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 31 

Abstract 32 

This paper summarizes the current state of knowledge about the millennial scale climate 33 

variability characterizing Marine Isotope Stage 3 (MIS 3) in S-Europe and the 34 

Mediterranean area and its effects on terrestrial ecosystems. The sequence of Dansgaard-35 

Oeschger events, as recorded by Greenland ice cores and recognizable in isotope profiles 36 

from speleothems and high-resolution palaeoecological records, led to dramatic variations 37 

in glacier extent and sea level configuration with major impacts on the physiography and 38 

vegetation patterns, both latitudinally and altitudinally. The recurrent succession of (open) 39 

woodlands, including temperate taxa, and grasslands with xerophytic elements, have been 40 

tentatively correlated to GIs in Greenland ice cores. Concerning colder phases, the 41 

Greenland Stadials (GSs) related to Heinrich events (HEs) appear to have a more 42 

pronounced effect than other GSs on woodland withdrawal and xerophytes expansion. 43 

Notably, GS 9-HE4 phase corresponds to the most severe reduction of tree cover in a 44 

number of Mediterranean records. On a long-term scale, a reduction/opening of forests 45 

throughout MIS 3 started from Greenland Interstadials (GIs) 14/ 13 (ca. 55-48 ka), showing 46 

a maximum in woodland density. At that time, natural environments were favourable for 47 

Anatomically Modern Humans (AMHs) to migrate from Africa into Europe as documented 48 

by industries associated with modern hominin remains in the Levant. Afterwards, a variety 49 
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of early Upper Palaeolithic cultures emerged (e.g., Uluzzian and Proto-Aurignacian). In this 50 

chronostratigraphic framework, attention is paid to the Campanian Ignimbrite tephra 51 

marker, as a pivotal tool for deciphering and correlating several temporal-spatial issues 52 

crucial for understanding the interaction between AMHs and Neandertals at the time of the 53 

Middle to Upper Palaeolithic transition. 54 

Keywords : Middle Upper Palaeolithic, Palaeoecology, Palaeoclimate, Marine Isotope 55 

Stage 3, Terrestrial records 56 

 57 

1 Introduction 58 

Climate variability and landscape transformations underlie the complex interaction 59 

between natural resources and human dynamics. The understanding of these changes 60 

over time relies on palaeoclimate and palaeoecological information obtained from different 61 

natural archives (e.g. terrestrial and marine sediments, speleothems, ice cores, etc.), 62 

which are well known for their potential to record even abrupt and high frequencies events. 63 

The Marine Isotope Stage 3 (MIS 3) in the Last Glacial Period (Lisiecki and Raymo, 2005) 64 

is one of the most highly unstable phases, as far as climate is concerned, closely 65 

interwoven with the recent human evolution history. MIS 3 (ca. 60-30 ka) was 66 

characterized by major rapid climatic changes showing high variability, associated with 67 

abrupt atmospheric shifts over Greenland (Dansgaard-Oeschger [D-O] events) and 68 

episodes of massive iceberg discharge into the North Atlantic (Heinrich events [HEs]), 69 
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enhancing cold and dry conditions at mid-to-low latitudes (Fletcher and Sánchez Goñi, 70 

2008; Fleitmann et al., 2009; Naughton et al., 2009; Fletcher et al., 2010a). 71 

Within this context, the Middle to Upper Palaeolithic transition (ca. 50-30 ka in Europe and 72 

western Asia, Higham et al. 2014; Benazzi et al., 2015; Hublin 2015; Douka and Higham, 73 

2017; Been et al., 2017; Margherita et al., 2017) represents one of the pivotal phases in 74 

human evolution documenting the demise of the autochthonous Neandertals and their 75 

replacement by Anatomically Modern Humans (AMHs). Many authors suggest that the 76 

eastern Mediterranean region and, in turn, the Italian Peninsula, served as gateways for 77 

the immigration and spread of AMHs from Africa to western Eurasia (van Andel et al., 78 

2003; Müller et al., 2011; Moroni et al., 2013; 2018), where various transitional 79 

technocomplexes (eg., the Uluzzian in Italy and Greece, the Châtelperronian in central and 80 

south western France and northern Spain, the Neronian in south eastern France) replaced 81 

pre-existing Mousterian cultures (Mellars, 2006). Neandertals and AMHs societies 82 

developed in a context of continuous climatic fluctuations between cold-arid (Greenland 83 

Stadial, GS) and mild-humid (Greenland Interstadial, GI) conditions (Staubwasser et al., 84 

2018). Surprisingly, despite the apparent body adaptations to live under rigid climates 85 

conditions (Steegmann et al., 2002), e.g., a wide and tall nasal aperture useful in 86 

humidifying and warming cold and dry air (Franciscus, 1999; Wroe et al., 2018), 87 

Neandertals did not survive into the coldest phases of MIS 3. Their extinction is statistically 88 

placed around 40 ka cal BP (Higham et al., 2014) and almost in coincidence with 89 

Greenland Stadial 9/HE 4, which is a noticeable cold phase recorded in both marine and 90 

terrestrial records (e.g. Fedele et al, 2003; Guellevic et al., 2014 and references therein). 91 

Several hypotheses have been proposed about Neandertal extinction and AMHs 92 
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replacement, and the debate is still unresolved (e.g., Mellars 2006; Hoffecker 2009; 93 

Benazzi et al., 2011; 2015; Villa and Roebroeks, 2014; Higham et al., 2014; Hublin, 2015; 94 

Rey-Rodríguez et al., 2016; Greenbaum et al., 2018). 95 

To disentangle the role played by climate, ecosystem changes and physiography in such 96 

human processes, a palaeoclimate and palaeoecological perspective focusing on Europe 97 

and the Mediterranean area is essential. These efforts represent part of a wider interest in 98 

determining how abrupt climate changes modified past environments. 99 

The aim of this paper is to present the state-of-the-art of palaeoclimate and 100 

palaeoecological researches relevant to the ERC Consolidator Grant 2016 "SUCCESS - 101 

The earliest migration of Homo sapiens in southern Europe: understanding the biocultural 102 

processes that define our uniqueness". To contribute to the discussion about the arrival of 103 

AMHs in Southern Europe, the pattern of their diffusion and their interactions with 104 

Neandertals, a review of the current knowledge about the climate context and the 105 

landscape structure is presented. A selection of high-resolution palaeoecological records 106 

covering the time span between HE 5 to 3, known for their strong impact in western 107 

Eurasia, are discussed to explore the effects of short-term climate variability on 108 

ecosystems and human interactions.  109 

 110 
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2 Reference climate records for the Last Glacial pe riod and signal 111 

synchronicity between different realms 112 

2.1 MIS 3 as recorded in Greenland ice cores 113 

MIS 3, which lasted from 60 ka to 30 ka, was characterized by millennial-scale climate 114 

oscillations commonly referred to as Dansgaard-Oeschger (D-O) events. These events, 115 

particularly well-defined in Greenland ice cores, were first described by Dansgaard et al. 116 

(1993). Typically, D-O events are featured by an abrupt transition (within a few decades) 117 

from a cold phase (GS), into a warm phase (GI). NGRIP, GRIP and GISP2 ice cores 118 

provide master records for these rapid climatic changes throughout the Last Glacial cycle 119 

(MIS 5d to the end of MIS 2; ca. 116–11.7 ka) in the North Atlantic region (McManus et al., 120 

1999). Boundaries between GS and GI periods were established based on both stable-121 

oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion 122 

concentrations ([Ca2+] reflecting mainly atmospheric dust loading) measured in the ice 123 

(Fig. 1, a-c ) (Rasmussen et al., 2014). The close timing of δ18O and [Ca2+] abrupt shifts is 124 

also indicative of reorganizations in atmospheric circulation (Steffensen et al., 2008). 125 

Notably, [Ca2+] data reflect primarily changes in dust concentration but also changes in 126 

dust source conditions and transport paths (Fischer et al., 2007a, 2007b). During D-O 127 

events North Atlantic region temperature and East Asian storminess were tightly coupled 128 

and changed synchronously with no systematic lead or lag (Ruth et al., 2007), thus 129 

providing instantaneous climatic feedback. This relationship was stable over the entire 130 

Last Glacial period.  131 

According to Petersen et al. (2013), the driving mechanism of GI onset is linked to the 132 

rapid collapse of an ice-shelf fringing Greenland, potentially due to subsurface warming. 133 
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During GI, a gradual cooling controlled by the timing of ice-shelf regrowth leads to GS 134 

conditions that lasted for centuries up to millennia. NGRIP temperature reconstructions 135 

based on δ15N isotope measurements (Fig. 1, b ) show T increase at the onset of each GI 136 

ranging from 6.5 °C (D-O 9) up to 16.5 °C (D-O 11), with an uncertainty of ±3 °C (Kindler 137 

et al., 2014).  138 

A recent important step forward is represented by the development of the ice-core GICC05 139 

chronology (Andersen et al., 2006; Rasmussen et al., 2006; Svensson et al., 2008; 140 

Seierstad et al., 2014) and its flow model-based extension (GICC05modelext) published in 141 

Rasmussen et al. (2014), which allowed to achieve a reference template for the pattern of 142 

climate variability during the Last Glacial cycle. 143 

2.2 Climate signals in mid- to low-latitude marine records 144 

A well-known feature in North Atlantic marine sediments is the presence of coarse 145 

sediment layers, i.e. the ice-rafted debris (IRD, Ruddiman, 1977). Such depositional 146 

episodes, known as Heinrich Events (HE), are related to massive discharge, rafting and 147 

melting of icebergs into the ocean and the consequent fall of detrital sediments trapped in 148 

the ice on the ocean floor (Heinrich, 1988) and unambiguously identified during GS phases 149 

of the Last Glacial period (e.g. Bond et al., 1992; 1993; Hemming 2004).  150 

It is widely assumed that D-O events and HE are linked to reorganisations and/or 151 

variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC) 152 

(Broecker et al., 1990). Specifically, Bagniewski et al. (2017) suggest a 30-50% weakening 153 

of the AMOC during GSs and a complete shutdown during HEs, also coinciding with large 154 

increases in the abundance of foraminifer polar species (e.g. N. pachyderma, Fig. 1, h-g ). 155 
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The Iberian Margin (Fig.1 ) is a key area for the reconstruction of these dynamics thanks to 156 

its distal position, i.e. outside of the main belt of ice rafting, which limit disturbance of the 157 

sediments (Bard et al., 2000; Pailler and Bard, 2002). The recently obtained Sea Surface 158 

Temperature (SST) curve based on the biomarker TEXH
86 in MD95-2042 core (Darfeuill et 159 

al., 2016) highlights that the greater cooling peaks occurred during HEs (about 3-5 °C; Fig. 160 

1, f). This feature is in disagreement with the general pattern emerging over Greenland, 161 

where temperatures reconstructed during GS are roughly comparable and show more 162 

stable values to each other (Fig. 1, b ). In addition, Martrat et al. (2007) argue that SST 163 

changes occur a few centuries before the subsequent generation of icebergs, which are 164 

traced by increases in IRD percentage. Regarding this issue, various studies state that 165 

HEs are shorter (Roche et al., 2004; Peters et al., 2008) than the corresponding GS and 166 

occur after the AMOC entered a weakening trend (Flückiger et al., 2006; Marcott et al., 167 

2011). Thus, HEs seem to be a consequence rather than the cause of the AMOC 168 

weakening (e.g., Alvarez-Solas et al., 2010, 2013; Marcott et al., 2011; Barker et al., 169 

2015).  170 

Given the uncertainty across the North Atlantic in the ocean reservoir correction (e.g., 171 

Stern and Lisiecki, 2013; Butzin et al., 2017), and the lack of a clear HE signature in the 172 

δ18O Greenland isotopic record (Rasmussen et al., 2014), it is difficult to establish where 173 

HEs lie exactly within the D-O framework (Andrews and Voelker, 2018). Indeed, 174 

Rasmussen et al. (2014) did not designate the temporal positions of HEs. However, new 175 

Greenland ice cores proxy records (e.g., 17O-excess; Fig. 1, d ) are linked to a lower-176 

latitude hydrological cycle signal (Guillevic et al., 2014). This might help in the future to 177 
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better constrain HE in the ice core series, allow exploring time leads and lags in between 178 

events happening at different latitudes.  179 

 180 

2.3 Synchronicity between abrupt Greenland events a nd terrestrial responses in 181 
Southern Europe 182 

Over the last two decades, the INTIMATE project (INTegrating Ice-core, MArine, and 183 

TErrestrial records; e.g., Blockley et al., 2012; Rasmussen et al., 2014) has proposed a 184 

series of event-stratigraphic templates based on the isotopic and dust concentration 185 

changes in Greenland ice cores. The alternating pattern of stadial and interstadial 186 

geologic-climatic units, due to their very high stratigraphic and temporal resolution and 187 

precise dating, constitute the most comprehensive and best resolved archive of high-188 

frequency climate variability. The Northern-Hemisphere transmission of such millennial-189 

scale signals (reflected in δ
18O variations) depends on the extremely rapid atmospheric 190 

circulation changes (probable lag a couple of years only; Rasmussen et al., 2014). These 191 

changes are induced by migration of the Polar Front (PF) and shifts of the Intertropical 192 

Convergence Zone (ITCZ) at mid-to-low-latitudes (Europe and the Mediterranean areas) 193 

(e.g., Peterson and Haug, 2006), which in turn induce atmospheric circulation and local 194 

rainfall changes.  195 

Problems in synchronization of MIS 3 records mainly arise from the uncertainties of the 196 

age models, based on different dating methods, the intrinsic difficulties in dating these 197 

events, in particular for those intervals at or beyond the limit of the radiocarbon technique 198 

(see section 7.1) and the scarcity of precisely dated and unambiguously synchronous 199 
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stratigraphic events, such as tephra layers, magnetic excursions and cosmogenic nuclide 200 

peaks. Speleothems are excellent archives for recording these abrupt isotopic changes 201 

(e.g., Fleitmann et al., 2009; Moseley et al. 2014; Weber et al., 2018), since they are 202 

among the most accurately datable archives, i.e., within the last ca 100 ka, two sigma 203 

(95%) errors can be below 1% of the U/Th age. Their deposition is predominantly 204 

influenced by either temperature (higher latitude) or precipitation (lower latitude), but both 205 

ultimately linked to Northern Hemisphere temperature fluctuations (e.g., McDermott, 2004; 206 

Genty et al., 2006). In general, speleothem records unambiguously show the signature of 207 

D-O cycles and HEs on European and Mediterranean climate, and a millennial to sub-208 

millennial scale synchronicity in climatic shifts between European and Greenland isotopic 209 

records. Despite a generally continuous calcite deposition during the GI 14-GI 13 interval, 210 

even at the elevation of the modern snowline in the Alps (Spötl and Mangini, 2007; 211 

Moseley et al., 2014), their registration is often fragmentary and hiatuses may have 212 

occurred during cold/dry phases (i.e. HE 5 and HE 4; Spötl et al., 2002; Moseley e al. 213 

2014, Fig. 1, e; Weber et al., 2018). In fact, ITCZ variations may have also affected local 214 

rainfall patterns, triggering enhanced dryness notably in the Mediterranean (Fletcher and 215 

Sánchez Goñi et al., 2008; Fleitmann et al., 2009). However, precise determination of the 216 

durations of these hiatuses may provide valuable information about climatic thresholds that 217 

affect regional climatic conditions (Moreno et al., 2010; Zhornyak et al., 2011; Stoll et al., 218 

2013). Overall, the climatic pattern underlying these δ
18O profiles during MIS 3 strongly 219 

resembles that of Greenland ice cores at millennial scales, and in many cases 220 

corresponding to the detail of decadal-scale cooling events within interstadials (Moseley et 221 

al., 2014). 222 
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3 Reference mid-to-high resolution MIS 3 palaeoecol ogical records in 223 

Southern Europe and in the Mediterranean region 224 

Palaeoecological and palaeoclimate archives considered in this review paper (Tab. 1) are 225 

mostly located in Southern Europe and in the Mediterranean region between ca. 36° and 226 

46.5° N throughout the Atlantic, Continental, Alpine, and Mediterranean biogeographical 227 

regions (Fig. 2 ; European Environment Agency, 2016). A few others dataset from central 228 

Europe accompany these sites. Selected records (i) cover a relevant interval during the ca. 229 

30 – 60 ka time-frame, (ii) are mostly characterized by a sub-millennial/multi-decadal time 230 

resolution (see Tab. 1), and (iii) include quantitative or semi-quantitative geochemical (i.e., 231 

stable isotopes) and/or vegetation (i.e. palynological data) climate proxy variables. Most of 232 

them are placed in the Mediterranean region, which borders the Atlantic region in the west 233 

and the western Eurasian sub-continental region including both the Black Sea and the 234 

Anatolian regions (Fig. 2 ). The latter area is of particular interest because it possibly 235 

served as a gateway for the spread of AMHs into Europe (Müller et al., 2011). Thus, 236 

palaeoclimatic and palaeoecological information from these sites are of great importance 237 

and serve as background for the archaeological work in the Levant. 238 
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 239 

 
Site 

 
Archive 
type 

 
Latitude 
(decimal 
degrees) 

 
Longitude 
(decimal 
degrees) 

 
Elevati
on (m 
asl) 

 
Interval/Time 
period (ka) 

 
Palaeoenvironmenta
l 
/climate proxies 

 
Mean temporal 
resolution for 
MIS 3 
(yrs/sample) 

 
References 

                  
TERRESTRIAL                 

Abric Romani 
(Spain) 

Carbonate 
sediments/ 
travertine 
deposits 

41.53 1.68 310 41-70 ka  Palynological data 200 yrs Burjachs et al., 
2012 

Azzano Decimo 
(Italy) 

Lake 
sediments 

45.85 12.9 10 0-215 ka 
(discontinuous) 

Palynological data 1150 yrs Pini et al., 2009 

Lac du Bouchet 
(France) 

Lake 
sediments 

44.83 3.82 1200 ca. 8-120 ka Palynological data ca. 1000 yrs Reille and 
Beaulieu, 1990 

Eifel maar 
(Germany) 

Lake 
sediments 

50.16 6.85 420 0-60 ka Palynological data Decadal/centennial Sirocko et al., 
2016 

Fimon (Italy)  Lake 
sediments 

45.46 11.53 23 27-138 ka Palynological data 960 yrs Pini et al., 2010 

Füramoos 
(Germany) 

Peat 
deposits 

47.98 9.88 662 0-14 ka, 40-140 
ka 

Palynological data ca. 900-1200 yrs Müller et al., 
2003 

Ioannina 284 
(Greece) 

Lake 
sediments 

39.75 20.85 470 0-132 ka  Palynological data 325 yrs Tzedakis et al., 
2002 

La Grand Pile 
(France) 

Lake 
sediments 

47.73 6.50 330 0-140 ka Palynological data ca. 250 yrs Woillard 1978; 
Guiot et al., 1992 
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Lagaccio ne 
(Italy) 

Lake 
sediments 

42.57 11.8 355 4-100 ka Palynological data 420 yrs Magri, 1999 

 
Les Echets 
(France) 

 
Lake 
sediments 

 
45.9 

 
4.93 

 
267 

 
ca. 10-75 ka 

 
Palynological data 

 
ca. 500 yrs 

 
Beaulieu and 
Reille, 1984 

Kopais K -93 
(Greece) 

Lake 
sediments 

38.43 23.05 95 10-130 ka Palynological data 830 yrs Tzedakis, 1999 

Megali Limni 
(Greece) 

Lake 
sediments 

39.1 26.32 323 22-62 ka Palynological data 150 yrs Margari et al., 
2009 

Lago Grande di 
Monticchio (Italy)  

Lake 
sediments 

40.93 15.62 656 0-132 ka  Palynological data 210 yrs Allen et al. 1999; 
Wutke et al., 
2015 

Ohrid (Republic 
of Macedonia 
and Albania) 

Lake 
sediments 

40.91 20.67 693 0-500 ka Palynological data ca. 850 yrs Sadori et al. 
2016 

Prespa (Republic 
of Macedonia, 
Albania and 
Greece) 

Lake 
sediments 

40.95 20.96 849 0-92 ka Palynological data ca. 1070 yrs Panagiotopoulos 
et al. 2014 

Ribains (France)  Lake 
sediments 

44.83 3.82 1075 10-150 ka Palynological data ca. 1500 yrs Beaulieu and 
Reille, 1992b 

Tenaghi 
Phillippon (TF II) 
(Greece) 

Peat-
dominated 
succession 

41.17 24.33 40 0-130 ka Palynological data 120 yrs Wijmstra 1969; 
Müller et al., 
2011; Wulf et al., 
2018 



14 

 

Valle di 
Castiglione 
(Italy) 

Lake 
sediments 

41.88 12.77 44 0-250 ka Palynological data 440 yrs Follieri et al., 
1988-1998 

Lago di Vico 
(Italy) 

Lake 
sediments 

42.32 12.28 507 0-90 ka Palynological data ca. 500 yrs Leroy et al., 
1996; Magri and 
Sadori, 1999. 

 
Bunker cave - 
Bu2 (Germany) 

 
Speleothems 

 
51.36 

 
7.6 

 
184  

 
From 52 to 50.9 
ka and from 47.3 
to 42.8 ka 

 
Calcite δ18O, δ13C 

 
decadal/ 
multidecadal-scale 

 
Weber et al., 
2018 

Hölloch cave 
(Höl-7, Höl-16, 
Höl-17, and Höl-
18) - NALSP 
(Germany) 

Speleothems 47.38 10.15 1240–
1438 

35-65 ka 
(discontinuous) 

Calcite δ18O, δ13C decadal/ 
multidecadal-scale 

Mosely et al., 
2014 

Kleegruben cave 
- SPA 49 
(Austria) 

Speleothems 47.09 11.67 2165 46-58 ka  Calcite δ18O, δ13C decadal/ 
multidecadal-scale 

Spötl et al., 2002 

Soreq cave 
(Israel) 

Speleothems 31.7 35 400 0-60 ka Calcite δ18O, δ13C 40 yrs Bar-Matthews et 
al., 1999-2000 

Villar s cave - Vil 
27 (France) 

Speleothems 45.3 0.5 175 30-55 ka Calcite δ18O, δ13C) 53 yrs (between 
48.5 and 40.5 ka) 
and 203 yrs 
(between 40.5 and 
30 ka) 

Genty et al., 
2010 
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Villars cave - Vil 
9 (France) 

Speleothems 45.3 0.5 175 32-83 ka 
(discontinuous) 

Calcite δ18O, δ13C 91 yrs (between 
51.8 and 40.4 ka) 
and 195 yrs 
(between 40.4 and 
31.8 ka) 

Genty et al., 
2003 

Villars cave - Vil 
14 (France) 

Speleothems 45.3 0.5 175 29-52 ka Calcite δ18O, δ13C 81 yrs (between 
52.2 and 41.7 ka) 
and 1066 yrs 
(between 41.7 and 
28.9 ka) 

Wainer et al., 
2009 

 
NGRIP 
(Greenland) 

 
Ice core 

 
75.1 

 
42.32 

 
2917 

  
8-120 ka 

 
δ

18O; calcium ion 
concentration data 
([Ca2+]) 

 
re-sampled to 20-
year resolution 

 
Seierstad et al., 
2014; 
Rasmussen et 
al., 2014 

MARINE                 

MD04-2845 
(Western France) 

Marine 
sediments 

45.35 -5.22 -4100 30-140 ka Palynological data; 
Foraminiferal δ18O; 
Ice-rafted debris record 

540 yrs Sánchez Goñi et 
al., 2008 

MD95-2042 
(Iberian margin) 

Marine 
sediments 

37.8 -10.17 -3148 27-138 ka Palynological data; 
Foraminiferal δ18O; 
Ice-rafted debris 
record; Uk′

37 
and TEX86 biomarkers 
(SST) 

ca. 370 yrs Sánchez Goñi et 
al., 1999-2000-
2008-2009 
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MD95-2043 
(Alboran sea) 

Marine 
sediments 

36.13 -2.62 -1841 0-50 ka Palynological data; 
Foraminiferal δ18O; C37 
Alchenones (SST) 

260 yrs Cacho et al., 
1999; Sánchez 
Goñi et al., 1999; 
Fletcher and 
Sánchez Goñi, 
2008 

LC21 (Aegean  
sea) 

Marine 
sediments 

 35.66  26.58 -1522  0-160 ka Foraminiferal δ18O  ca. 200 yrs Grant et al., 
2012 

ODP 976 
(Alboran sea) 

 Marine 
sediments 

 36.20  -4.30  -1108 >1Ma Palynological data; 
Foraminiferal δ18O 

Ranging between 
50 and 200 yrs 

Combourieu-
Nebout et al., 
2002; 
Combourieu-
Nebout et al., 
2009; Genty et 
al., 2010 

 240 
Tab. 1 List of selected sites from S-Europe and the Mediterranean area that entirely or partially cover the MIS 3 chronological framework, 241 
specifying location, available vegetation-climate proxy variables and time resolution. References to published data are also indicated242 
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 243 

3.1 Vegetation response to D-O events and HEs in So uthern Europe and 244 
Mediterranean region 245 

The history of vegetation during MIS 3 in Southern Europe and in the Mediterranean area 246 

relies on several palaeoecological studies carried out in lake and peat stratigraphic 247 

sequences. In Fig. 3  we consider the evidence for millennial-scale variability and long-term 248 

vegetation trends from selected records covering the period between ca. 60 - 30 ka (i.e., 249 

GI 17 to GI 5). The records are presented on the most recent chronology available for 250 

each one. On the whole, this data shows a high sensitivity of vegetation response to D-O 251 

events, making South Eastern Europe and the Italian Peninsula a key geographical area 252 

for high-resolution palaeoenvironmental researches during the last glacial period.  253 

In southern Europe, the recurrent succession of (open) woodlands, including temperate 254 

taxa, and grasslands with xerophytic elements (Fig. 3 ), have been tentatively correlated to 255 

GIs in Greenland ice cores (Fletcher et al., 2010b). This assumption is reasonable for this 256 

geographic area as thermophilous trees persisted in refugia and appeared to have 257 

expanded rapidly during each interstadial without substantial migration lags (Harrison and 258 

Sánchez Goñi, 2010).  259 

Investigations at Lago Grande di Monticchio (Allen et al., 1999, 2000) were the first to 260 

provide an independently dated Late Pleistocene palaeoenvironmental record, due to its 261 

varved sequence. Furthermore, the identification of known tephra layers, one of which is 262 

the Campanian Ignimbrite (CI), has also been used to improve the age-depth model 263 

(Wutke et al., 2015). The high-resolution pollen record (ca. 200 yrs/sample) obtained from 264 
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the Monticchio core reveals millennial-scale changes in woody/open environments 265 

throughout MIS 3. Palaeoecological data indicate an alternation between cold/dry steppic 266 

vegetation, referred to GS periods, and an increased range of woody taxa including 267 

deciduous Quercus, Abies and Fagus (up to 30–60% AP), referred to GI periods (Allen et 268 

al., 1999; Fletcher et al., 2010b). Similarly, other long pollen records from volcanic lakes in 269 

central and southern Italy, i.e., Lagaccione and Valle di Castiglione (Fig. 3 ; Follieri et al., 270 

1988, 1998; Magri, 1999), show remarkable changes of vegetation composition, structure 271 

and biomass including millennial-scale fluctuations in forest development with deciduous 272 

and evergreen Quercus, Corylus, Fagus, Betula and Picea (Fletcher et al., 2010b). The 273 

lower temporal resolution of these latter records (ca. 400 yr/sample) in turn reduced the 274 

chances to precisely identify each GI (Fig. 3 ). 275 

In northern Italy, pollen records from Lake Fimon (Fig. 3 ) and Azzano Decimo (Pini et al., 276 

2009; Pini et al., 2010) indicate phases of conifer-dominated forest expansion (Pinus 277 

sylvestris-mugo and Picea), rich in cool broad-leaved trees (Alnus cf. incana and tree 278 

Betula) and accompanied by a reduced warm-temperate component (Tilia). In both 279 

records, individual D–O events cannot be identified due to the low temporal resolution (ca. 280 

800-1000 yr/sample), nevertheless the well-documented long vegetation trend is indicative 281 

of a persistent afforestation. In fact, only moderate forest withdrawals occurred and some 282 

temperate trees (e.g., Tilia and Abies) persisted up to ca. 40 ka BP (Pini et al., 2010). 283 

Interestingly, peaks of Tilia pollen were found (Cattani and Renault-Miskowski, 1983-84) in 284 

layers preserving Mousterian artefacts and dated to 40.6-46.4 14C ka in the cave 285 

sediments at the Broion shelter (Leonardi and Broglio, 1966), and also in Paina cave inter-286 

pleniglacial deposits (Bartolomei et al., 1987-88; Cattani 1990). 287 
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At southern latitudes, high-resolution pollen records from Ioannina, Tenaghi Philippon and 288 

Megali Limni (Greece, Fig. 2  and Fig. 3;  Wijmstra, 1969; Tzedakis et al., 2006; Margari et 289 

al., 2009; Müller et al., 2011; Wulf et al., 2018,) show exceptional series of millennial and 290 

sub-millennial vegetation changes correlated to a number of GI/GS (Fletcher et al. 2010b; 291 

Pross et al. 2015). Concerning colder phases, the GSs related to HEs appear to have a 292 

more pronounced effect than other GSs on woodland withdrawal and xerophytes 293 

expansion. Notably, GS 9-HE 4 phase corresponds to the most severe reduction of tree 294 

cover in a number of records (e.g., Megali Limni, Tenaghi Philippon, Valle di Castiglione 295 

and Ioannina; Fig. 3 ). Interestingly, pollen records from different bioclimatic areas seem to 296 

show differences in terms of magnitude of the response to cold events due to local 297 

ecosystem structures. In sites where moisture availability was not a limiting factor, 298 

differences in the magnitude of climate forcing during HEs seem to be well expressed in 299 

terms of major vegetation changes (e.g., Ioannina, Monticchio) (Fig. 3 ). However, where 300 

temperate tree populations were near their tolerance limit, the environmental stress 301 

associated with HEs probably crossed a critical threshold resulting in large population 302 

contraction with an almost complete drop in forest cover (i.e., Tenaghi Philippon, Megali 303 

Limni) (Tzedakis et al., 2004) (Fig. 3 ). 304 

On a long-term scale, a reduction/opening of forests throughout MIS 3 (see Fig. 3 ) took 305 

place from GI 14, showing a maximum in woodland density, to the following GI 12 and GI 306 

8. During GI 14/ 13 interval, conditions were notably humid and mild in the eastern 307 

Mediterranean as indicated by the Soreq cave isotopic record (Bar-Matthews et al., 2000) 308 

and also over Europe (Allen et al.,1999; Sánchez Goñi et al., 2002; Fletcher et al., 2010b).  309 
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Despite the relatively high amount of palaeoecological information for southern Europe, 310 

the spatial distribution of records in this heterogeneous geographic sector remains uneven. 311 

Such differences in the expression of millennial-scale events suggest that site 312 

characteristics need to be taken into account when mapping the spatial patterns of 313 

changes and trying to elucidate the mechanisms involved. New records are needed (e.g., 314 

from northern and southern Italy, Turkey, the Levant), in order to refine the knowledge of 315 

eco-climatic gradients across the continent and to better understand regional vegetation 316 

patterns.  317 

3.2 Fire dynamics in Southern Europe and Mediterran ean region 318 

High-resolution microcharcoal records can provide new insights to understand fire-319 

vegetation dynamics in relation to climate variability (e.g. D-O cyclicity/HE events) and/or 320 

human activities (e.g., Whitlock and Larsen, 2001; Iglesias et al., 2015). As for the Last 321 

Glacial period, few microcharcoal records are available from terrestrial (e.g., Magri, 2008; 322 

Margari et al., 2009; Pini et al., 2009, 2010) and marine records (e.g., Daniau et al., 2007, 323 

2009). Fig. 3  shows microcharcoal data for some Southern East European terrestrial sites: 324 

Lake Fimon, Valle di Castiglione, Lagaccione and Megali Limni (MIS 3 partially 325 

documented). 326 

Overall, a fire regime variability mainly associated with fluctuations in forest cover occurred 327 

between GS (lower fire activity) and GI (higher fire activity). Higher microcharcoal 328 

concentration during periods of afforestation suggests enhanced fire activity favoured by 329 

increasing woody fuel and biomass accumulation during GI (Magri, 1994), as observed 330 

also by Daniau et al. (2007; 2009) for southwestern Iberia (MD95-2042 and MD04-2845 331 

cores, Fig. 2 ). Contrary to this pattern, NE-Italy experienced isolated major fire episodes 332 
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over a generally low-intensity fire regime; at Lake Fimon (Pini et al., 2010; Fig. 2 ) the 333 

strongest fire episode of the whole Late Pleistocene record is coeval to a drop in forest 334 

cover mirrored by steppe expansion, possibly correlated to HE4 (Fig. 3 ). Since the 335 

palaeoecological data from this site suggest relatively high moisture availability during MIS 336 

3 (Pini et al., 2010), such climatic context may have prevented long-term fire activity south 337 

of the Alps, despite biomass availability. This evidence indicates that the incidence of fires 338 

is not always directly correlated with the degree of afforestation. This framework supports 339 

a regional climatic influence on fire regimes over SE-Europe with a direct climatic control 340 

on fuel availability during the Last Glacial period. 341 

 342 

4 Snapshots of European palaeogeography and ecoclim atic zones 343 

during GI 12 and the LGM 344 

With the aim of setting Palaeolithic humans in a palaeoenvironmental scenario, we chose 345 

two MIS 3-2 key intervals relevant for the human evolution and marking paleoclimate 346 

extreme conditions: the GI 12 and LGM. We plotted the main European palaeogeography 347 

and palaeoecology landscape features on geographical snapshots (Figure 4A and B ). In 348 

detail, GI 12 snapshot (ca. 46.8 to 44.2 ka according to Rassmussen et al., 2014) 349 

represents a phase of major forest expansion during MIS 3 also coincident with the AMHs 350 

arrival in Europe (Grotta del Cavallo, ca. 45.5 ka; Benazzi et al., 2011; Zanchetta et al., 351 

2018) (Figure 4A). The second one spans the time interval of both the SIS (Scandinavian 352 

Ice Sheet) and the European mountain glacier culminations during the LGM (26 to 21 ka 353 

cal BP in Europe, see Hughes et al., 2016; Monegato et al., 2017), which was 354 

characterized by one of the most pronounced forest contractions of MIS 3-2 time span 355 
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(Figure 4B ). From GI 12 to LGM, climate changes led to dramatic variations in glacier 356 

extent and sea level with major impacts on the physiography of mountain areas, coastal 357 

regions and the hydrologic systems. The latter two are also known for their important role 358 

in AMHs dispersal into Europe (Mellars, 2006; Hublin, 2014). 359 

4.1 Palaeoenvironmental setting during Greenland In terstadial 12 (MIS 3) 360 

4.1.1. Reconstructed gradients ecogeography within eco-climatic zones 361 

We reconstructed terrestrial ecosystems for a time frame corresponding to GI 12 (Fig. 4A ) 362 

by combining palaeobotanical records (for Central Europe: see Van Meerbeeck et al., 363 

2011 and references therein; Follieri et al., 1988; Beaulieu and Reille, 1992a-b; Drescher-364 

Schneider et al., 2007; for Mediterranean Europe: Magri, 1999; Sánchez Goñi et al., 2002 365 

and 2009; Pini et al., 2009, 2010; Müller et al., 2011) and ecoclimatic gradients. These 366 

gradients rely both on large scale latitudinal zones (i.e., Tundra zone and Forest-tundra 367 

zone, and related positions of polar timberline, see Holtmeier,1985; Archibold, 2012), 368 

spanning the northern half of European subcontinent and on regional elevational mountain 369 

belts in southern Europe (see Fig. 4A). We assumed GI 12 and GI 14 vegetation peaks to 370 

have been similar at the same site, although GI 12 was shorter, and used both GI 14 and 371 

GI 12 data to implement our reference dataset. Fossil data was improved by (a) 372 

elevational ecoclimatic relationships and (b) vegetation models (Alfano et al., 2003). 373 

However, available gridded vegetation models do not account for vegetation distribution in 374 

complex mountain regions that actually represent 75% (total areas above 500 m altitude 375 

obtained from GIS elaboration) of the southern European landscape. Indeed, elevation 376 

gradients can be very steep and, within a 1-km2 grid cell, elevation can vary up to, or even 377 

more than, 500 m. In these contexts, forests display a characteristic discontinuity in their 378 
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distribution with a main boundary representing the upper limit of forest canopies 379 

associated with temperature decrease along elevational gradients. Thus, some 380 

inaccuracies in the vegetation distribution can be expected in global models due to the 381 

coarse spatial resolution of climate datasets that can be affected by errors in the local 382 

temperature estimation (i.e., more than 1°C for a lapse rate of about −0.5°C/100 m). 383 

A number of ecoclimatic zones are featured by distinct regional climates (i.e. coniferous 384 

and broad-leaved woodlands along the northern coast of Portugal and Spain; map of the 385 

European Environment Agency, 2015). Within each zone, local climates (i.e. mountain 386 

areas) have been qualified by elevational gradients of orographic precipitation. The main 387 

features of these altitudinal gradients are the upper timberline limit and the glacier 388 

Equilibrium Line Altitude. Given the determinants of the warmest month temperature 389 

(TJuly) on the upper timberline, caused by heat deficiency (Tranquillini, 1979; Jobbagy and 390 

Jackson, 2000; Körner and Paulsen, 2004), we used TJuly reconstructions for GI 12 to 391 

estimate the altitude of montane timberline. In order to moderate the effects of CO2 392 

changes on plant fertilization (Farquhar, 1997), we included past timberlines as calibration 393 

test of our estimations. The timberline position in the Italian Central Alps during the 394 

Bølling-Allerød (1700-1800 m asl: Tinner et al., 1999; Ravazzi et al., 2007) is a good test 395 

as the GI 1 is the only D-O interstadial which occurred under moderately low CO2 396 

concentration; furthermore, relevant fossil records are relatively common as they were not 397 

erased by LGM glacier activity. Given the position of the alpine timberline during the 398 

Bølling-Allerød and the associated pollen-based mean TJuly (18,5-19°C; Vallè et al., 399 

unpublished data), we infer the timberline position during GI12 using the difference 400 

between TJuly for GI12 (ca. 18°C) and the Bølling-Allerød. This difference was projected 401 
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over an elevational gradient using an average environmental lapse rate of about -402 

0,67°C/100 m (Furlanetto et al., 2019), to obtain an historical timberline for GI 12 (ca. 1600 403 

m in the Italian Central Alps). The method was also tentatively applied to estimate 404 

timberlines in the Mediterranean region. Here, however, many boreal tree species were 405 

missing during MIS 3, thus ecophysiological requirements of Mediterranean timberline 406 

species were considered. 407 

4.1.2. Estimating Equilibrium Line Altitudes of mou ntain glaciers 408 

By using elevational lapse rates we also estimated the Equilibrium Line Altitude (ELA) 409 

position during GI12 in the Central Alps (Vallé et al., unpublished data). Again, 410 

temperature differences between the LGM ELA positions (e.g. Kuhlemann et al. 2008; 411 

Hughes and Woodward, 2016) and GI 12 were projected over elevational gradients and 412 

tested against the temperatures and ELA related to the Egesen stage, Younger Dryas 413 

(Kelly et al., 2004; Ivy-Ochs et al., 2008; Delmas, 2015; Ruszkiczay-Rüdiger et al., 2016; 414 

Popescu et al., 2017; Gromig et al., 2018). The results of a recent Parallel Ice Sheet Model 415 

(PISM) with climate forcing deriving from WorldClim and the ERA-Interim reanalysis 416 

(Seguinot et al., 2018) proved to fit our results for the Central Alps (GI 12 ELA 2100 m, 417 

626 m higher than the LGM ELA). As a best approximation, the same value was added to 418 

the LGM ELA position for the Pyrenees, Balkans and Carpathians, providing a GI12 419 

reconstructed ELA of ca. 2400 m, ca. 2100 m and 2000 m, respectively.  420 

4.1.3. The GI 12 palaeoenvironmental map 421 

European vegetation gradients were particularly strong during the major interstadial 422 

phases (i.e., spanning about 2000-2500 years), characterized by large arboreal excursions 423 
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both latitudinally and altitudinally, north and south of the Alps. The GI 12 is one of these 424 

key representative warm intervals. In Figure 4A,  we depict the palaeoenvironmental 425 

setting of mid and southern Europe (between 52° and 35° latitude N) during GI 12. It is 426 

also shown a reconstruction of the coastline: -74 m a.s.l. (Waelbroeck et al., 2002; 427 

Antonioli, 2012). A substantial seashore enlargement over Europe led to increased 428 

connectivity, especially between the Italian peninsula and the Western Balkans region, 429 

between Mediterranean islands, and also the emergence of large areas north of the Black 430 

Sea and in the North Sea (Fig. 4A ). The Scandinavian Ice Sheet (SIS), which grew during 431 

MIS 4, had almost entirely melted at mid MIS 3 (60–45 ka) (Lambeck et al., 2010; 432 

Wohlfarth, 2010). 433 

We summarize hereafter the main constrains of the featured ecoclimatic zones. 434 

Forest tundra ecozone . The northern timberline was given as the northern limit of the 435 

forest tundra mosaic (sensu Walter and Breckle, 1986; Holtmeier, 2009; Van Meerbeeck et 436 

al., 2011). The abundance of gleysols with charred wood dated to around 45 ka at the 437 

base of loess-luvisol sequences in Central and Eastern Europe (Haesaerts et al., 2009; 438 

Moine et al., 2017) supports locating the zonoecotone of forest tundra for wetter 439 

interstadial phases of MIS 3 between 47° and 52° - 54° N, i.e. north of the Alps (Fig. 2A). 440 

The geography of northern timberline in Central and Eastern Europe was drawn according 441 

to modelling results by Alfano et al. (2003). In the forest tundra zonoecotone, the forest is 442 

found mainly in warmer and drier places, with stunted individuals at the waterlogging 443 

edaphic ecotone. 444 
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Atlantic zone. This biogeographical region closely interacts with the northeast Atlantic 445 

Ocean margin. Expansion of Atlantic forests with Betula, Pinus and deciduous Quercus is 446 

recorded during GI 12 and 14, probably reflecting obliquity forcing at higher latitudes 447 

(Sánchez Goñi et al., 2008). Vegetation in Western Iberia also responded immediately 448 

(within the resolution of the record) to SST changes on millennial time scales during MIS 3. 449 

Increases in temperatures offshore translated to increased tree cover on land and vice 450 

versa. This rapid response to interstadials warming supports the idea that thermophilous 451 

taxa persisted in NW-Iberian refugia throughout the last glacial period (Roucoux et al., 452 

2005). 453 

Iberian region.  Average annual precipitation map for the Iberian peninsula (years 1901-454 

2009; Schneider et al., 2014) depicts a strong gradient from the north-western to northern 455 

Atlantic coasts (1100 - 1500 mm/year) to central Spain and Mediterranean areas (250 - 456 

700 mm/year). During GI 12, humid Atlantic air masses promoted higher moisture 457 

availability on the northern coasts of Portugal and Spain, which could support the 458 

occurrence of open temperate woodlands. In the inner Iberian areas, grasslands occupied 459 

drier lowlands; increasing afforestation was visible along altitudinal gradients. 460 

Adriatic and Tyrrhenian Basins.  Lowering of the sea led to the emergence of a wide 461 

area north of the 44° parallel in the Adriatic sea. The area hosted terrestrial vegetation, 462 

from mixed conifer and broad-leaved woodlands in the inner Friulian-Venetian Plain to 463 

more open communities and then grasslands, the latter building a wide belt along the 464 

coastal margins. Differences in the humidity regimes between the eastern Adriatic and the 465 

western Tyrrhenian Basins bordering Italy are responsible for the asymmetry of 466 
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ecosystems represented in Fig. 2A. Palaeoecological records from the Tyrrhenian coast 467 

suggest almost persistent moisture availability during MIS 3. Similar to the current 468 

situation, it can be assumed that precipitation was mainly generated by the orographic 469 

uplift of air charged with moisture from the Tyrrhenian Sea.  470 

Balkans and Aegean regions:  During GI 12, terrestrial ecosystems were dominated by 471 

open temperate woodland and/or temperate forest-steppe south of 40°N, with increasing 472 

amount of trees north of this latitude. At lower altitudes, in wider belts bordering the 473 

eastern Adriatic, Ionian and eastern Mediterranean Seas, grasslands developed. 474 

Central Anatolian plateau.  In the Anatolian region the reconstructed historical GI 12 475 

timberline is located at 1500 m asl. Areas down to 500-800 m could support open forest 476 

vegetation, especially along the Turkish coasts of the Black Sea, characterized by a 477 

temperate oceanic climate with the greatest amount of precipitation of the whole region 478 

(Turkish State Meteorological Service, 2006). Moisture does not reach inland areas; inner 479 

plateau bordered by the Pontic Mountains to the north and the Taurus to the south is 480 

characterized by a continental climate with strongly contrasting seasons. During GI12, in 481 

these inner areas open grasslands expanded. 482 

A reconstruction of European vegetation patterns during a warm/moist phase of MIS3 was 483 

proposed by van Andel and Tzedakis (1998). The vegetation subdivisions provided in this 484 

early reconstruction largely overlap with the picture of terrestrial ecosystems provided in 485 

our Fig. 2A, with some differences (i) the reconstruction of van Andel and Tzedakis (1998) 486 

is plotted on a simplified sketch map of Europe not taking into account the altitudinal 487 

gradients, indeed represented on our GIS topographic base. This is important as far as 488 
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temperature and moisture gradients play an important role in determining both latitudinally 489 

and altitudinally extents of vegetation belts; (ii)  minor differences between the two 490 

reconstructions are visible in the shape of the limit of the northern timberline (between 53-491 

55°N in Fig. 2A - based on Alfano et al., 2003; around 50°N according to van Andel and 492 

Tzedakis, 1998); (iii)  Fig. 2A provides indication on ELA and timberline positions during an 493 

interstadial, thanks to data from papers published in recent years and quantitative climate 494 

reconstructions for the last glacial cycle.  495 

4.2 Palaeogeography of Southern and Central Europe during LGM 496 

We attempted a LGM palaeogeographical reconstruction of mid-southern Europe in order 497 

to allow direct comparison of physical patterns between GI 12 (i.e. a major interstadial 498 

within MIS 3) and the subsequent LGM (i.e. 30 to 16.5 ka cal BP, Lambeck et al., 2014) 499 

cold phase. For this map, we chose to represent the physical geography of Europe during 500 

the time interval spanning both the SIS and the European mountain glacier culminations 501 

(26 to 21 ka cal BP in Europe, see Hughes et al., 2016; Monegato et al., 2017). At this 502 

time, main climatic patterns can be displayed though different climate zones according to 503 

Köppen-Geiger classification (Becker et al., 2015).  504 

The SIS passed the coast of western Norway at the time of the Laschamp palaeomagnetic 505 

excursion (ca. 41 ka) (Valen et al., 1995; Mangerud et al., 2010). At ca. 21 ka the ice-sheet 506 

attained its maximum extent (Fig. 4 B ; Hughes et al., 2016). During this period the 507 

European Alps were extensively covered by an ice-dome which generated valley glaciers. 508 

In the Alps, the maximum ice extent was reached during the LGM around 25 ka, when 509 

large piedmont glaciers advanced onto the Alpine foreland. This is well constrained by the 510 

end-moraine systems, in which the LGM moraines were dated (radiocarbon, OSL and 511 
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cosmogenic nuclide surface exposure dating methods) and point to large ice lobes at the 512 

outlet of major valleys (e.g., Monegato et al., 2007, 2017; Ivy-Ochs et al., 2008, 2018; 513 

Ravazzi et al., 2012; Reber et al., 2014; Salcher et al., 2015). In the south-western and in 514 

the eastern sectors many valley glaciers remained confined within the valley (e.g., Jorda et 515 

al., 2000; Bavec and Verbic, 2011; Rossato et al., 2013, 2018; Federici et al., 2016), as 516 

testified by the reconstruction of LGM moraines. In the fringe area of the Alpine chain 517 

many isolated small ice caps or mountain glaciers developed without merging with the 518 

major trunk glaciers (e.g., Carraro and Sauro, 1979; Forno et al., 2010; Monegato, 2012). 519 

Large outwash megafans developed from the front of the Alpine glaciers or from the 520 

funnelling of outwash streams in the lower reach of the valleys (Fontana et al., 2014). By 521 

this time, large glaciers developed in the Pyrenees and many frontal moraines were dated 522 

(Delmas, 2015 and references therein); here glaciers mostly remained confined within the 523 

valleys and several small and isolated glaciers occurred (e.g., Pallas et al., 2010). Other 524 

small glacier systems were present in the Iberian mountains; these advances had different 525 

age development, from 31 to 20 ka, according to Oliva et al. (2019) compilation. 526 

Documented ice-caps in the French Massif Central (de Gôer, 1972) and in the Vosges 527 

(Seret et al., 1990), but chronology on glacial landforms needs to be improved 528 

(Buoncristiani and Campy, 2004). 529 

Valley glaciers spread in the Carpathians and Tatra ranges (e.g., Ehlers et al., 2011; 530 

Makos et al., 2018). Their size were reconstructed on the basis of remote sensing and field 531 

analyses (Zasadni and Klapyta, 2014) and the age of their maximum spread is constrained 532 

with exposure dating at about 25 ka (Engel et al., 2015; Makos et al., 2018). 533 
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The Balkan Peninsula was deeply studied in the last decay (see Hughes and Woodward, 534 

2016 for a review). Therein, mountain glaciers developed in a karstic environment with 535 

specific characteristics (Adamson et al., 2014; Zebre and Stepisnik, 2015; Zebre et al., 536 

2016). Most of the outwash system into the karstic network and the outwash fans were 537 

very confined and limited to the basins where glaciers flowed (Zebre et al., 2016, 2019). 538 

Also small glaciers formed on the highest mountain chains of the Apennines (e.g., Giraudi 539 

and Giaccio, 2016; Baroni et al., 2018; Mariani et al., 2018). 540 

The region surrounding the Adriatic lowstand plain collected the drainage from Alpine 541 

outwash systems and from the surrounding Apennine and Balkan rivers, which had 542 

important karst underground flows. The large Adriatic lowstand delta (Fig. 4B ; Maselli et 543 

al., 2014; Pellegrini et al., 2015) accreted as sea level fell down to -120 m or -149 m 544 

(Antonioli and Vai, 2004).  545 

Late Pleistocene aeolian sediments are widespread in Europe (e.g. Haase et al., 2007; 546 

Fig. 4B ) and they represent further indicators of past environmental changes. Loess is 547 

commonly distributed in Central, Eastern, and Southern Europe (e.g., Kukla, 1975; 548 

Smalley and Leach, 1978; Frechen et al., 1997; Haase et al., 2007; Cremaschi et al., 549 

2015; Marković et al., 2015; Terhorst et al., 2015; Zerboni et al., 2018); in the 550 

Mediterranean region loess bodies formed also along the present day coastline (Chiesa et 551 

al., 1990; Cremaschi, 1990; Wacha et al., 2011a,b; Boretto et al., 2017). Loess is generally 552 

associated with glacial environmental conditions, with dry and cool climate and increased 553 

wind strength (Pye, 1995). In continental Europe and in the Mediterranean basin 554 

Pleistocene loess accumulated in mid-continental plains free of ice sheets, at the margins 555 

of mountain ranges, along the shorelines of the Mediterranean and at the semi-arid 556 
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margins of the Sahara and Levantine deserts (Obruchev, 1914; Cremaschi, 1990; Haase 557 

et al., 2007; Crouvi et al., 2010; Lindner et al., 2017; Lehmkuhl et al., 2018 a,b; Zerboni et 558 

al., 2018). In Mediterranean Europe, as in the Po Plain, major loess sources are the 559 

outwash plains fed by glaciers flowing from mountains (Alps and Apennines) 560 

(Cremaschi,1990). Loess deposition occurred during most of the Quaternary glacials and 561 

was related to a general decrease in forest cover and expansion of semideserts, steppe, 562 

and treeless environments (Rousseau et al., 2018). Notwithstanding many efforts in 563 

establishing fine MIS 4 to 2 loess chronology with luminescence methods and stratigraphic 564 

correlations (e.g., Timar et al., 2010; Timar-Gabor et al., 2011; Thiel et al., 2014) due to 565 

intrinsic properties of loess and to the possible occurrence of sedimentary gaps (Thiel et 566 

al., 2014), the resolution of loess studies is still lower than those of other continental 567 

archives. Likely, Late Pleistocene loess sedimentation occurred, at least, since the end of 568 

MIS4 and during MIS 3 and 2 (Marković et al., 2015; Terhorst et al., 2015). In Italy, loess 569 

sedimentation is recorded along the margins of the Po Plain and discontinuously along the 570 

shorelines of the Mediterranean, where loess is better preserved within rockshelters 571 

(Cremaschi, 2004; Peresani et al., 2008). Italian loess dates back to the Late Pleistocene 572 

and mostly formed since the end of MIS 4 (Cremaschi, 1990, 2004); but loess deposits 573 

occur as well in sections that contain Mousterian artifacts dating to MIS 3 (e.g., Cremaschi, 574 

1990; Cremaschi et al., 2015; Zerboni et al., 2015; Delpiano et al., 2019). More recently, a 575 

few loess bodies have been dated also to MIS 2 (Ferraro, 2009; Zerboni et al., 2015), 576 

showing a good continuity in wind sedimentation in the Late Pleistocene, at least at the 577 

northern margin of the Po Plain. Italian loess is often interlayered by paleosols, allowing 578 

the identification of less arid phases. For instance, at the Val Sorda section a chernozem-579 

like palaeosoil, has been dated at ca. 27 ka BP (Ferraro et al., 2009); whereas at Monte 580 
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Netto site moderate pedogenesis (including clay illuviation) compatible with forest cover 581 

occurred at times between 44 and 25 ka BP (Zerboni et al., 2015). 582 

5 Focus on spatial vegetation response in Italy dur ing MIS 3 583 

The pie charts presented in Fig. 5  show long-term vegetation dynamics and geographic 584 

patterns in Italy between ca. 30 and 60 ka cal BP using data from privileged sites (North to 585 

South): Lake Fimon, Lagaccione, Valle di Castiglione and Monticchio. For each record, 586 

selected pollen taxa are consistently grouped according to their ecology and climate 587 

preferences in order to facilitate their comparison (for further information see caption and 588 

legend in Fig. 5 ).  589 

A higher forest cover in Northern Italy compared to Mediterranean sites is an unchanged 590 

background feature during MIS 3. Indeed, the glaciated Alps must have represented a very 591 

sharp rainfall boundary leading to more humid conditions in south-eastern alpine foreland 592 

persistently forested and a northern treeless boreal and continental landscape, as shown 593 

by La Grande Pile, Les Echets and Füramoos pollen records (Fig. 2 ; Woillard, 1978; 594 

Beaulieu and Reille, 1984; Guiot et al., 1992; Müller et al., 2003). The palaeoecological 595 

record from Lake Fimon documents a mosaic of boreal forests dominated by Pinus 596 

sylvestris/mugo over the 60 to 30 ka cal BP time period. However, a continuous xerophytic 597 

steppe expansion (e.g. Artemisia and Chenopodiaceae), coupled with the reduction of 598 

temperate elements (deciduous Quercus and other thermophilous taxa) in favour of pine 599 

woodlands, notably since 40-45 ka, suggests a shift towards drier/colder conditions 600 

possibly enhanced by GS 9-HE 4 phase.  601 
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The contraction of temperate forests is also recorded throughout MIS 3 in central Italy 602 

(Lagaccione and Valle di Castiglione) and southern Italy at Lago Grande di Monticchio. In 603 

these sites, open forests dominated by deciduous Quercus, Corylus, Fagus, Tilia, Ulmus 604 

and Carpinus betulus experienced their maximum expansion between ca. 60-45 ka. 605 

Afterwards, open environments (Artemisia-dominated steppe/ wooded steppe) expanded 606 

between 45-30 ka (Fig. 5 ). 607 

This general overview suggests latitudinal (and also altitudinal) climatic patterns and 608 

rainfall gradients along the Italian peninsula due to its complex physiographic structure (i.e. 609 

the presence of two high mountain ranges, Alps and Apennines), to be taken into account 610 

when reconstructing past vegetation dynamics as it has already been shown for Greece 611 

(Tzedakis et al., 2004). 612 

 613 

6 Archaeological framework  614 

During the first half of MIS 3, and particularly during GIs 14/13 ca. 55-48 ka, natural 615 

environments were favourable for AMHs to migrate from Africa into Europe (Müller et al., 616 

2011). The scenario of an initial AMHs movement into Europe is supported by industries 617 

associated with modern hominin remains found in few excavated localities: Üçağızlı cave 618 

(Turkey) (Güleç et al., 2002; Kuhn et al., 2009); Ksar Akil (Lebanon) (Copeland and 619 

Yazbeck, 2002; Yazbeck, 2004; Douka et al., 2013); Manot cave (Israel) (Hershkovitz et 620 

al., 2015). Around 45 to 39 ka, Neandertals were replaced by AMHs (Higham et al., 2014), 621 

and a variety of early Upper Palaeolithic cultures emerged (e.g., Uluzzian and Proto-622 
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Aurignacian in the central-eastern Mediterranean regions; see Arrighi et al. and Marciani et 623 

al., this issue).  624 

The cultural complex known as Uluzzian has been attested in the Italian Peninsula and 625 

southern Balkans around 45-40 ka (Fig. 6 ; Palma di Cesnola, 1989; Ronchitelli et al., 626 

2009; Moroni et al., 2013; Peresani, 2014; Zanchetta et al., 2018). This techno-complex 627 

was coeval with the arrival of AMHs in Europe as evidenced by the anatomical features of 628 

two deciduous teeth discovered in Grotta del Cavallo in Apulia (Benazzi et al., 2011, 629 

although challenged by Zilhão et al., 2015, and further discussed in Moroni et al., 2018). 630 

Along the Italian Peninsula, the Uluzzian is currently best known in cave sedimentary 631 

successions by its stratigraphic position above the Mousterian and under the Proto-632 

Aurignacian, when the latter is present, and also in several open-air sites (Fig. 6 ). 633 

Recently, the Uluzzian has also been observed in northern Italian cave sites, expanding its 634 

cultural borders from what was thought to be exclusively central-southern after the 635 

discovery of assemblages at Grotta Fumane and at the Riparo Broion shelter (Peresani, 636 

2008; Peresani et al., 2016, 2018). Other sites in the Adriatic-Ionian region exhibit 637 

Uluzzian elements (Crvena Stijena; Mihailović et al., 2017; Klissoura Cave; Starkovich, 638 

2017; Kephalari; Darlas and Psathi, 2016), opening new perspectives in looking at the 639 

appearance and spread of the Uluzzian over the entire area of the Adriatic basin.  640 

In several sites from the Middle to Upper Palaeolithic transition is documented by the 641 

Proto-Aurignacian technocomplex. The available chronological framework indicates a 642 

Proto-Aurignacian occupation ending with the Campanian Ignimbrite eruption in Southern 643 

Italian Castelcivita (Gambassini, 1997) and Serino sites (Lowe et al., 2012; Wood et al., 644 

2012). However, this tephrostratigraphic marker also constrains the end of the Uluzzian 645 
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techno-complexes at Grotta del Cavallo on the Ionic coast of Salento (Lecce) (Zanchetta 646 

et al., 2018; section 7.2). In N-W Italy, the earliest Proto-Aurignacian is that of the Balzi 647 

Rossi sites complex in the region of Liguria (NW Italy), where it has been identified at 648 

Riparo Mochi and Riparo Bombrini sites (Douka et al., 2012; Riel-Salvatore and Negrino, 649 

2018). At these sites, the main outlines of the industry remain stable beyond the end of 650 

GS9/HE4 (Riel-Salvatore and Negrino, 2018), comparably to Grotta Fumane in the north 651 

of Italy (Falcucci et al., 2017; Falcucci and Peresani, 2018). The assessment of these 652 

temporal-spatial issues and new chronological information are fundamental for 653 

understanding the dynamics of the cultural and ecological-anthropological changes that 654 

occurred in S-Europe at the Middle to Upper Palaeolithic transition.  655 

Already before 43 ka, very early Aurignacian assemblages, reflecting an initial AMHs 656 

advance into central Europe, have also been found along the Danube (Willendorf II, Lower 657 

Austria; Nigst et al., 2014), suggesting the Danube’s role as a spatial corridor for human 658 

dispersal in the Early Upper Palaeolithic (e.g., Floss, 2003; Hussain and Floss, 2016). A 659 

similar role is hypothesized for the Don River system near the Black Sea (Anikovich et al., 660 

2007). Beside large river systems, also coastal plains played a relevant role channelling 661 

AMHs dispersal into Europe (Mellars, 2006; Hublin, 2014). The close similarity between 662 

the available dates for the early AMH arrival in the Mediterranean and in Germany on the 663 

Danube, might suggest a rapid access in Europe via two routes, along both the Danube 664 

corridor and the Mediterranean coasts (Douka et al., 2012).  665 
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7 Chronological issues 666 

7.1 Difficulties in dating the Middle to Upper Pala eolithic transition 667 

Building reliable radiocarbon chronologies for sequences covering time intervals beyond 668 

and/or close to the limit of the radiocarbon technique (i.e., ca. 50 ka) remain challenging. 669 

Indeed, the low levels of residual 14C activity induces lower precision (higher uncertainty) 670 

and accuracy (higher offset of the measured isotope ratio with respect to the actual one) of 671 

AMS measurements and makes samples much more vulnerable to contamination (e.g., 672 

Bird et al., 1999; Higham, 2011; Wood, 2015). In old samples, due to the low 14C content, 673 

even very negligible percentages of modern carbon give very high contamination levels 674 

leading to wholly distorted chronologies, with resulting ages that can be younger of several 675 

millennia (Higham et al., 2009; Higham, 2011). Indeed, this makes the dating of small 676 

amounts of ancient carbon, i.e., more prone to contamination, even more challenging (e.g., 677 

Bird et al., 2014). Such problems can be partially overcome in long, continuous 678 

sedimentary succession that are biostratigraphically well-constrained using indirect 679 

approaches based on record alignment strategies, i.e., one record on a depth-scale is 680 

aligned onto a “dated reference” record (Govin et al., 2015); provided that the underlying 681 

assumptions, i.e., recognition of the events and their one-to-one correlation, are 682 

reasonably demonstrated. Yet, whenever possible, tephra markers and/or relative 683 

chronologies based on varved sediments can also be used to refine or validate age-684 

models. 685 

7.2 The Campanian Ignimbrite (CI) marker 686 

The Campanian Ignimbrite (CI) super-eruption (southern Italy, 40Ar/39Ar age: 39.85 ± 0.14 687 

ka, 2σ; 14C age: 34.29 ± 0.09 14C ka BP, 1σ; Giaccio et al., 2017) produced the most 688 
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widespread tephra of western Eurasia, extending from the Tyrrhenian Sea to the Russian 689 

Plain (e.g., Costa et al., 2012; Marti et al., 2016; Fig. 7 ). Its relevance as a key 690 

chronological and stratigraphic marker for addressing a series of issues concerning the 691 

European MIS 3 period – including the tempo and the palaeoecological factors involved in 692 

the human bio-cultural evolution at the Middle-Upper Palaeolithic transition – has been 693 

recognised long ago (e.g., Fedele et al., 2003) and eventually consolidated by a number of 694 

papers: e.g., Giaccio et al., 2006 (see Higham et al., 2009 for the updated chronology of 695 

Grotta Fumane); Pyle et al., 2006; Fedele et al., 2008; Giaccio et al., 2008; Hoffecker et 696 

al., 2008; Lowe et al., 2012; Satow et al., 2015; Wutke et al., 2015; Wulf et al., 2018; 697 

Zanchetta et al., 2018. 698 

At several archaeological sites of the central Mediterranean, Balkans and Russian Plain 699 

the CI tephra acts as a marker for the end of either final Mousterian with Uluzzian 700 

elements (Crvena Stijena, Montenegro, Morley and Woodward, 2011; Mihajlovic and 701 

Whallon, 2017), Uluzzian (Apulia region in southern-eastern Italy and Greece; e.g., Douka 702 

et al., 2014; Zanchetta et al., 2018) or Proto-Aurignacian techocomplexes (e.g., Serino 703 

open-air site and Castelcivita Cave in southern-western Italy and Kostenki site complex in 704 

Russia; e.g., Giaccio et al., 2008 and references therein). However, although falling in its 705 

dispersal area, the CI has not been detected at the Adriatic site of Grotta Paglicci (Apulia, 706 

Southern Italy) and on the opposite Tyrrhenian side, at Grotta della Cala. In both caves the 707 

Protoaurignacian seems to stretch beyond the CI event based on 14C chronology (Paglicci) 708 

and the studied materials (Marciani et al., this issue).  709 
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The CI tephra occurs in all the above-mentioned sites either as a relatively proximal, thick 710 

primary pyroclastic succession (e.g., Serino open-air site; Accorsi et  al., 1978; Giaccio et 711 

al., 2006) or as a discrete layer, with a sharp lower contact with underling sediments, 712 

made of purely volcanic material (i.e., glass shards or pumice fragments with mineral 713 

accessories) with no or negligible contamination by clastic sediments. These features are 714 

consistent with a sub-primary (re)deposition of ash layers by the wind or run-off shortly 715 

after its emplacement as primary fallout along landforms nearby sheltered or open-air 716 

archaeological sites (e.g., Brunis et al., 2019). Specifically, at Castelcivita site, both Plinian 717 

pumice and co-ignimbritic ash layers are recorded in their eruptive stratigraphic order, 718 

suggesting that the two eruptive units were transported and redeposited in the cave 719 

immediately after their fall (fall and rolling process) (Giaccio et al., 2008; Giaccio et al., 720 

2016). The sub-primary nature of the CI tephra, i.e., no appreciable time elapsed between 721 

CI tephra deposition and the eruption, is also supported by the available radiocarbon 722 

chronology of the archaeological layers immediately below CI tephra strata, which are 723 

statistically indistinguishable from the CI eruption age (Benazzi et al., 2011; Wood et al., 724 

2012; Douka et al., 2014; Giaccio et al., 2017). On the whole, both radiocarbon chronology 725 

and CI tephra marker suggest that around 40 ka the central Mediterranean region was a 726 

cultural, and possibly biological, mosaic, suggesting the possible coeval occurrence of the 727 

final Mousterian (Crvena Stijena), Uluzzian (Apulia and Greece) and Protaurignacian lithic 728 

technocomplexes (Campania).   729 

Particularly significant is also the climatostratigraphic position of the CI tephra as revealed 730 

by a number of marine and terrestrial palaeoclimatic records spread in the wide region of 731 

its dispersal area (Fig. 7 ). In this framework, the palaeoecological and tephrostratigraphic 732 
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high-resolution (120 yr/sample) record of Tenaghi Philippon (Greece, Wulf et., al 2018) 733 

offers the unique opportunity to compare the chronostratigraphic position of CI in relation 734 

to the palaeoenvironmental context at a centennial scale during the Middle to Upper 735 

Palaeolithic transition. In detail, CI deposition occurred ca. 1000 years after the onset of a 736 

phase of marked arboreal pollen drop corresponding to the GS 9 (ca. 40.58 cal ka BP) and 737 

3280 years before the onset of GI8 (ca. 36.3 cal ka BP) (Fig. 7 ; Wulf et al., 2018). 738 

Similarly, at Monticchio site, the CI was deposited ca. 820 years after the onset of GS 9 739 

(Fig. 3 ). However, at Tenaghi Philippon the resulting total duration of ca. 4280 years for 740 

GS 9 strongly deviates from the ca. 2000 years obtained at Lago Grande di Monticchio 741 

(Wutke et al., 2015) and from the 1680 years in the NGRIP record (i.e. from 39.90 to 38.22 742 

ka GICC05; Rasmussen et al., 2014). A similar position is verified in number of other 743 

terrestrial and marine palaeoenvironmental records (e.g., Mediterranean and Black Sea 744 

marine records and Lake Ohrid, and Lesvos Island pollen profiles; see Giaccio et al., 2017 745 

and references therein). Despite the general agreement in placing the CI well after the 746 

beginning of GS 9 (ca. 400 years, according to the alignment of records proposed in 747 

Giaccio et al., 2017), which is marked by a drop in arboreal pollen and temperate taxa 748 

(Fig. 7) , it seems that further investigations are needed to fully disentangle temporal 749 

discrepancies between records and to convincingly correlate the interval encompassing GI 750 

8-10 to the D-O events. This is also challenging due to the inadequate resolution of most 751 

of the available pollen records if compared to the short GI 9 duration (i.e., 250-yr-long 752 

GICC05; Rasmussen et al., 2014), which only briefly interrupts the GS 10 to GS 9 interval 753 

representing over 4 millennia of cold stadial conditions. 754 
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With specific regards to these chronological issues, it is worth noting that the paired, high-755 

precision, multiple 40Ar/39Ar and 14C, ages for the CI revealed an offset of ca. 1 ka between 756 

the calendar age of the CI as determined by its direct 40Ar/39Ar dating and the calibrated 757 

14C age of the CI using IntCal13 calibration curve (Giaccio et al., 2017), thus highlighting 758 

the occurrence of a further source of uncertainty when comparing records whose age 759 

models are based on calibrated 14C ages with others anchored to different time-scales 760 

(e.g., U/Th or Greenland ice chronology). This offset is now confirmed by a recent study, 761 

which reports a record of paired U/Th and 14C ages from the Chinese Hulu Cave 762 

stalagmite, continuously spanning the last 54 ka (Cheng et al., 2018). This new record also 763 

reveals a radiocarbon plateau between ca. 37.5 ka and ca. 39.1 ka at ca. 33.5 14C ka BP 764 

that could have affected the age model of records based on 14C chronology and thus be 765 

responsible for the above-mentioned notable age discrepancy in the length of the GS9 as 766 

recorded in different Mediterranean records. A distortion of the IntCal13 calibration curve 767 

at this time interval is also suggested by the recently published continuous record of the 768 

∆14C spanning between ca. 47.3 and 39.6 ka cal. BP from the Tenaghi Philippon lake 769 

succession (Staff et al., 2019). 770 

All this information strictly related to this stratigraphic marker consolidate the notion of the 771 

CI as a pivotal tool for deciphering and evaluating the potential interconnection between 772 

climate, environmental, and human biological-cultural dynamics at the Middle to Upper 773 

Palaeolithic transition, as well as in disentangling several temporal-spatial issues, crucial 774 

for understanding the mechanisms underlying the interaction between AMHs and 775 

Neandertals. 776 
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8 Concluding remarks and future developments  777 

In this review, we summarized the current state of knowledge, also contributing with new 778 

elaborations of available data, on climate history, terrestrial ecosystems and 779 

palaeogeography, with the main aim to place Neanderthals and AMHs in the context of 780 

MIS 3 European landscape. Neanderthals lived in Eurasia alongside anatomically modern 781 

humans until ca. 40 ka. This overlap suggests direct or indirect contacts between the two 782 

species on a European sub-continental scale, potentially leading to interbreeding and 783 

cultural exchanges (Higham et al., 2014). To decipher the possible implications of climate 784 

variability and palaeoenvironmental transformation in such human processes, including 785 

Neanderthals extinction, two main aspects must be kept in mind: (i) the millennial/sub-786 

millennial terrestrial response to high-frequency climate variability resulted in a 787 

pronounced and rapid alternation between forested and more open environments. 788 

Interestingly, the most relevant tree cover reductions in southern Europe are correlated to 789 

HEs, notably GS9-HE4; (ii) a long-term climatic trend (i.e., between ca. 50 and 25 ka) that 790 

led to dramatic increasing of the glaciers extent and lowering of the sea level, with major 791 

impacts on the coast landscape and on physiography and vegetation patterns. This 792 

implied the progressive development of effective ecological and physiographic barriers (i.e. 793 

the Alpine ice-dome) that limited connections between continental and Mediterranean 794 

Europe. In contrast, the gradual enlargement of coastlines and reorganization of European 795 

river systems may have played a key role in the migration processes.  796 

To better understand and integrate these aspects, within the ERC - SUCCESS project, a 797 

Work Package is specifically dedicated. Studies will concentrate on the time span between 798 

Heinrich Event 5 to 3, known for their strong impact in Mediterranean Europe, the Balkans 799 
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and Italy (Follieri et al., 1988; Allen et al., 2000; Lézine et al., 2010; Pini et al., 2010; Müller 800 

et al., 2011, Panagiotopoulos et al., 2014).  801 

Attention will be paid to the reference record of Lake Fimon (Venetian Alpine foothills, 802 

north-eastern Italy). This area is indeed well-known as it provides both a Late Pleistocene 803 

palaeoecological record (Pini et al., 2010) and several Middle to Late Palaeolithic sites 804 

yielding evidence of Neandertal and AMH occupation (Grotta Fumane and Riparo Broion 805 

shelter; Peresani, 2011; Fig. 3 ). High-resolution palynostratigraphic researches are 806 

currently in progress on the Lake Fimon core will be matched with archaeological 807 

information from cave deposits in the same region to answer specific questions relevant to 808 

the ERC Project, i.e. the effects of climate variability on the environments of last 809 

Neandertals - early AMH, the role of fire, etc. Finally, to better comprehend regional 810 

vegetation patterns and eco-climatic gradients across the Italian peninsula, 811 

palaeoenvironmental proxies from Lake Fimon will be profitably compared to Central and 812 

Southern Italian records, through the elaboration of available series and the investigation 813 

of new sites. 814 
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Figure captions 1775 

 1776 

Fig. 1  Comparison of Northern Hemisphere terrestrial and marine paleoclimate proxies: (a) 1777 

NGRIP δ18O record (Rasmussen et al., 2014), (b) temperature reconstruction based on 1778 

δ15N (Kindler et al., 2014) and (c) calcium ion concentration ([Ca2+]) record (Rasmussen et 1779 

al 2014), plotted all on the GICC05modelext chronology (Rasmussen et al., 2014); (d) 1780 

NEEM 17O-excess permeg (Guillevic et al., 2014); (e) δ18O record from Northern Alps 1781 

(NALPS) speleothems (Moseley et a., 2014) plotted on its timescale; (f) MD95-2042 Sea 1782 

Surface Temperature record (Darfeuil et al., 2016), (g) Neogloboquadrina pachyderma 1783 
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abundance and (h) Ice-Radfted Debris record (Sánchez Goñi et al., 2008), plotted each on 1784 

their own timescale. Vertical grey bars indicate Greenland Stadial (GS). Heinrich events 1785 

(HEs) are indicated according to MD95-2042 chronology (Sánchez Goñi et al., 2008). 1786 

 1787 

Fig. 2 European biogeographical map. Overview of mid- to high-resolution marine and 1788 

terrestrial records entirely or partially covering MIS 3.  1789 

 1790 

Fig. 3  Vegetation changes throughout MIS 3 in several high- to mid-resolution terrestrial 1791 

pollen records from S-Europe and Mediterranean region. Pollen curves: % of woody taxa 1792 

(sum of trees and shrubs) (light green); % of arboreal pollen (dark green); % of xerophytic 1793 

elements (sum of Artemisia and Chenopodiaceae) (grey). Black histograms show pollen-1794 

slide microcharcoal concentrations. All records are plotted using the latest available 1795 

chronology for each individual site. NGRIP δ18O record is also shown (NGRIP members, 1796 

2004; Rasmussen et al., 2014). Red numbers indicate Greenland Interstadials (GI), 1797 

modified from Fletcher et al., 2010. Heinrich events (HEs) are indicated according to 1798 

MD95-2042 chronology (Sánchez Goñi et al., 2008). 1799 

 1800 

Fig. 4 - A)  Ecogeography of Greenland Interstadial 12 (GI 12; ca. 46.8 to 44.2 ka 1801 

according to Rassmussen et al., 2014), showing reconstructed gradients within European 1802 

eco-climatic zones. Digital Elevation Model (base topography – ETOPO 2011; 1803 

ETRS_1989_LAEA_152 projected coordinate system). Sea surface lowered to -74 m asl 1804 

(Waelbroeck et al., 2002; Antonioli, 2012). Baltic lake drawn after Lambeck et al., 2010. 1805 

The mountain glaciers (pale blue) and the main Alpine valley glaciers (cyan triangles) are 1806 

inferred both from simulations (Seguinot et al., 2018) and ELA calculations, for more 1807 

information see section 4.1.2. Colour scale bars depict eco-climatic zones gradients. 1808 

Sharp limits mark reconstructed elevational timberlines position and mountain glaciers 1809 

extent in different mountain systems within each eco-climatic zone, see sections 4.1 and 1810 

4.2. B) Palaeogeographic map of Europe during the Last Glacial Maximum. Digital 1811 
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Elevation Model (base topography – ETOPO 2011; ETRS_1989_LAEA_152 projected 1812 

coordinate system). Sea level drop at – 120 m (Pellegrini et al., 2015; Maselli et al 2014). 1813 

Scandinavian and British Islands ice sheets (pale blue) after Hughes et al. (2016) at 22 ka. 1814 

The mountain glaciers (pale blue) from Ehlers et al. (2011) with updated reconstructions in 1815 

the Tatra Mountains (Zasadni and Klapyta, 2014), Dinarides (Kuhlemann et al., 2009; 1816 

Žebre and Stepišnik, 2014, 2015; Temovski et al., 2018), Pyrenees (Delmas, 2015), 1817 

Cantabrian range (Serrano et al., 2015). Alpine glaciers downloaded from 1818 

https://booksite.elsevier.com/9780444534477/ and modified in the Italian side using 1819 

updated reconstructions (Ravazzi et al., 2012; Monegato et al., 2017; Gianotti et al., 2015; 1820 

Ivy-Ochs et al., 2018; Rossato et al., 2018). Major European and eastern European lakes 1821 

and rivers after Toucanne et al. (2015) and Verheul et al. (2015), Adriatic lakes (Miko et 1822 

al., 2017) and rivers simplified from Maselli et al. (2014). Italian rivers draining major ice 1823 

lobes at the outlet of alpine valleys are indicated with solid blue lines, outlined lines are 1824 

used for lower-order rivers. Aeolian sediments (yellow polygons) based on data from 1825 

compilations by Haase et al. (2007); Italian loess from Zerboni et al. (2018). 1826 

 1827 

Fig. 5  Spatial vegetation changes at fixed 5 ka yrs long time slices between 60 and 30 ka 1828 

yrs cal BP. The selected taxa are grouped according to their ecology and climatic 1829 

preferences. Eurythermic conifers (orange): sum of Pinus and Juniperus; Temperate forest 1830 

(red): sum of deciduous Quercus, Alnus, Fagus, Acer, Corylus, Carpinus, Fraxinus, Ulmus, 1831 

Tilia and Salix; Xerophytic taxa (dark blue): sum of Artemisia and Chenopodiaceae. Italian 1832 

Peninsula sketch map shows sea level 70 m below the present-day coastline (courtesy by 1833 

S. Ricci, University of Siena), based on the global sea-level curve by Waelbroeck et al. 1834 

(2002), but lacking estimation of post-MIS3 sedimentary thickness and eustatic magnitude. 1835 

 1836 

Fig. 6  Sketch map showing the position of the Palaeolithic sites documenting the Uluzzian 1837 

culture: 1) Klissoura Cave (Stiner et al., 2007); 2) Kephalari Cave (Darlas and Psathi, 1838 

2016); 3) Crvena Stijena (Morley and Woodward, 2011); 4) Grotta del Cavallo (Moroni et 1839 

al., 2018); 5) Grotta di Serra Cicora (Spennato 1981); 6) Grotta Mario Bernardini (Borzatti 1840 
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von Löwenstern 1970); 7) Grotta di Uluzzo (Borzatti von Löwenstern 1965); 8) Grotta di 1841 

Uluzzo C (Borzatti von Löwenstern 1966); 9) Grotta delle Veneri (Cremonesi, 1987); 10) 1842 

Torre Testa (Moroni et al., 2018); 11) Falce del Viaggio (Moroni et al., 2018); 12) Foresta 1843 

Umbra (Moroni et al., 2018); 13) Atella Basin (Moroni et al., 2018); 14) Castelcivita 1844 

(Gambassini, 1997); 15) Grotta della Cala (Benini et al.,1997); 16) S. Pietro a Maida 1845 

(Moroni et al., 2018); 17) Tornola (Moroni et al., 2018); 18) Colle Rotondo (Moroni et al., 1846 

2018); 19) Grotta della Fabbrica (Dini 2012); 20) Val Berretta (Moroni et al., 2018); 21) 1847 

Poggio Calvello (Moroni et al., 2018); 22) S. Lucia I (Moroni et al., 2018); 23) Indicatore 1848 

(Moroni et al., 2018); 24) Villa Ladronaia (Moroni et al., 2018); 25) Maroccone (Moroni et 1849 

al., 2018); 26) Salviano (Moroni et al., 2018); 27) Podere Collina (Moroni et al., 2018); 28) 1850 

Val di Cava (Moroni et al., 2018); 29) Casa ai Pini (Moroni et al., 2018); 30) San Romano 1851 

(Moroni et al., 2018); 31) San Leonardo (Moroni et al., 2018); 32) Porcari (Moroni et al., 1852 

2018); 33) Riparo del Broion (Peresani et al., 2019); 34) Grotta Fumane (Peresani et al., 1853 

2016). 1854 

 1855 

Fig. 7 Geographic distribution of the Campanian Ignimbrite (CI) distal tephra layer in 1856 

terrestrial and marine records (red dots) and archaeological sites (yellow squares). On the 1857 

right: Tenaghi Philippon paleoecological record showing the CI chronostratigraphic 1858 

position. Selected pollen curves of % arboreal pollen (green) and temperate taxa (orange) 1859 

between 30 and 60 ka are shown. 1860 
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