineering 185 (2023) 109610
4. Complexity and approximation

The section is organized as follows. First (Section 4.1) we show
how to compute in pseudopolynomial time the optimal solutions of
RSM P(c) in each scenario of S, while Section 4.2 is devoted to prove
the strong NP-hardness of RS M P(c). On the other hand, in Section 4.3,
we show that RSM P(c) can be solved in pseudopolynomial time by
dynamic programming when the number of scenarios |S| is fixed. In
the last part of this section we briefly discuss about a property called
scenario optimality (Detti et al., 2019) and present some approximation
results. More precisely, we extend a result presented in Detti et al.
(2019) to RSM P(c) (Lemma 5), implying that the LPT rule is a ;—‘-
approximation algorithm for RSM P(c) when ¢ € {REL, MM,OW A}
(Theorem 6).

4.1. Computation of the optimal solutions of all scenarios

Hereafter, we show that the deterministic version of RSM P(c),
i.e., with a single scenario, is equivalent to the Susser Sum ProBLEM (SSP)
which can be stated as follows: Given a set of non-negative integers
E ={ay,a,,...,a,} and an integer bound B, find a subset E* C E whose
sum is maximized and does not exceed B.

This equivalence implies that the deterministic version of RS M P(c)
is NP-hard in the ordinary sense and can be solved in pseudopolynomial
time. Furthermore, we prove that a single run of the standard dynamic
programming solution algorithm for SSP can be used to compute the
optimal solution values C;  (s) of all scenarios s € S, for the general
(i.e., multi-scenario) RS M P(c).

Let us consider a deterministic (single-scenario) instance of
RSM P(c), and let P and [r, d] be the (deterministic) duration and the
time window of the maintenance, respectively. As already observed
in Detti et al. (2019), in this case, any solution minimizing the idle time
is optimal. Then, a deterministic instance of RSM P(c) can be solved
as a SSP by setting a; =p; for j=1,...,nand B = d — P. If the optimal
solution value z of this SSP instance has value greater or equal than r,
then there is a subset E* of jobs with total processing time z such that
r < zg < d— P. The job sequence in which the jobs in E* are scheduled
first produces a realization schedules with no idle time. Otherwise, if
zg < r, then the optimal realization schedule has an idle time equal to
r—zgand C;, =3, p;+P+r—zp. On the other hand, it is easy to see
that any SSP instance can be solved by considering a single-scenario
instance of RSM P(c) with n jobs in which p; = a; for j = 1,...,n,
r = B and P = d — r. The optimal solution of this RSM P(c) instance
minimizes the idle time before the maintenance starting at B, providing
an optimal solution for the SSP instance.

In our robust optimization problem RS M P(c), with ¢ € {ABS, REL}
we are interested in finding the optima C};, (s) for all scenarios s € S.
Such values can be found by applying a standard dynamic programming
algorithm for SSP (Kellerer, Pferschy, & Pisinger, 2003) in which B
is set equal to max{d(s) — P(s)} = d(s;) — P(s;). Since the dynamic
programming algorithm finds the optimal solutions for all integers B’ <
B, it also gives the optimal solution values when B’ = d(s) — P(s) for all
s € S, corresponding to the optima of all scenarios in RS M P(c). Hence,
the optima C*_(s) of all scenarios in RSM P(c) can be computed in

max

pseudopolynomial time O(Bn + |S|).
4.2. Complexity results

The following theorems show that RSM P(c) is strongly NP-hard
for c € {ABS,REL, MM ,OW A} even when the duration P(s) of the
maintenance is the same and equal to the time window length in all
the scenarios s € S.

Theorem 3. RSM P(c) with c € {M M,OW A} is strongly NP-hard even
when d(s) — r(s) = P(s) = P is constant in all scenarios s € S.
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Table 2
Summary of theoretical results.
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RSM P(c) characteristics

Complexity

¢c=MM,OW A, |S| arbitrary
¢=ABS,REL, |S| arbitrary

¢= MM, ABS,REL, |S| fixed
¢=MM,ABS,REL,OW A, |S| fixed

¢ = ABS, |S| arbitrary
¢=MM,REL,OW A, |S| arbitrary
¢=MM,ABS, |S| arbitrary, r (or d) fixed
¢=MM,ABS, |S| arbitrary, r (or d) fixed
¢ = MM |S| arbitrary, r (or d) fixed

Strongly NP-hard (Theorem 3)

Strongly NP-hard (Theorem 4)

Binary NP-hard (see Lee, 1996)
Pseudopolynomially solvable (Section 4.3)
Not approximable (Section 4.4)
%-approximable (Theorem 6)

Equivalent to both r and d fixed (Theorem 8)
Pseudopolynomially solvable (Cor. 11)
e-approximable and admits FPTAS (Cor. 10)

Proof. Since OW A generalizes M M, we prove the statement for ¢ =
M M only. The proof is by reduction from 3-PartiTion. Given an instance
I;p of 3-PartiTiON, with 3n integers, ay, ..., as,, such that Zjil a; =nT
and T/4 < a; < T/2 for j = 1,...,3n, we generate an instance I of
RSM P(M M) in which, for all s € S, P(s) = P (i.e., the duration of M
does not vary across the scenarios) with 3n jobs having processing times
ai,...,as,, and with k = n — 1 scenarios S = {s,s,,...,s,_; }. For each
scenario s; € S, we have r(s;) = iT, d(s;) = (i+1)T and P = d(s;)—r(s;) =
T. We show that a solution to I5p exists, if and only if, in instance I,
there exists a job sequence z such that M M(z) = Cp (7, 5) = T(n + 1),
for all scenarios s.

In fact, let I3 be a yes-instance of 3-PartiTion with solution X. We
build a job sequence z in which the three jobs corresponding to each
triplet of X are consecutive (no matter what the relative order of the
triplets is). So doing, it is easy to see that any realization schedule
o(x,s;) schedules the jobs corresponding to the first i triplets of X
before the maintenance M, for all i = 1,2,...,k = n. In fact, the
maintenance in scenario s; starts at time i7" and ends at time (i + 1)7,
allowing to schedule i triplets of jobs before it. (Recall that the sum of
the processing times of the jobs in each triplet is exactly equal to T.)
Then, C,, (7, s) = T(n+ 1) in all scenarios s € S.

On the other hand, let us assume that I has a robust solution =
such that M M (x) = T(n+1). Hence, for all s € S, Cpp (7, 5) < T(n+1).
This in turn implies that the set J(i) of jobs scheduled before M in
scenario s; has total processing time equal to iT. For all i = 1,2,...,n,
J(i) corresponds to the first i triplets in the solution of I3p which is
therefore a yes-instance of 3-PartiTion. []

Theorem 4. Problem RSM P(c) with ¢ € {ABS,REL}, is strongly
N P-hard even when d(s) — r(s) = P(s) = P is constant in all scenarios
sES.

Proof. Also in this case, the proof is by reduction from 3-ParrtiTION.
Given an instance I;p of 3-Parition, with 3n integers, a,, ..., a3,, such
that Z?ﬁ, a; =nT and T/4 < a; < T/2 for j = 1,...,3n, we build an
instance I of RSM P(c) in which, for all s € S, P(s) = P, with c = ABS
or ¢ = REL, having 3n jobs plus one extra job, and k = n scenarios.
The 3n jobs have processing times qay,...,a3, and the extra job has
processing time 0 < b < 1. Hence, the sum of all job processing times
is strictly larger than »T. For each scenario s; € S, we let r(s;) = iT,
d(s;) = (i+ DT and P = d(s;) — r(s;) = T. We prove the thesis, by
showing that I3, is a yes-instance if and only if there exists a robust
solution sequence r of I such that, for each scenario s, the realization
schedule o(z, s) has no idle time, i.e., Cp,, (7, s) = (n+1)T +b and hence
ABS(rx) =0and REL(x) = 1. Observe that = must necessarily schedule
the extra job in the last position. In fact, in the last scenario s,, at
least one job should be processed after the maintenance completing at
(n+ 1)T. As all the jobs but the extra job have integer processing times
(strictly larger than b), any sequence that schedules last a job different
from the extra job has a makespan strictly larger than (n + 1)T + b.
Assume first that I5p is a yes-instance of 3-ParTiTioNn with solution
X. We build a job sequence r in which the extra job is the last job and
the jobs corresponding to each triplet of X are consecutive. It is easy to
see that the realization schedule o(x, s) has no idle time in all scenarios

s € S and r has an absolute regret equal to 0 and relative regret equal
to 1 in all scenarios and hence r is a robust solution with ABS(x) =0
and REL(r) = 1.

Let us now assume that there exists a robust solution sequence r of
I such that, for each scenario s, the realization schedule o(x, s) has no
idle time, i.e., Cypoy (7, s) = (n+ 1)T + b and the extra job is scheduled
last. Again, this implies that the set J(i) of jobs scheduled before M
in scenario s;, for all i = 1,2, ..., n, corresponds to the first i triplets in
the solution of I5p which is therefore a yes-instance of 3-Partition. This
completes the proof.

Note that, if the problem requires integer processing times, in
the above reduction, job processing times, r(s;), d(s;), and T are all
multiplied by an integer factor m > 2, whereas the extra job processing
time b is set equal to one. []

We now briefly discuss about the so-called scenario optimality
property. If a robust optimization problem has the scenario optimality
property, it means that a robust solution is always optimal in at least
one scenario. In Detti et al. (2019), it is proved that the special case
of RSM P(c) in which r(s) and d(s) are fixed (and hence only the
maintenance duration varies across the scenarios) has the scenario
optimality property, for all considered robustness criteria c. However,
this is not true for RSM P(c) in general, as multiple parameters vary
simultaneously in different scenarios. If scenario optimality held for
RS M P(c), then Section 4.1 would imply that RS M P(c) could be solved
in pseudopolynomial time by computing the optimal solutions in all
scenarios. Nevertheless, Theorems 3 and 4, which state that RSM P(c)
is strongly NP-hard, rule out this possibility.

Obviously, Theorems 3 and 4 do not rule out the existence of
polynomial or pseudopolynomial algorithms for some specific cases, as
shown in the following Section 4.3 and in Section 5.

4.3. A pseudopolynomial algorithm for RS M P(c) with a fixed number of
scenarios

In this section, a dynamic programming algorithm (DP) for RS M P(c)
is presented. The proposed DP runs in pseudopolynomial time when a
fixed number of scenarios k is considered, i.e., when S = {s;,...,s;}
with k fixed.

In the description of the algorithm, as stated in Expression (1), it is
important to recall that the scenarios s in S are sorted in non-decreasing
values of d(s) — P(s).

Let F(j,w;,w,,...,w;) be a boolean function equal to 1 if there
exists a schedule of the jobs {1,...,j} such that in each scenario s;
the total processing time of the jobs scheduled before the maintenance
is exactly w;, for all s5; € S, and O otherwise. Note that, due to
Expression (1), we may restrict ourselves to consider w; values such
that w; < w, < ... < w;. In fact, for a given schedule, the jobs
scheduled before the maintenance M in scenario s; can be also sched-
uled before M in scenarios s;,;,...,s,. As a consequence, we impose
that F(j,w;,w,,...,w;) = 0 if there exists i € {1,2,...,k — 1} such
that w; > w,,,. Furthermore, let F(j,w;,w,, ..., w;) = 0 if one of the
arguments w, w,, ... , Wy, is negative.

Consider any schedule of the jobs {I,...,j} such that the total
processing time of the jobs scheduled before M in scenario s; € S
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is exactly equal to w;, for i = 1,...,k. Clearly, either there exists a
scenario s, (with w, > p;) in which the job ; is scheduled before M,
or j is scheduled after the maintenance activity in all scenarios. Note
that, in the first case, due to (1), job j is scheduled before M in all
scenarios s, sz, ..., 8. Hence, the total processing time of the other
jobs scheduled before the maintenance in scenarios s, ..., s; is exactly
Wy = Pjs Wpyy = P -+ » Wy — p;, Tespectively. If, on the other hand, there
is no scenario in which j can be processed before M, then j will be
scheduled after the maintenance in all scenarios.

As an example, let us consider a problem instance with two sce-
narios s; and s,. Then, the computation of F(j,w,,w,) requires to
check F(j — 1,w,w,), F(j = 1,w,w; — p;), and F(j — Lw; = p;,w, —
p;), corresponding to the cases in which j is scheduled after M, j is
scheduled before M in s,, only, and j is scheduled before M in all the
scenarios, respectively. F(j,w;,w,) = 1 if and only if at least one of the
latter three quantities equals to one.

Hence, the computation of the value F(j,w;,w,,...,w;) only re-
quires to check if at least one of the k + 1 entries

Foy=F(—1Lw,wy,...,wi_y,wy),
Fi=F(-1Lw,w,,...,w_,wg = p;),
F,=F(—-1lLw,wy,...,we_y — pj, Wy — p;),

Fy=F( -1, w; —pj,wy —pj, ..., Wx_| —pj, Wy, — p;)

takes value 1. In conclusion, the following recursive formula holds
F(j,w],wz,...,wk):max{FO,F],...,Fk}. (6)

Recursion (6) must be initialized by setting F(0,0,...,0) = 1.

Note that, if F(n,w;,w,,...,w,) = 1 for given w,,w,,...,w, and
a job sequence z, the makespan in the scenario s; is C, . (7,s;) =
max{r(s;), w;} +P(Si)+(z,- p;)—w;, since the maintenance M in scenario
s; cannot start before time r(s;) or the completion time w; of all jobs
preceding it. Consequently, the total processing time of the job after M
is (Zj pj) — w;.

Once all the F(-) values have been computed, in order to obtain the
optimal value for RS M P(c), we use the following:

min ¥ (w) 7)
st. F(n,wy,w,,...,wy) =1 8
w; €10.1,....d(s) = P(s)}, i=1,2,....k ©)

in which, depending on the robustness criterion ¢, we have that ¥ (w)
takes one of the expressions of Egs. (2), (3), (4), and (5), where we plug
in Cpay (7, s) = max{r(s), w,} + P(s) + (Z,' pj) — wy.

For the sake of clarity, consider as an example the robustness
criterion ¢ = M M, then the optimal solution value of RSM P(M M)
is given by (7), in which

n
¥ (w) = max(max{r(s)).w;} + P(s,) + 21 Py —w;)

=

Observe that each F(j, w,, w,, ..., w,) can be computed in time O(k)

using expression (6). Since there are O(n(zj pj)k) such values, then
all F(j, w,,w,, ..., w,) values can be computed in time O(nk(zj pj)k).
In conclusion, if ¢ = MM,ABS,REL, we infer that RSM P(c) can
be solved in time O(nk(zj pj)k). While, for ¢ = OW A, in order to
compute the objective function value of Eq. (5), for each choice of
wy, Wy, ..., Wy, the optimal makespan values in the different scenarios
are to be sorted. As a consequence the overall computational cost
becomes O(nk? log k(X ; p;)¥).
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4.4. Approximation

We now report on some approximation results for our problem
RSM P(c) with ¢ € {REL, MM,OW A}. Note that, in general, if ¢ =
ABS and the deterministic (single-scenario) problem is N P-hard, the
corresponding robust version is not at all approximable unless P =
N P (Detti et al., 2019; Kasperski & Zielinski, 2014).

The following lemma extends an approximation result that was
shown in Detti et al. (2019) only for the special case of RSM P(c) in
which r and d remain fixed in all scenarios.

Lemma 5. Let ¢ € {REL,MM,OW A} be a robustness criterion. If
algorithm A is an e-approximation algorithm for the (deterministic) single-
scenario version of RSM P(c) that returns the same sequence 7 for all
scenarios s € S, then A is also an e-approximate algorithm of the robust
problem RSM P(c).

Proof. The proof follows the very same lines of that used in Detti et al.
(2019) for the special case with fixed interval [r,d]. We report it for
completeness.

Let #* and c(z*) be the robust solution of an instance of RSM P(c)
and its value, respectively, according to the considered robustness
criterion c € {M M, REL,OW A}. Let r be a sequence (returned by the
algorithm) and ¢(7) the corresponding value of the robustness criterion
c. In the remainder of the proof, § indicates the worst scenario for x
under a certain criterion.

Hereafter, we show that, if = is an e approximate solution in
scenario §, then it is also an approximate solution for the (general)
robust problem RS M P(c).

Let us first consider the min—-max robustness criterion ¢ = M M. In
this case, 7* = argmin, {max,cs{Cp(z.5)}} and, c(z*) =
maxcg {Cmax(n*, s)}. Hence

o) = max {Crax (7, 9)} =
= Cpax(@,8) € Ch () € Cpa (™, 8) < & max {Crax (7%, )}
= gc(x™).

For the relative regret robustness ¢ = REL, we have z* =
S} and e(r) = max,es { ST Clearl
c¢(z*) > 1 and there é)re, if § € S is a scenario corre"s]%onding to the

worst case objective ratio, the following inequalities hold:
_ Crnax (7, 5) Cruax (7, 8)
¢() = max = P
SES Cr (8 Cr
Finally, when the robustness criterion is the ordered weighted av-
erage ¢ = OW A, then n* = argmin, {Y¥ ¢ B Cpax(7, )} and c(z*) =
Yses ByCrax(@*, 5). Therefore
c(®) =Y B Crax(7,5) < D BECr (5) S € Y B Crpy (7", 5) = (™).

seS seS seS

arg min, maxcg {

< e <L ec(n™).

In conclusion, we have shown that for all three robustness criteria
¢ = MM,REL,OW A, if C,,(7,3) < eC*%_ (3) then ¢(7) < ec(x*) and
hence the thesis holds. []

ax

In what follows, approximation results for two simple ordering rules
are provided. Let us consider the deterministic (single scenario) version
of RSM P(c), that is the problem of seeking a schedule ¢ minimizing
the objective C,,,,(c) in which the maintenance activity with a given
duration has to be scheduled in a certain given interval. Lee in Lee
(1996) shows that the Longest Processing Time (LPT) rule provides
a 4/3-approximation algorithm for this problem and also proves that
the bound is tight. Hence, this result and Lemma 5 directly imply the
following statement.

Theorem 6. The LPT ruleis a %-approximation algorithm for RS M P(c)
with c € {REL,MM,OW A}.
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In Kacem and Kellerer (2016), a very basic algorithm, called Al-
gorithm A, is proposed. Algorithm A simply consists in processing
first the longest job with processing time p,,, = max; p;. Kacem and
Kellerer (2016) prove that this algorithm provides a 3/2 approximation
for the deterministic version of RSM P(c). Hence, one may want to
adopt this linear time algorithm, at the expense of a slightly worse
approximation, and thus obtaining a %-approximation for RSM P(c),
with ¢ € {REL, MM,OW A}.

5. Special cases

In this section we focus on different subproblems of RSM P(c)
obtained when some of maintenance parameters r,d and P do not
vary across the scenarios, i.e., they take the same fixed values in
all the scenarios. For instance, recall that if r and d are fixed and
only the duration of the maintenance varies across the scenarios, then
RS M P(c) is equivalent to the problem addressed in Detti et al. (2019).
If all the three quantities r, d, and P are fixed, then RSM P(c) is a
deterministic single-scenario problem in which we are seeking for a
schedule minimizing the makespan, and the maintenance activity with
a given duration has to be scheduled in a certain given interval (Lee,
1996). As we observed before, the latter problem is already binary NP-
hard. Furthermore, Theorems 3 and 4 prove that RSM P(c) is strongly
NP-hard for all the considered robustness criteria, when P is fixed
across all scenarios (i.e., only r and d vary).

5.1. Problems with fixed r or d

In this section, we show that when dealing with min-max and
absolute regret robustness criteria i.e., c = M M and ABS, the special
cases of RSM P(c) in which r or d are fixed are equivalent to the
problem in which both r and d are fixed, which is the problem studied
in Detti et al. (2019).

In the remainder of this section, we describe the procedure for
reducing RS M P(c) with fixed r in all the scenarios, hereafter denoted
as P, to the problem in which r and d are both fixed, indicated as Q.
In particular if c = MM or ¢ = ABS, we show that, given an instance
Ip of P, it is possible to build an instance I, of Q such that the robust
solution sequence for I is also robust for I». An analogous procedure
can be devised for RS M P(c) with fixed d.

We assume that S, the set of scenarios for problem P, is discrete
and contained in the Cartesian product of the two (discrete) sets S¥
and SP of realizations of the variable quantities P and d, respectively.
Assuming P, < P, ,u=1,....q—1,and d, <d, ,v=1,...,t -1, we
have:

SP:{Pl: min’PZ"“’Pq:PmaxL (10)
ST ={d, = dyin, s, ... o dy = diyy ) an
scsPxsd. 12)

Let I, be any instance of P with ¢ = MM or ¢ = ABS, and a set
of scenarios S as in Eq. (12). Any possible scenario in S is associated
to a pair of possible realizations (values) of the duration P for the
maintenance activity M and the due date d, respectively. We denote
by (P,.d,) the scenario of S in which the duration of M and the due
date d take values P, and d,, respectively. (Possibly, some given pairs
(P,.d,) are not part of S, i.e., |S| =k < qt.)

Now, starting from I, we build the following instance I, of Q
with the same set of jobs as in instance I, and a set of scenarios
S={P,, u=1,...,¢s v=1,...,t : (P,d,) €S} in which

P

o = P, + dpu — d,¥(P,.d,) € S. 13)

max

Here P, indicates the value taken by the duration of maintenance
activity in the scenario of Q corresponding to realizations P, and d,
for the maintenance activity duration and due date, respectively, in P.
The (fixed) extremes of the time window [7, d] of I, are set equal to r

Computers & Industrial Engineering 185 (2023) 109610

and, respectively, to the largest realization d,,,, of d in I,. For example,
if scenarios P;, or P, belong to S, then they are the smallest and
largest realizations for P in I,, corresponding to scenarios (P}, d )
and (P« dmin) in Ip, respectively.

Lemma 7. Given a sequence n of the jobs, the idle time lengths in the
realization schedules o(x, (P,, d,)) in instance I of RS M P(c) with fixed r
(problem P) and o(x, P,,) in Iy of RSM P(c) with fixed r and d (problem
Q) are equal.

Proof. Clearly, in any realization schedule, the idle time (if any)
occurs before the execution of the maintenance activity which therefore
would start at time r, the left extreme of the time window. In the two
realization schedules, the maximum available time 9 for processing jobs
before M is the same in the two corresponding scenarios (P,,d,) of I,
and P,, of I: In fact, in Iy, we have § = d — P,,. From (13), since
d = d,,, we have that 9 = d,,,, — (P, + dy,, — d,) = d,, — P, which is
obviously the 9 value in scenario (P,,d,) of instance I. Since F = r,
the idle time produced by a sequence z, would be the same in I, and

I, O

Suppose that, in two interrelated scenarios s = (P,,d,) € S for I,
and § = B, = P, +d,,, —d, € S for I, the maximum available
time 9 for processing jobs before the maintenance is strictly smaller
than ZjEJ pj, i.e., in both instances I and I, there must be some jobs
processed after the maintenance. Lemma 7 implies that the makespan
values of the realization schedules of a same sequence 7 in I, and I,
are such that:

CleX(”’ S:) = Cmax(”’ S) + dmax - dl)' (14)

On the other hand, if § > ¥, ; p; then the solution of the two instances
becomes trivial and the two makespan values would be equal.

In any case, a sequence n which is a makespan minimizer for
scenario s of instance Ip, is also optimal in the corresponding scenario
§ of instance Ig. Furthermore, in these scenarios s and 3, the absolute
regret of any solution sequence = has the same value which implies
that, if 7 minimizes the maximum absolute regret in instance /g, then
it does so in instance I, as well.

The above discussion implies the equivalence, in terms of opti-
mality, of problems P and Q. In conclusion the following theorem
holds:

Theorem 8. For ¢ € {ABS,M M}, if = is robust for the equivalent
instance Iy of RS M P(c) with fixed r and d (problem Q), then z is robust
also for the original instance I, of RS M P(c) with fixed r (problem P).

As we already noted, using arguments similar to those employed
above, we can prove that, for c € {ABS, M M }, given an instance I’ of
RSM P(c) in which d is fixed, it is possible to define an instance I ’Q of Q
such that a robust solution sequence for the two instances is the same.
Moreover, it is important to point out that the result of Theorem 8 does
not hold if ¢ = REL or ¢ = OW A or if we are seeking for approximate
solutions instead of optimal ones.

In the next Section 5.1.1, we study a special case of RSM P(c) in
which we may adapt and use off-the-shelf approximation algorithms.

5.1.1. Approximation results for a special case

In this section, we present approximation results for a special case of
RS M P(c) in which the following specific restrictions hold: (i) c = M M,
(i) r or d are fixed; (iii) the set of possible scenarios, is exactly the
Cartesian product:

S=8Pxs, (15)

where SP and S are defined as in Egs. (10) and (11), i.e., any pair
(P,d,), u=1,....,q, v =1,...,t, is a possible scenario for our robust
optimization problem. In the remainder of this section, we refer to this
special subproblem of RSM P(c) as problem R.
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With such a scenario set S, it is easy to see that the maximum
makespan of the realization schedules always occurs in scenario § =
(Prax> dmin) in which the maintenance activity has the largest duration
P, and the due date takes its minimum value d,. In this case, for any
solution sequence 7, we have maxcg{Cp (7, 8)} = Cpay (7, §).

An obvious consequence is that, under the min-max robustness
criterion ¢ = M M, any solution sequence 7 within a constant ratio
e > 1 from an optimal solution of scenario § is also an ¢ -approximating
solution for R, i.e., if #* is a robust solution, then
MM (%) = C,, (% 8) <eC*

max

)= MM (z"). (16)

The following theorem shows how an approximation algorithm
devised for Susser Sum can be exploited to obtain an approximation
algorithm for R.

Theorem 9. Any p-approximation algorithm for Susser Sum, can be
adapted to obtain an e-approximate solution algorithm for RSM P(M M)

with r fixed (problem R), where e = 1 + A=) min—Prax)
Z/el Pj+Prax

Proof. The proof uses arguments similar to those of Theorem 18
in Detti et al. (2019). We report the details hereafter for the reader’s
benefit. In its optimization format, Susser Sum is defined as follows:
Given a set E of n positive integers a;,a,,...,a, and a bound B > 0,
define a subset E* C E of items whose sum is as large as possible

but not greater than B. Suppose there is an algorithm A that, for any
instance of Susser Sum, always returns a subset E4 C E such that

Daze ) g a7
JEEA JEE*

for some fixed p < 1. Recall that, for R, (i) the worst scenario §
corresponds to realizations P = P,,, and d = d,;, for the duration
of the maintenance activity and the due date, respectively; and (ii)
a solution sequence minimizing the makespan in scenario § is also a
robust (optimal) solution of our problem.

Hereafter, given a subset of jobs J' C J, we indicate the total
processing time Y.,/ p; of all jobs in J' as p(J'). Let z* be a robust
(optimal) solution of a given instance of R and denote by C =
Chax (7", 3) the value of its (optimal) makespan. Let E* C J be the set of
jobs which are scheduled before the maintenance activity M in o(z*, 3).
Then, it is easy to see that E* corresponds to an optimal solution set of
a Sueser SuM instance with a; = p; and B = d,, — Py,,. Moreover, we
have Cy = max{r, p(E*)} + Py + (p(J) = p(E*)).

Now consider a solution 74 obtained by sequencing first the jobs in
a set E4 C J corresponding to the set returned by Algorithm A in the
instance where, again, a; = p; for all j € J and B = d;, — Py, Let
CA be the makespan C,,, (74, 3) of the realization schedule obtained
by z# in scenario 3. Clearly, p(E4) > p p(E*) and C: = max{r, p(E*)}+
P + (p(J) — p(E*)). We have three possible cases.

Case 1: p(E*) < r. As p(E4) < p(E*) then CA — C* = p(E*) -
P(E*) < (1 — p)p(E*). As there exists 6 < 1 such that p(E*) < 6 C*_, by

max’
letting e = 1 + 6 — 0p, we have CA < (1 — p)p(E*)+C, <eC}

Case 2: p(E*) < r < p(E*). In this case, we have thgzxcr;‘ax —majm =
r— p(E4) < p(E*) — p(E*) and C24 <& C?  still holds.

Case 3: r < p(E*) < p(E*). No idle time is introduced in the sequence
74 which is therefore an optimal solution.

In conclusion, due to (16), there is an e-approximation algorithm
for R. In order to have a better approximation ratio e = 1+ 60 — 6p, we

would like a large p < 1 and a small 6 > 2 For instance, we may

F
‘max

diin—Prn
always choose § = —fnin__max
y PU )P

Due to the above theorem and the fact that the Susser Sum prob-
lem admits a Fully Polynomial Time Approximation Scheme (FP-
TAS) (Kellerer, Pferschy, & Pisinger, 2003), the following corollary is
immediate.

Corollary 10. RSM P(M M) with r fixed (problem R) admits a FPTAS.
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We point out that, Corollary 10 is also implied by the results
provided in the paper by He et al. (2005) (dealing with the deter-
ministic version of the problem). However our approach has a lower
computational complexity O(n/¢) (see Kellerer, Mansini, Pferschy, &
Speranza, 2003) which is obtained by running the fastest FPTAS for
Susser Sum, as illustrated in the proof of Theorem 9. By Corollary 10, it
also follows that R, for £ = r,d is pseudopolynomially solvable.

As proved in Detti et al. (2019), for any given criterion ¢ €
{ABS, REL,OW A}, the robust solution for RS M P(c) with fixed r and
d (i.e. problem Q), satisfies the scenario optimality, that is it always
corresponds to an optimal solution for one of the scenarios. Hence, by
Theorem 8, the following result holds:

Corollary 11. Ifc = MM or ¢ = ABS, the special case of RS M P(c) with
fixed r (P above) is binary N P-hard and can be solved in pseudopolynomial
time, even for an arbitrary number of scenarios.

We conclude by stressing that all the properties presented in this
section for R (namely, approximation results, Theorem 9, Corollary 10,
and Corollary 11) can be easily extended to the special case of RS M P(c)
with fixed d.

6. Mixed integer linear programming models

In this section, we present two mathematical programming models
for RSM P(c). The first one (MIP,) uses assignment and positional
variables. A similar model has been proposed in Detti, Nicosia, Pacifici,
and de Lara (2016) where it turned out to the best performing model
among a set of different integer programs. The second model (M P,)
disregards the actual sequencing of the jobs: it only considers whether
a job is scheduled before or after the maintenance activity in each
scenario.

6.1. M1 P;: Assignment and positional-variable model

Among the classical MIP models for single machine scheduling,
and differently from scheduling and transportation problems in which
precedence variables with disjunctive constraints and time-indexed
variables yield better formulations (see, e.g., Agnetis, Cosmi, Nicosia,
& Pacifici, 2023; Benini, Detti, & de Lara, 2022), in our case, a model
based on assignment and positional-variables proves to be the best
choice. In M I P}, two types of integer variables, denoted as x and y, and
a set of continuous variables denoted as C are used. Positional variables
x assign to each job a position in the job sequence. More precisely, we
consider binary variables x s defined for all j,h = 1,...,n, indicating
whether job j is the ath job in the solution sequence = (disregarding
the position of the maintenance activity in the sequence). We also let
y,(s) be binary variables, defined for » = 2, ...,n, indicating whether
the maintenance activity is scheduled between the (h — 1)-th and hth
job in o(z, s). Additionally, y,(s) and y,,(s) are binary variables which
are equal to 1 if the maintenance activity is scheduled before or after
all the n jobs, respectively. Moreover, C,(s) are variables, defined for
all positions ~ = 1,...,n and all scenarios s € S, representing the
completion time of the job in position 4 in #. Similarly, variable C;,(s),
defined for all scenarios s € S, indicates the completion time of the
maintenance activity in o(x, s).

The model M 1P, for the robustness criterion ¢ = MM reads as
follows:

min rxnezg( {Cn(s)} (18)

n

ijh=l

h=1

ijh=l

JjeJ

jeJ (19

h=1,...,n (20)

n+1

D=1
h=1

sES 21
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Ch(s)ZCh_l(s)+ijxjh h=1,...,n, seS (22)

=

n
Cp(s) > Cyy(s) + ijxj,,
j=1

n (23)
—N(l—zyq(s)) h=1,...,n, sES
q=1
Cpi(8) 2 C(s) + P(s)
h
—N(qu(s)> h=1,...n, s€S @9
gq=1
Cr(s) > r(s) + P(s) sES (25)
Cr(s) <d(s) sES (26)

x;, € {0,1} jeJ, h=1,...,n 27)
yu(s) € {0,1} h=2..,n, s€S8 (28)
Cu(s)20 h=1,...,n, s€S (29)
Cy(s)>0 sES (30)

The expression Z:"=1 PiXjns in constraints (22) and (23) indicates
the processing time of the job in position & of = while, EZ:| V(s), in
constraints (23) and (24) takes value 1 if the maintenance is before the
hth job in o(x, s).

The first three constraints are standard assignment constraints. Ad-
ditional constraints define the values Cj,(s) of the completion times, in
the different scenarios. More precisely, constraints (22) and (23) define
a lower bound on the completion times of the jobs (C, is set equal to
zero). In constraints (23), N is a suitable large constant that can be set
equal to the total processing time of the jobs (including the processing
time of the maintenance). Constraints (24) define a lower bound on the
completion time of the maintenance, while constraints (25) and (26)
impose that the maintenance activity is performed within the given
window by setting a lower and upper bound on its completion time
for each scenario.

The objective function (18) — which can be trivially linearized —
models the min-max robustness criterion ¢ = M M. For the ABS and
REL criteria, it can be modified respectively as:

min max {C,(s)-CE (9} (31
min max {C,,(s)/C;lax(s)} . (32)

In this case, the values C;;_ (s), s € S, have to be pre-computed through
the efficient procedure illustrated at the end of Section 4.1. The number
of variables and constraints in the above MIP formulation is O(n2+n|S|)

and O(n|S|), respectively.

For the OW A criterion, we need a set of additional variables y; > 0
and u;(s) € {0,1}, for s € S, i = 1,...,k. Binary variable u;(s) = 1
indicates that the makespan C,(s) of the schedule in scenario s is the
ith largest makespan among the k = |S| makespan values, and y; would
equal such ith value. We may then add the following set of constraints:

X us) =1 i=1,....,k (33)
SES
k
Zu,-(s) =1 sES (34)
i=1
Xi > Xisl i=1,...,k=1 (35)
2> Cu(s) = N(1 = u,(s)) sES, i=1,... .k (36)

Besides the obvious assignment constraints (33) and (34) that give
one of the k possible ranks for the makespan of scenario s, the set of
relations (35) and (36) (where, as above, N is a suitably large constant,
e.g., N =d .+ Z;’:l p;) guarantee that y; upper bounds the ith largest
value of the makespan values. In conclusion, the objective function
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when the robustness OW A criterion is used, can be expressed as:

k
min { Z Bixi } 37
i=1

in which g; is the weight associated to the ith largest makespan scenario
(see Eq. (5)). Note that, since the objective pushes the y; variables to as-
sume their lowest possible values, together with Egs. (35), it is ensured
that y; would equal the ith largest value among the C,(s)), ..., C,(s;)-

6.2. M1 P;y: Indicator variable model

Hereafter, we present a different mathematical program, denoted
as M1P,, in which we use binary variables x (), defined for all jobs
j € J and all scenarios s € S, equal to 1 if job j is scheduled before
M in scenario s and O otherwise. Furthermore, let variables #(s) specify
the starting time of the maintenance M in scenario s. Clearly, we have
that the schedule makespan C,,,, in scenario s is:

1)+ P(s)+ Y p;(1 = x;(s).
jes

It is important to recall that Eq. (1) holds, i.e., the k scenarios in S are
sorted according to non-decreasing values of d(s) — P(s). This ordering
implies that there always exists a solution sequence ¢ such that, if a
job j is scheduled before the maintenance M in a scenario s;, then j is
scheduled before M in all scenarios s, with i’ > i. MIP, whenc = MM
is presented below.

min max {z<s> + P(s) +,§;”’(1 - xj(s))} (38)
. pjx;(s) < 1(s) sES (39)
JjeJ
X;(si41) 2 x;(s) JjE€J, i=1,...,k—1 (40)
1(s) > r(s) sES (41)
1(s) + P(s) < d(s) seES (42)
x;(s) € {0,1} jeJ, seS (43)
1(s)20 SES (44)

Constraints (39) state that the starting time of M in scenario s cannot
be smaller than the total processing times of jobs assigned before M
in scenario s. Constraints (40) imply that if a job j is assigned before
M in scenario s; than j is assigned before M in all scenarios s; with
i’ > i. Constraints (41) and (42) define lower and upper bounds for the
starting time of M in each scenario s € S. The number of variables and
constraints in the above MIP formulation is O(n|S|).

The above MIP can be easily adjusted to model different robustness
criteria. The expression

2(s) =1(s) + P(s) + Y p;(1 = x;(5)) (45)
jer

measures the makespan in scenario s, so that, the objective functions for

the ABS and REL criteria are those indicated, respectively, in Egs. (31)

and (32) in which C,(s) is replaced by z(s). For the OW A criterion, we

need again to add the constraints indicated in Egs. (33)-(36) (with z(s)

in the place of C,(s)) and the objective function is the one in Eq. (37).

7. Computational experiments

In this section we present the results of a computational campaign
carried out to assess the effectiveness of the two MIP models and
the dynamic program presented in the previous sections. To this aim,
different classes of instances have been randomly generated and tested.
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Table 3
Experimental results of MIP, and MIP, on the instances of Set, for c = M M.
n MIP, time M 1P, time Obj # opt scen LB, LB, LB, time LB, time
20 1.49 0.05 642.3 19 554.3 642.3 0.05 0.02
40 5.81 0.06 1188.4 20 1095.6 1188.4 0.15 0.02
60 23.34 0.08 1763.8 19 1675.2 1763.8 0.40 0.02
80 97.81 0.07 2293.7 19 2198.8 2293.7 0.64 0.02
100 162.19 0.08 2794.4 19 2703.1 2794.4 1.01 0.02
Table 4 Table 5
Experimental results of MIP, and MIP, on the instances of Set, for ¢ = ABS. Experimental results of MIP, and MIP, on the instances of Set, for c = REL.
n MIP, time MIP, time Obj # opt scen n MIP, time MIP, time Obj # opt scen
20 0.97 0.14 0.10 19 20 0.79 1.02 1.000150 19
40 4.14 0.09 0.00 20 40 3.22 0.04 1.000000 20
60 14.26 0.06 0.10 19 60 13.17 0.04 1.000057 19
80 22.48 0.08 0.05 19 80 22.50 0.07 1.000020 19
100 72.65 0.14 0.10 19 100 69.87 0.09 1.000037 19

7.1. MIP performance assessment

In order to evaluate the MIP models presented in Section 6, two sets
of instance classes have been generated and tested. In Section 7.1.1, we
describe a set of experiments on a first set of instances denoted as Set;.
The results of these tests gave us some insight on the type of solutions
we obtain and provided hints on the design of the second set of (harder)
instances, denoted as Set,, which are discussed in Section 7.1.2. The
description of the computational experiments on Ser, is illustrated in
Section 7.1.3. All the experiments have been performed using Cplex
Optimizer version 12.10, on a 1.19 GHz computer equipped with 8 GB
of RAM. A time limit of 30 min has been set in each run. We emphasize
that in experiments with absolute and relative robustness criteria, we
initially determine the optimal solution values C;_ (s) for all scenarios
using the procedure described in Section 4.1. This process requires a
negligible amount of computation time compared to the time taken by
the solvers to handle the MIP models. The CPU-times presented in the
tables of this section include both the solver processing times and the
pre-processing times.

7.1.1. Experiments on instances of Set,

Set, contains 100 randomly generated instances partitioned into 5
classes of 20 instances each, characterized by a different number » of
jobs, with n € {20,40,60,80,100}. In each instance, there are k = 4
scenarios corresponding to maintenance windows distributed over the
time span of the schedule. The integer processing times of the jobs are
uniformly distributed in the range [5,50], and, for each scenario s, the
maintenance activity duration P(s) is uniformly drawn in the interval
[50, 100], whereas the time window slack A(s) = d(s)—P(s)—r(s) assumes
random integer values uniformly distributed in [0, 3].

The computational results on the two MIP models for this set of
instances are summarized in Tables 3-5, for ¢ = MM,ABS,REL,
respectively. In all the tables, the second and third column report the
average computation time in seconds over the 20 instances required by
the two MIP models, while in the fourth column “Obj” indicates the
average objective function value. In the fifth column, the number of
times in which the robust solution is also optimal in all four scenarios
(out of the 20 instances in each class) is reported, this entry is denoted
as “# opt scen”. In Table 3, the average solutions of the lower bounds
provided by the linear relaxations of the two models, denoted as “LB;”
and “LB,”, are also reported, as well as their computation times in
seconds (indicated as “L B, time” and “LB, time”).

A few comments are in order:

+ Cplex is extremely fast on MIP,, requiring at most one second
on average on each class, while it spends more time on MIP,.
In fact, when n = 100, M [P, requires between 70 to 162 s on
average, depending on the robustness criterion.
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As columns “# opt scen” of Tables 3-5 show, in most of the cases
the robust solution coincides with a sequence which is optimal
in all four scenarios in all the classes, for all robustness criteria.
Also, in most cases, for all the three robustness criteria, we obtain
solutions with zero idle times in all the scenarios, which are,
trivially, optimal.

The solutions seem highly insensitive to the particular robust-
ness criterion adopted. The robust solutions (sequences) obtained
when ¢ = ABS or ¢ = REL are almost always the same solutions
obtained with ¢ = M M. The computation times required to
determine robust solutions when ¢ = ABS or ¢ = REL are very
similar, while they increase when ¢ = M M.

We also observed that, when ¢ = MM, for almost all ran-
domly generated instances, the worst case scenario § (for which
Cr i (® > Cr (s), for all s € S) occurs when the maintenance
activity M has the largest duration P, = maxc¢{P(s)}, making
the other scenarios irrelevant in terms of selection of a robust
solution.

It is evident from Table 3 that the optimal solution of the lin-
ear relaxation of MIP,, denoted by LB,, is better than that
of MIP,, and is always equal to the optimal solution value.
Furthermore, the computation time of LB, is extremely small,
0.02 s on average, while LB, requires 0.45 s on average.

All above considerations suggest that the instances in Ser; are
somewhat “manageable” instances. Hence, to better test the perfor-
mance of the two MIP, we developed more challenging, possibly harder,
instances which are described in the next section.

7.1.2. Design of the Set, instances

In building the instances of Set,, we kept in mind the results of the
previous section (see the comments above) in order to rule out easy or
less significant tests. To this aim, instances in Set, have been chosen so
that the robust solution does not coincide with the optimal solutions of
the scenarios and so that schedules may present some idle time before
the maintenance.

The following easy observations are useful to rule out these trivial
cases for RSM P(c). First note that, if the job processing times are
not larger than the slack 4(s) = d(s) — r(s) — P(s) in all the scenarios
s € S, then any sequence produces a schedule with no idle times
(since a subset of jobs A always exists such that M can be scheduled
just after A with no idle time) and hence any sequence is optimal. To
avoid this phenomenon we choose very small values for the slacks A(s).
Furthermore, when r(s) = 0 for all s € S, it easy to see that an optimal
schedule exists with no idle time by starting the maintenance at time
0.
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Table 6

Classes of instances in Ser,.
Instance Class # jobs [pyin.Pmax] # Scenarios P(s) window positions slack
20-U 20 [50,150] 4 50 Spread (U) [0,1]
20-E 20 [50,150] 4 50  Early (E) [0,1]
20-M 20 [50,150] 4 50  Median (M) [0,11
20-L 20 [50,150] 4 50 Late (L) [0,1]
30-U 30 [50,150] 4 50  Spread (U) [0,1]
30-E 30 [50,150] 4 50  Early (E) [0,1]
30-M 30 [50,150] 4 50  Median (M) [0,1]
30-L 30 [50,150] 4 50 Late (L) [0,1]
40-U 40 [50,150] 4 50  Spread (U) [0,11
40-E 40 [50,150] 4 50  Early (E) [0,1]
40-M 40 [50,150] 4 50 Median (M) [0,1]
40-L 40 [50,150] 4 50 Late (L) [0,1]
50-U 50 [50,150] 4 50  Spread (U) [0,1]
50-E 50 [50,150] 4 50 Early (E) [0,1]
50-M 50 [50,150] 4 50  Median (M) [0,1]
50-L 50 [50,150] 4 50 Late (L) [0,1]

Taking all the above considerations into account we randomly
generated a set of 320 instances, characterized by the data listed below
(and summarized in Table 6).

» The number of jobs n varies in {20, 30,40, 50}.

» The number of scenarios is k = 4.

Processing times values are uniformly distributed in interval
[pminapmax] = [50’ 150]

The maintenance activity duration is fixed to P(s) = P = 50 for
each scenario s € S.

In each scenario s € S, the window slack A(s) = d(s) — P — r(s)
assumes values equal to 0 or 1, with equal probability.

The release dates and due dates, for all the k scenarios, are gen-
erated by varying the position of the maintenance time window
[r(s),d(s)] in the schedule. More precisely, since in general, any
realization schedule spans from time 0 to T % P + X/ p;s
we consider the following four modalities (which exclude trivial
cases):

- the k time windows in the different scenarios are spread,
i.e., uniformly distributed over the span [0, T] of the sched-
ule (we refer to this choice using the letter U in the class
name);

- the k time windows are chosen close to each other roughly
around iT (“early time windows”, denoted by E);

- the k time windows are chosen close to each other roughly
around %T (“median time windows”, denoted by M);

- the k time windows are chosen close to each other roughly
around %T (“late time windows”, denoted by L).

Note that in these instances P(s) is fixed in all scenarios, since — as we
observed in Section 7.1.1 — in most cases the worst case scenario occurs
in correspondence of the largest duration for the maintenance.

In the following, we denote by n-pos an instance class of Set, in
which n is the number of jobs of the instances of that class, while
pos indicates the maintenance time-window positions, with pos €
{U,E,M,L}. Table 6 summarizes the characteristics of all the instances
classes in Set,.

For each instance class n-pos, 20 instances are randomly generated.

7.1.3. Computational results on instances of Set,

Tables 7-9 present the results of the computational experiments on
the instances in Ser, for c = MM, ABS, REL, respectively. In all three
tables, Column 1 contains the instance class, Columns 2 and 3 report
the number of instances (“# opt”) of each class solved to optimality by
MIP, and M1IP,, respectively, within the time limit, while Columns
4 and 5 report the average computation times in seconds. Column 6
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gives the average solution values (“Obj”) of the robust solutions found
by the two formulations on the 20 instances of each class.

Table 7, presents additional four columns that report the values of
the lower bounds (“LB value”) obtained by the linear relaxations of the
two MIPs together with their computation time (“LB time”).

As shown in Table 7 (“# opt”, in Columns 2 and 3), for the MM
criterion, M I P, is able to solve all the 20 instances of each class within
the time limit, while MIP, fails to certify the optimality for some
instances with n € {30,40,50}, especially for time window positions
E, L and M. A similar behavior can be also observed in Tables 8 and 9
for the ABS and REL criteria. (Actually, MIP, is able to optimally
solve all the instances but one and three for the ABS and REL
criteria, respectively.) However, for all the three robustness criteria,
a comparison of the average solutions values shows that M 1P, finds
the optimal solution in all the instances, even if in some cases it is not
able to certify the optimality. Regarding the computation times (see
Columns 4 and 5 of Tables 7-9), M I P is in general faster than M 1P,
taking from about 1 s (for n = 20) to about 184 s for the class 40-U,
on average. In fact, Cplex on M I P, often reaches the time limit for the
instances with n = 40, 50.

On the other hand, as shown in the last four Columns of Table 7,
the linear relaxation of M IP, provides slightly better lower bounds
than those provided by M IP,, in a very short computation time: Fig. 2
reports the trends of the two lower bounds in terms of solution values
and computation times.

7.2. Computational experiments on the dynamic programming algorithm

The dynamic programming algorithm presented in Section 4.3 was
not able to solve the instances of Set; and Ser, due to the excessive
memory requirements, especially when instance numbers (namely, the
processing times of the jobs and the duration of the maintenance)
are large. In fact, the computational cost of the dynamic program
grows exponentially with the number of scenarios k and it is directly
proportional to the schedule length. Indeed, the importance of the
dynamic programming is mainly theoretic and its performance — being
much worse - is not comparable to that of MIP models.

However, in order to give an illustration of the behavior of the
dynamic program, we have randomly generated a number of ad-hoc
instances characterized by short processing times and duration of the
maintenance activity, and larger maintenance slack. More precisely,
the new instances are characterized by a number of jobs n varying
from 5 to 35, with integer processing times uniformly distributed in
interval [1,10], c = M M robustness criterion, two scenarios, constant
maintenance activity duration P(s) = 10 and allotted interval d(s) —
r(s) = 15, respectively for both scenarios. For each value of n, 50
instances have been randomly generated.

Table 10 presents the results of these experiments, depending on
the number n of jobs (indicated in the first row of the table). The
second row reports the number of optimal solutions found by the
algorithm over the 50 instances (and the corresponding success ratio
in percent) for each value of n. Observe that, up to n = 15, the dy-
namic programming algorithm always correctly terminates, obviously
finding optimal solutions. For larger number of jobs, its performance
decreases accordingly: In these cases the algorithm cannot always com-
plete its processing before the maximum amount of available memory
is reached. On the other hand, in the solved instances, the computation
times remain in any case below one second, for all the 350 considered
instances.

8. Conclusions

In this paper, a problem arising in a manufacturing environment
concerning the joint scheduling of multiple jobs and a maintenance
activity on a single machine has been addressed. The maintenance
activity must be processed within a given time window. While the
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Table 7
Experimental results of MIP, and MIP, for c = MM on instance set Set,.
Instance # opt time Obj LB value LB time
Class MIP, MIP, MIP, MIP, MM MIP, MIP, MIP, MIP,
20-U 20 20 2.29 1.12 2004.7 1941.2 1991.2 0.049 0.018
20-E 20 20 1.77 1.09 2122.6 2047.8 2097.8 0.065 0.010
20-M 20 20 2.22 5.75 2086.6 2011.8 2061.8 0.044 0.010
20-L 20 20 2.90 1.31 2099.5 2022.7 2072.7 0.050 0.009
30-U 20 20 4.11 47.75 3084.9 3026.8 3076.8 0.109 0.018
30-E 20 20 3.60 79.05 3093.5 3019.7 3069.7 0.111 0.009
30-M 20 15 3.89 1072.79* 3112.5 3037.1 3087.1 0.144 0.001
30-L 20 20 4.44 124.71 3081.0 3007.0 3057.0 0.153 0.014
40-U 20 3 4.99 1530.05* 4043.1 3957.0 4033.3 0.174 0.013
40-E 20 2 3.50 1620.03* 4071.9 3997.6 4060.7 0.186 0.015
40-M 20 0 5.96 1800.00" 4093.9 4023.3 4073.3 0.196 0.009
40-L 20 1 3.89 1710.03* 4066.0 3993.2 4043.2 0.279 0.025
50-U 20 6 35.40 1260.12* 5093.2 5033.4 5083.4 0.377 0.013
50-E 20 1 4.85 1710.04* 4961.6 4885.9 4935.8 0.251 0.016
50-M 20 1 7.58 1800.00* 5147.5 5075.8 5125.8 0.443 0.009
50-L 20 0 6.44 1620.05* 5158.8 5087.6 5137.6 0.375 0.012
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Fig. 2. Linear relaxation solution values and computation times for MIP, and MIP,.

Table 8 Table 9
Experimental results of MIP, and MIP, for ¢ = ABS on the instances of Set,. Experimental results of MIP, and MIP, for ¢ = REL on the instances of Set,.
Instance # opt time Obj Instance # opt time Obj
Class MIP, MIP, MIP, MIP, ABS Class MIP, MIP, MIP, MIP, REL
20-U 20 20 0.96 0.85 13.6 20-U 20 20 9.85 1.16 1,007
20-E 20 20 1.00 0.87 24.8 20-E 20 20 0.71 0.88 1.012
20-M 20 20 1.26 4.90 24.9 20-M 20 20 1.36 4.57 1.012
20-L 20 20 1.12 0.76 26.9 20-L 20 20 1.06 0.81 1.013
30-U 20 20 12.44 41.05 8.1 30-U 19 20 93.36* 65.62 1.003
30-E 20 20 2.07 106.65 23.8 30-E 20 20 2.27 103.70 1.008
30-M 20 17 2.21 1096.81* 25.4 30-M 20 10 2.87 1371.01* 1.008
30-L 20 20 2.44 134.82 24.0 30-L 20 20 3.70 79.08 1.008
40-U 20 3 5.74 1530.04* 9.9 40-U 18 4 184.88* 1440.11* 1.002
40-E 20 2 5.36 1620.04* 24.3 40-E 20 2 3.42 1620.05* 1.006
40-M 20 3 5.00 1530.30* 20.7 40-M 20 2 10.07 1620.06* 1.005
40-L 20 3 4.10 1530.08* 22.8 40-L 20 1 4.45 1710.03* 1.006
50-U 19 4 97.64* 1440.13* 9.8 50-U 20 2 8.28 1620.01* 1.002
50-E 20 2 4.58 1620.06* 25.8 50-E 20 1 6.90 1710.04* 1.005
50-M 20 1 8.13 1710.02* 21.6 50-M 20 2 9.48 1620.07* 1.214
50-L 20 2 4.88 1620.07* 21.3 50-L 20 3 6.12 1530.10* 1.004
processing times of the jobs are deterministic, the maintenance time Two MIP models and a dynamic programming algorithm are pro-
window and duration are uncertain. In this context, the problem of posed and the results of the computational campaign show that the
finding job schedules which are robust to any possible change in the suggested solution approaches are efficient and effective for instances
maintenance activity characteristics has been addressed. We prove up to 50 jobs and 4 scenarios. We leave for future research the evalu-
several properties (see Table 2) of robust schedules when minimizing ation of the approaches on instances with a larger number of jobs and
the makespan under four different standard robustness criteria. scenarios.
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Table 10
Number of optimal solutions found by the Dynamic Program.
n 5 10 15 20 25 30 35
# optima 50 (100%) 50 (100%) 50 (100%) 41 (82%) 23 (46%) 23 (46%) 20 (40%)

Other, future research directions may include a theoretical study
to characterize the properties of robust schedules in a setting different
from the single machine one (for instance, an extension of these results
in the context of parallel machines Agnetis, Benini, Detti, Hermans,
& Pranzo, 2022; Chen, Huang, Huang, Huang, & Chou, 2021; Yoo &
Lee, 2016, or parallel dedicated machines Agnetis, Kellerer, Nicosia,
& Pacifici, 2012) and the design of new heuristic algorithms (for
instance, math-heuristics exploiting the proposed MIP models). Study-
ing RSM P(c) under a different robustness paradigm, namely that of
recoverable robustness (Liebchen, Lubbecke, Mohring, & Stiller, 2009;
van den Akker, Hoogeveen, & Stoef, 2018) also looks like an interesting
research line. Recoverable robustness permits a limited recovery action
if a solution is unfeasible after the realization of a specific scenario.
In our case, a recovery action can be viewed as a special re-scheduling
problem (Alfieri, Nicosia, Pacifici, & Pferschy, 2018; Nicosia, Pacifici,
Pferschy, Resch, & Righini, 2021). Finally, it would be interesting to
investigate the equivalence of the restricted problems in which r or d
are fixed (Problem P in Section 5.1) to the more “constrained” problem
in which both r and d are fixed (Problem Q) when the robustness
criteria are ¢ = REL or ¢ = OW A.
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