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A B S T R A C T   

Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through 
contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully un
derstood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the 
systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize 
studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd- 
hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs 
identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate 
Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great 
significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the 
methodological drawbacks in current proteomic studies and propose that better protocols and advanced tech
niques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies 
in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth 
study of the molecular mechanisms of Cd enrichment in plants.   

1. Introduction 

Cadmium (Cd) is classified as a priority heavy metal pollutant 
because of its high toxicity, high carcinogenicity, and widespread 
contamination of the environment. Cd enters the human food chain 
mainly through the direct consumption of Cd-contaminated plants, 
shellfish, or meat sourced from animals raised on contaminated plant- 
origin feed (Verbruggen et al., 2009; Chen et al., 2020). Natural and 
man-made manufacturing processes are both responsible for the release 
of more than10,000 tons (9072 metric tons) of Cd into the environment, 

where it can seep into drinking water supplies and contaminate soil in 
agricultural fields (Troutner, 2022). High Cd levels in agricultural soil 
are primarily due to the overuse of phosphate fertilizer, seepage of in
dustrial effluents, and urban sewage sludge (Munira et al., 2016). 
Several electrochemical sensors can accurately detect the presence of 
heavy metals such as Cd and cesium in the environment (Rezayi et al., 
2011, 2012; Kassim et al., 2011; Ahmadzadeh et al., 2015; Şolomonea 
et al., 2022). For example, a portable optical fiber surface plasmon 
resonance sensor was used to detect trace amounts of Cd2+ (Şolomonea 
et al., 2022). Cd content in phosphate fertilizers can be as high as 200 μg 
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g-1 (Moreno et al., 1999), and be up to 815 μg g-1 in sewage sludge (Qadir 
et al., 2000). In China alone, nearly 20 million hectares of arable land 
are contaminated with Cd and other heavy metals, resulting in the 
production of 12 million tons of contaminated grains annually (Luo 
et al., 2018). Therefore, remediation of Cd-contaminated arable land has 
become a global priority. 

As a result of long-term natural selection and adaptation, some plants 
have developed high Cd-tolerance, and their shoots can accumulate Cd 
at concentrations above even 100 μg g–1 dry weight (DW), which is 
regarded as the threshold value for Cd-hyperaccumulators (Clemens, 
2001). For example, Arabidopsis halleri and Sedum plumbizincicola can 
accumulate Cd above 1000 and 7000 μg g–1 DW, respectively (Zhao 
et al., 2006; Liu et al., 2017). Such hyperaccumulators possess exquisite 
Cd-detoxification mechanisms, without demonstrating any effects of the 
toxicity emanating from the accumulation of massive levels of Cd. Only 
a limited number of Cd-hyperaccumulating plant species have been 
identified (Isaure et al., 2015), whereas a vast majority of them are 
susceptible to Cd-toxicity due to their genetic background. 

Phytoremediation of Cd-contaminated soil and water through using 
Cd-hyperaccumulators is an effective, low-cost, and sustainable method 
to prevent threats to ecological safety, agricultural production, and 
human health from Cd-toxicity (Kanwar et al., 2020). The methods such 
as heat, extraction, and microbial treatments; synthesis of nano
materials; and compression landfill, to deal with the disposal of plant 
biomass containing heavy metals, after utilization of plants for phytor
emediation, were recently reviewed (Liu and Tran, 2021). For effective 
phytoremediation, the selected plants should ideally be able to both 
tolerate and accumulate high levels of Cd, while maintaining rapid 
growth rates to translocate the excessive Cd from the soil into the 
easily-harvestable aerial parts. Moreover, the ideal phytoremediation 
plants should have a large biomass production capacity that suffers little 
adverse effects of long-term Cd-stress (He, 2013; Gutsch et al., 2018a). 
However, large-scale application of phytoremediation is restricted by 
the availability of plants from diverse species backgrounds. 

Alternatively, many crops have demonstrated phytoremediation po
tentials, exhibiting significant differences in Cd-tolerance and accumu
lation ability across cultivars, providing varied options for 
Cd-phytoremediation (Fig. 1). E.g., Medicago sativa (alfalfa) and Linum 
usitatissimum (flax) can maintain sufficient biomass and high growth 
rates under Cd-stress (Gutsch et al., 2018a; Rehman et al., 2021). 
Numerous studies have revealed the important roles of specific gene
s/proteins in Cd-tolerance in plants (Krämer, 2010; Migocka et al., 
2015a, 2015b; Liu et al., 2017; Zhao et al., 2019), but the underlying 
mechanisms of Cd-tolerance and accumulation in 
Cd-hyperaccumulators are not yet fully clarified. Thus, a better under
standing of Cd-tolerance and accumulation mechanisms in plants is 
essential for developing novel Cd-hyperaccumulators. 

The proteome represents the total set of proteins synthesized by an 
individual cell of an organism or a type of tissue or an organ system at a 
specific time point or state (Vistain and Tay, 2021). Proteomics-based 
research has provided revealing insights into Cd tolerance and accu
mulation processes in plants (Kieffer et al., 2009a; Singh et al., 2016; 
Winter et al., 2019; Dai et al., 2020). Several articles have recently 
reviewed proteomic analyses of plant response to heavy metals (Farinati 
et al., 2009; Dalcorso et al., 2013; Visioli and Marmiroli, 2013; Ahmad 
et al., 2019; Hussain et al., 2022), but comprehensive reviews on pro
teomic studies in Cd-hyperaccumulating plants are lacking, as of date. 
This review focuses on the proteome level changes in 
Cd-hyperaccumulating plants and Cd-tolerant crops under Cd stress and 
their potential application in phytoremediation of Cd-contaminated soil 
and water (Fig. 1). The promising use of Cd-inducible DAPs as potential 
targets for breeding or genetically engineering Cd-hyperaccumulators 
and Cd-tolerant crops are also highlighted. 

Fig. 1. The representative plants with application potentials in phytoremediation of Cd-polluted environments. The Cd-inducible protein changes in these plants 
have been compared in Cd-contrasting accumulation genotypes. 
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2. Proteomic analysis of typical Cd-hyperaccumulators and Cd- 
tolerant crops 

2.1. Algae and hydrophytes 

In aquatic environments, Cd-contamination easily spreads with 
water currents, resulting in difficulties in the remediation of Cd-polluted 
water (Singh et al., 2016). A majority of studies on the phytoremediation 
of Cd-contamination have thus far focused on utilizing terrestrial plants. 
Therefore, it is essential to identify microalgae and aquatic plants with 
Cd-hyperaccumulation traits for application in the remediation of 
Cd-contaminated water. 

Algae are single- or multicellular organisms without differentiated 
organs like roots, stems, or leaves. They are thus different from terres
trial plants, which are exposed to Cd-toxicity mainly through the roots. 
The morphology, ultrastructure, and metabolic pathways of the whole 
algal cell are susceptible to Cd-toxicity in water (León-Vaz et al., 2021). 
Algal cells deploy various mechanisms, including biosorption, bio
accumulation, compartmentalization, and biotransformation or metal 
detoxification to minimize Cd toxicity (Gillet et al., 2006; Mota et al., 
2015; León-Vaz et al., 2021; Wang et al., 2021a, 2021b). Microalgae can 
use biotransformation as one of the self-protection mechanisms to 
convert heavy metals into non-toxic compounds through bonding with 
chelating agents like organic acids, peptides, enzymes, and 
thiol-containing molecules. These non-toxic compounds are then either 
accumulated inside or extruded from the cell using efflux transporters 
(Wang et al., 2021a, 2021b). Proteomic analyses of algae exposed to 
high Cd stress have identified diverse Cd-inducible DAPs (Table 1). 
Cd-affected cellular processes in algae such as photosynthesis, oxidative 
phosphorylation, the citric acid cycle (TCA cycle), and ribosomal 

proteins synthesis were significantly inhibited, whereas synthesis of 
antioxidant enzymes and heat shock proteins (HSPs), photorespiration, 
gluconeogenesis, starch catabolism, and nitrogen/sulfur (N/S) assimi
lation was significantly enhanced (Gillet et al., 2006; Mota et al., 2015; 
León-Vaz et al., 2021) (Table 1). In the multicellular alga Sargassum 
fusiforme, the majority of DAPs to be reduced in abundance were 
metabolic enzymes involved in carbohydrate and energy metabolism, 
but the alga may adapt to prolonged Cd-stress via increased glycolysis 
and TCA cycles to supply the requisite amounts of energy required for 
survival (Zhang et al., 2015). Microalgae, especially Chlamydomonas and 
Chlorella, have emerged as viable options for the phytoremediation of 
Cd-contaminated water due to their rapid reproduction rate and unique 
adaptation mechanisms to high-Cd-stress. It is necessary to then identify 
the candidate genes and proteins that can be used for strain engineering 
of microalgae to improve their phytoremediation efficiency. 

Microsorum pteropus is an aquatic fern with a capacity for Cd- 
hyperaccumulation (Fig. 1) (Lan et al., 2018). After seven days of 
exposure to Cd-stress, eight and 20 DAPs were identified in the roots and 
leaves of M. pteropus, respectively through 2-DE (two-dimensional 
polyacrylamide gel electrophoresis)-based proteomic approach (Lan 
et al., 2018). In Populus yunnanensis (poplar), root and leaf tissues 
adopted different Cd-resistance mechanisms: the roots resisted 
Cd-toxicity by mainly upregulating antioxidants and regulating energy 
metabolism, whereas leaves by mainly maintaining photosynthesis rates 
and regulation of cellular metabolism (Yang et al., 2015a). 

The hydrophytes Eichhornia crassipes (water hyacinth) and Pistia 
stratiotes are widely used in the phytoremediation of sewage to control 
eutrophication and heavy metal pollution (Wang et al., 2012). 
E. crassipes exhibited higher tolerance to high-Cd-stress than P. stratiotes 
at the morphological and physiological levels (Fig. 1). A comparative 

Table 1 
Representative proteomic studies conducted in Cd hyperaccumulators and contrasting Cd-accumulation plants exposed to Cd toxicity.  

Material Cd stress Approach Main results Reference 

Chlorella sorokiniana 250 μM of Cd2+, 40 h, 
hydroponics 

Nano-LC MS/ 
MS 

Photosynthesis and oxidative phosphorylation decreased, whereas 
photorespiration increased. 

León-Vaz et al. (2021) 

Chlamydomonas 
reinhardtii 

150 μM Cd2+, 4–5 d, 
hydroponics 

2DE-MS/MS Decrease of RuBisCO and other enzymes involved in photosynthesis; 
increase of enzymes related to antioxidative stress. 

Gillet et al. (2006) 

Microsorum pteropus 100, 250 and 
500 μM Cd2+, 7 d, 
hydroponics 

2DE-MS/MS Different proteomic responses in resistance to Cd stress between root and 
leaf. 

Lan et al. (2018) 

Turnip leaves 5 and 25 μM Isobaric tags 
(IBT), MS/MS 

DAPs were enriched on the glutathione metabolism pathway, involved in Cd 
detoxification. 

Li et al. (2021) 

Barley leaves 29 and 200 μM Cd2+, 7 d, 
hydroponics 

iTRAQ-MS/MS Using isolated tonoplast from leaf mesophyll, several vacuolar transporters 
were identified in higher abundance after Cd exposure. They have a specific 
function in Cd2+ transport into the vacuole and play an important role in 
Cd2+ detoxification of barley leaf mesophyll cells. 

Schneider et al. (2009) 

Soybean cultivars with 
contrasting Cd- 
accumulation 

100 μM Cd2+, 3 and 14 d, 
hydroponics 

2DE-MS/MS In roots of low Cd-accumulating cultivar, NADP-dependent alkenal double 
bond reductase P1 were more abundant. In high Cd-accumulating cultivar, 
proteins associated with Cd-chelating pathways and lignin biosynthesis 
were increased in roots, enzymes involved in glycolysis, and those in TCA 
cycle and photosynthesis increased in leaf. 

Hossain et al. (2012);  
Ahsan et al. (2012) 

Medicago sativa 10 mg Cd/kg soil, ca. 4 
month 

2D-DIGE, MS/ 
MS 

Most increased DAPs (e.g. pectin methylesterase) upon long-term Cd 
exposure, involved in cell wall remodeling and lignification, defence 
response and carbohydrate metabolism 

Gutsch et al. (2018a, 
b); Gutsch et al. (2019) 

Wheat varieties with 
contrasting Cd 
tolerance 

50 μM Cd2+, 24 h LC-MS/MS DAPs in roots of two varieties were mostly related to DNA replication and 
repair, protein metabolism, and the GSH metabolism pathway. 

Jian et al. (2020) 

Tomato varieties with 
contrasting Cd 
tolerance 

35 μM Cd2+, 4 d LC–MS/MS DAPs were mainly associated to cell wall, redox, and stress responses, with 
increased abundance of intracellular components in Cd-sensitive variety 
enhanced and increased abundance of extracellular and envelope proteins in 
Cd-tolerant variety. Cd-responsive phosphoproteins were involved in Cd 
signaling and Cd stress tolerance in leaves. 

Borges et al. (2019);  
Marques et al. (2021) 

Populus spp. 20 μM Cd2+, 48 h and 14 
d, hydroponics 

2DE, LC-MS/ 
MS 

The number of DAPs was more after 48 h stress than 14 d stress. Increase of 
stress response; decrease of carbohydrate metabolism both short- and long- 
term treatments. 

Marmiroli et al. (2013) 

Sedum plumbizincicola 400 μM Cd2+, 1 d and 4 
d, hydroponics 

TMT labeling, 
LC-MS/MS 

Plasma membrane proteins were isolated from root, stem and leaf tissues. 
Among 352 Cd-inducible transport proteins, up-regulated transport proteins 
increased with stress time, especially in roots. 

Zhu et al. (2022)  
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proteomic analysis of the two genera exposed to Cd-stress revealed that 
E. crassipes was more tolerant to Cd-toxicity due to upregulation in the 
synthesis of analogous proteins to compensate for the downregulation of 
certain proteins involved in cellular activities to maintain their corre
sponding functions (Li et al., 2015). In particular, several compounds 
involved in stress-resistance, such as the amino acid proline, HSPs, and 
processes such as post-translational modifications (PTMs) of proteins 
were involved in the protection and functional restoration of proteins in 
E. crassipes. Moreover, antioxidant enzymes played important roles in 
the scavenging of excess reactive oxygen species (ROS) to minimize 
Cd-induced oxidative stress (Li et al., 2015). These studies demonstrate 
that E. crassipes could better maintain cellular metabolism than 
P. stratiotes under Cd-stress, thus making it a more promising option for 
the phytoremediation of Cd-contaminated water. 

2.2. Brassicaceae plants 

The Brassicaceae family includes some important vegetables and oil- 
containing plants cultivated worldwide. Several Brassica species and 
landraces exhibit Cd-hyperaccumulation traits that may have evolved as 
a result of intraspecific variations. 

Brassica rapa var. rapa (Chinese turnip) has strong Cd-tolerance and 
accumulation capabilities (Fig. 1). In a particular Cd-hyperaccumulating 
landrace in turnip, the transcriptomic analysis revealed that more than 
80 % of the upregulated genes in leaves were mainly associated with 
pathways such as sulfur metabolism, flavonoid biosynthesis, and glu
cosinolate biosynthesis involved in the detoxification mechanism of Cd 
(Li et al., 2021). Proteomic analysis of turnip leaves demonstrated that 
the elevated DAPs were mainly involved in sulfur assimilation, gluta
thione metabolism, and modification of protein acetylation, which 
seemed to be the key pathways in Cd-tolerance and detoxification (Li 
et al., 2021). Three metal transport/tolerance proteins (MTP) and a 
heavy metal ATPase (HMA) 2.1 were found to be distinctly responsible 
for the Cd-accumulation capacity and metal transition processes in 
turnip leaves, of which MTP1 gene encoding for a Zn2+/H+ antiporter 
was highly expressed as observed in Zn-hyperaccumulators (Shahzad 
et al., 2010). 

Brassica juncea (Indian mustard) can accumulate Cd to levels 
> 400 μg g-1 DW in leaves over 24 days of exposure, despite some 
deleterious effects on plant growth (Haag-Kerwer et al., 1999). In 
B. juncea exposed to 250 μM Cd2+ for three days, an array of proteins 
involved in sulfur assimilation, redox homeostasis, and xenobiotic 
detoxification, especially O-acetylserine sulfhydrylase, glutathione 
S-transferase (GST), 2-nitropropane dioxygenase, peptide methionine 
sulfoxide reductase, and glutathione-conjugate membrane transporter 
were accumulated in abundance in roots (Table 1, Fig. 1). These DAPs 
could potentially be involved in Cd-tolerance and hyperaccumulation in 
B. juncea (Alvarez et al., 2009). Another proteomic analysis revealed 
Cd-induced alterations in photosystem components, sulfur metabolism, 
energy metabolic pathways (e.g., Calvin cycle and photorespiration), 
and antioxidant responses [especially glutathione and phytochelatin 
(PC) homeostasis] in B. juncea. Moreover, levels of phosphoglycolate, a 
byproduct of photorespiration, were remarkably elevated in leaves, 
implying that B. juncea relied on photorespiration to cope with 
Cd-induced imbalances in stomatal conductance and deregulation of 
CO2 homeostasis (D’Alessandro et al., 2013). 

In those accessions of Thlaspi caerulescens which are recognized as 
Cd/Zn- hyperaccumulators, the Cd-induced DAPs were mainly involved 
in core metabolic functions (e.g., photosynthesis, N/S assimilation, and 
carbohydrate metabolism), signaling pathways, and regulatory func
tions (Tuomainen et al., 2006). Differentially expressed genes that were 
involved in the homeostasis of specific metal ions in T. caerulescens 
exhibited significant variations in comparison with those in a 
non-hyperaccumulator, A. thaliana (van de Mortel et al., 2008). Simi
larly, in the metal hyperaccumulator Arabis paniculata Franch, 
16 Cd-responsive DAPs mainly involved in antioxidative/xenobiotic 

defense, cellular redox homeostasis, and Cd-translocation in the shoots 
were identified (Zeng et al., 2011). To summarize, Brassicaceae plants 
initiate various pathways in response to high-Cd-stress including anti
oxidant systems, osmotic adjustment, chelating effects, etc. (Isaure et al., 
2015). The relevant DAPs may be of great interest as candidate genes for 
the molecular breeding of Cd-hypoaccumulating plants as a source of 
food or Cd-hyperaccumulating plants for the phytoremediation of 
Cd-contaminated soils. 

2.3. Legume plants 

Medicago sativa (alfalfa) a model legume plant is also an important 
forage crop globally. It can accumulate Cd and other heavy metals, with 
the highest accumulation of Cd in roots, followed by stems, and the least 
in leaves (Gutsch et al., 2018a). To explore the adaptive mechanisms of 
M. sativa to a four-month-long period of exposure to high-Cd-stress 
(10 mg Cd kg-1 soil, mimicking actual Cd-contaminated soil), the pro
teome profile changes in cell walls of leaf, root, and stem tissues were 
analyzed using a gel-based approach, through which 212 and 
179 Cd-induced DAPs were identified in leaves and stem, respectively 
(Gutsch et al., 2018a, 2018b). Except at the early stages of growth, 
mature alfalfa plants exposed to long-term Cd-stress exhibited no sig
nificant phenotypic and biomass differences when compared to control 
plants. The bioconcentration and translocation factors of Cd in alfalfa 
were 1.60 and 1.17 respectively, indicating that it is one of the most 
suitable species for extraction of Cd from contaminated soil (Zhang and 
Ji, 2019). Alfalfa transports Cd from the roots to the aboveground organs 
which are then collected and treated uniformly, resulting in a decrease 
in Cd content in the soil (Suman et al., 2018). Thus, due to its fast growth 
rate, large biomass, and high Cd-tolerance, alfalfa may be selected for 
further improvement by genetic engineering to transform into a 
Cd-hyperaccumulator and then used for phytoremediation of 
Cd-contaminated pasture lands. 

Glycine max (soybean) is widely cultivated for the high oil and pro
tein content of its seeds. In recent years, an increased Cd content in 
soybean seeds was observed worldwide, due to elevated levels of soil 
contamination and low soil pH (Zhang et al., 2021). To study Cd-stress 
responses in soybean, cells obtained from suspension cell culture were 
exposed to 1–10 µm Cd (mimicking contaminated soil) for 1–3 days 
(Sobkowiak and Deckert, 2006). Cd-induced protein changes were 
analyzed using one-dimensional electrophoresis and 35S-labelling 
autoradiography. The significantly elevated, Cd-induced DAPs mainly 
included superoxide dismutase (SOD), histone H2B, chalcone synthase 
(CHS), and GST, their accumulation levels were Cd dose- and 
time-dependent. These proteins are recognized to function in antioxi
dant systems (SOD), detoxification systems (GST), DNA damage repair 
(H2B), and stress tolerance (CHS) (e.g., Cd stress) (Dao et al., 2011). 

Soybean is tolerant to low-Cd stress with limited loss in yield, but 
high-Cd stress significantly affects plant growth and yield (Ikhajiagbe 
et al., 2021). Considerable genetic variations among soybean cultivars 
concerning Cd-uptake, accumulation, and translocation to the aerial 
parts were observed (Arao et al., 2003). E.g., the cultivars ‘Enrei’ and 
‘Fukuyutaka’ are low-Cd-accumulators, whereas ‘Harosoy’ is a 
high-Cd-accumulator which is more efficient in translocating Cd from 
root to shoot (Ahsan et al., 2012; Hossain et al., 2012). To identify 
organ-specific, Cd-responsive proteins involved in Cd translocation and 
detoxification in soybean, comparative proteomic analyses between the 
contrasting Cd-accumulating cultivars exposed to 100 µm Cd were per
formed (Hossain et al., 2012). NADP-dependent alkenal double bond 
reductase P1 accumulated conspicuously in the roots of the 
low-Cd-accumulating cultivar. However, leaves of both cultivars shared 
some common strategies to cope with Cd-stress such as enhanced levels 
of enzymes involved in glycolysis, TCA cycle, and photosynthesis to 
increase energy production; elevation in levels of antioxidant enzymes 
to scavenge the excess ROS and increased glutathione and PC concen
trations to detoxify cytosolic Cd2+ (Hossain et al., 2012). Moreover, the 
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synthesis of HSPs was enhanced in the high-Cd-accumulating cultivar as 
an additional Cd-detoxification mechanism. Cd-induced protein changes 
in the microsomes from roots of two contrasting Cd-accumulating soy
bean cultivars were compared; amino acids and proteins associated with 
Cd-chelation pathway and lignin biosynthesis were elevated by Cd-stress 
in the roots of the low Cd-accumulating cultivar (Ahsan et al., 2012). 
These Cd-chelating agents bind to excess free Cd2+, resulting in a 
reduced Cd2+ translocation from root to shoot through an enhanced 
Cd-chelation pathway and xylem lignification. 

2.4. Cereal plants 

Cereal crops such as wheat, rice, and maize are major sources of 
staple foods for a vast majority of the global population. Cd contami
nation in soils leads to its accumulation in cereal grains posing a severe 
threat to human health and food security (Sebastian and Prasad, 2019). 
There were significant differences in Cd-tolerance and accumulation 
abilities among the available cereal cultivars (Sun et al., 2013; Jian 
et al., 2020). Some Cd-tolerant varieties of crops can accumulate only a 
certain limited amount of Cd. For example, the wheat cv. ‘Xinong 20’ 
can accumulate up to 18 mg Cd kg-1 DW under cultivation on 
50 mg Cd kg-1 soil (Zhang et al., 2019). Owing to their rapid growth rate 
and large biomass, crops such as wheat and rice may be genetically 
improved for the phytoremediation of Cd-polluted agricultural soils. 
Therefore, comparative proteomic studies between the cultivars with 
contrasting Cd-tolerance traits help understand Cd response mecha
nisms in cereals and in developing Cd-tolerant cultivars with low Cd 
content in grains through directional selection and molecular breeding. 

M1019 is a Cd-tolerant inbred line, whereas ‘Xinong 20’ is a Cd- 
sensitive cultivar of wheat. After exposure of roots to 50 μM Cd2+ for 
24 h, M1019 accumulated Cd mainly in straws (enriched in cell walls), 
whereas ‘Xinong 20’ accumulated it mainly in the leaves (Table 1). 
Moreover, the Cd content in grains of M1019 was significantly lower 
than that of ‘Xinong 20’. Comparative proteomic analyses revealed that 
the elevated DAPs, such as GST (a key enzyme in glutathione synthesis) 
and HSPs may be related to enhanced Cd-tolerance in M1019 (Jian et al., 
2020). As observed with the other Cd-tolerant plants discussed above, 
M1019 also utilized glutathione metabolism and sulfur metabolism 
(cysteine and methionine) for detoxification. A comparison of the pro
teomic profiles from two barley genotypes differing in grain Cd-levels 
indicated that the enhanced DAPs in the grains of the high 
Cd-accumulation genotype mainly included stress proteins, storage 
proteins, and those involved in carbohydrate metabolism (Sun et al., 
2013). Moreover, protease inhibitors such as serpins (serine protease 
inhibitors) were abundant in high Cd-accumulation grains, implying a 
role of serpins in Cd-accumulation, transport, and protection of storage 
proteins from Cd-toxicity. 

Rice is very sensitive to Cd-stress, exhibiting a delayed growth 
pattern and yield loss due to reduced photosynthesis. Cd concentration 
in rice grains was found to be as high as 1–2 mg kg− 1 DW in some rice- 
growing areas of China, much higher than the national average of 
0.2 mg kg− 1 DW (Cheng et al., 2006; Zhu et al., 2022). Therefore, 
remediation of soil used for paddy cultivation and reduction of 
Cd-accumulation in rice grains are of high priority. The changes in root 
and leaf proteomes under short-term exposure to Cd were compared; in 
roots, most DAPs were oxidative stress-related, of which glutathione 
reductase (GR, catalyzing the reduction of glutathione disulfide to 
glutathione), GST, and endo-1, 3-beta-glucanase (pathogenesis-related 
proteins) were significantly elevated. Meanwhile, a dramatic decrease in 
the level of glutathione was observed in roots, thus suggesting the rapid 
consumption of glutathione for Cd-chelation (Lee et al., 2010). GSTs are 
enzymes involved in the detoxification of cells in plants by conjugating 
glutathione with a wide range of molecules such as Cd. Two GSTs 
(OsGSTF14 and OsGSTU6) were overexpressed in rice roots after 
exposure to Cd (Cao et al., 2017). The S-glutathionylated conjugate 
metabolites were compartmentalized in plant vacuoles, preventing 

root-to-shoot translocation, and reducing Cd-accumulation in the 
above-ground organs (Cao et al., 2017). In leaves, proteins involved in 
the synthesis of metabolic energy and redox power for Cd-detoxification 
were induced upon short-term Cd-stress, especially the vacuolar 
proton-ATPase (also elevated in roots) (Lee et al., 2010). The vacuolar 
proton-ATPase plays an important role in Cd transport into the vacuoles 
as free ions or as conjugates with glutathione or PCs. Thus, vacuolar 
sequestration is an important Cd-detoxification mechanism in rice 
leaves, as observed in Cd- hyperaccumulators (Isaure et al., 2015). 

Finally, it is imperative to mention that a rice quantitative trait locus 
(QTL) encoding a defensin-like protein was identified, and termed as Cd 
accumulation in leaf 1 [CAL1] (Luo et al., 2018). Defensins are a group 
of small, cysteine-rich proteins, involved in innate immune responses 
and antifungal activity in various organisms (Holly et al., 2017). CAL1 
was preferentially expressed in rice root exodermis and xylem paren
chyma cells. CAL1 acts by chelating Cd in the cytosol and facilitating its 
extrusion to extracellular spaces, thus lowering cytosolic Cd levels while 
also enhancing long-distance Cd transport through xylem vessels (Luo 
et al., 2018). Significantly, CAL1 did not affect the accumulation of Cd 
and essential metals in grains, hence providing researchers with an 
option of breeding dual-function rice varieties that produce safe, 
non-toxic grains while also remediating soils. 

2.5. Multifarious Cd tolerant or hyperaccumulating plants 

Crassulaceae species are considered to be Cd-hyperaccumulators, 
which can accumulate excessively high levels of Cd in the aerial parts 
(mainly leaves) without any apparent toxicity (Fig. 1). Of them, 
S. alfredii and S. plumbizincicola can accumulate Cd up to 11,000 and 
7000 μg Cd g-1 DW, respectively (Liu et al., 2017; Zhang et al., 2017). 
Thus, they are promising candidates for the phytoremediation of 
Cd-contaminated soils. 

To elucidate the underlying molecular mechanism of Cd- 
hyperaccumulation in S. alfredii and S. plumbizincicola, protein profile 
changes in leaf, root, and stem were analyzed using gel-free proteomic 
approaches (Zhang et al., 2017; Zhu et al., 2021, 2022). Through a 
comparison of the hyperaccumulating population (HP) with the 
non-hyperaccumulating population (NHP) of S. alfredii under Cd stress, 
several Cd-inducible DAPs were identified, of which the elevated DAPs 
in the “HP” included Matrix metalloproteinase-3, Heavy Metal ATPase-3 
(HMA3), nonspecific lipid-transfer proteins (nsLTPs), SOUL 
heme-binding proteins, pollen allergen-like proteins, and short-chain 
dehydrogenase/reductase. These DAPs were mainly involved in heavy 
metal translocation, cell wall/membrane modification, carbohydrate 
and energy metabolism, plant defense, and stress responses (Zhang 
et al., 2017). A recent study involving proteomic analysis, identified a 
total of 352 Cd-induced transport proteins in S. plumbizincicola, 
including ABC transporters, ion transporters, aquaporins, proton pumps, 
and organic transporters; and the levels of these transport proteins 
enhanced significantly with the increasing length of exposure to Cd in 
the root (mostly), stem, and leaf (Zhu et al., 2022). Heterologous 
expression of SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 in yeast 
and subcellular localization demonstrated Cd-specific transport activity 
(Zhu et al., 2022). Even though several transport-related proteins have 
been identified in Cd-hyperaccumulating plants through proteomic an
alyses, their specific functions and interactions in 
Cd-hyperaccumulation physiology need to be evaluated. 

Phytolacca americana is a perennial plant frequently found growing 
in mining areas in soil contaminated with heavy metals (Fig. 1). Being a 
Cd-hyperaccumulator, P. americana can accumulate more than 
240 μg Cd g-1 DW in leaves (Peng et al., 2008) and up to 100 μM in 
shoots (Liu et al., 2010). The traits essential for Cd-hyperaccumulating 
ability like fast growth rates and high biomass identify P. americana as 
a potentially important species for phytoremediation of 
Cd-contaminated soils. After 48 h of exposure to 400 μM Cd, 25 DAPs 
were identified in P. americana leaves, which were mainly involved in 
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sulfur metabolism, transcription/translation, antioxidant systems, and 
redox reactions. The key enzymes involved in the methionine and 
methyl cycle were particularly upregulated under high-Cd-stress, 
whereas those involved in the Calvin cycle were downregulated (Zhao 
et al., 2011), indicating that the photosynthetic pathway was susceptible 
to Cd-induced stress even in hyperaccumulator plants. 

Amaranthus gangeticus (Amaranth) is a leafy vegetable commonly 
consumed in East Asia (Fig. 1). It is recognized as a Cd- 
hyperaccumulator (Zhou et al., 2013). Comparative proteomic studies 
in two amaranth cultivars contrasting in Cd-accumulation capability 
indicated that the proteins involved in the glutathione-related pathway 
were accumulated in high levels in the high-Cd-accumulation cultivar 
‘Pen’, resulting in activation of the translocation of Cd from root to 
shoot; whereas in the low-Cd-accumulation cultivar ‘Nan’, the retention 
of Cd in the roots was enhanced resulting in a reduction in the amount of 
Cd being transported into the shoot (He et al., 2018). ‘Pen’ exhibited 
stronger Cd-tolerance than ‘Nan’ due to the elevated DAPs involved in 
the detoxification of Cd. Thus, these results suggest a 
genotype-dependent Cd-tolerance and accumulation ability in 
amaranth. 

Linum usitatissimum (Flax) is an herbaceous annual plant, cultivated 
for its fiber and seeds (Fig. 1). It accumulates large quantities of heavy 
metals (e.g., Cd) due to its well-developed root system and large biomass 
(Rehman et al., 2021). The cv. ‘Jitka’ showed a higher tolerance to 
elevated Cd levels in the soil than the cv. ‘Tábor.’ Comparative 
proteome-based analysis in the suspension cells of these two cultivars 
identified 14 Cd-induced DAPs, which were related to disease/defense, 
metabolism, protein transport and storage, signal transduction, energy, 
and cell structure (Hradilová et al., 2010). Ferritin and GST were 
upregulated under Cd-stress in ‘Jitka’ alone implying that the binding of 
ferritin and small thiol peptides with Cd contributed to Cd-tolerance in 
‘Jitka’ due to the maintenance of lower levels of free Cd in cells. The 
other Cd-induced DAPs included fiber annexin, isoflavone reductase, 
S-adenosyl-L-methionine synthetase, and methionine synthase. These 
results were consistent with the Cd-detoxification mechanisms involving 
chelation, operated by both small thiol peptides (glutathione and PCs) 
and heavy metal-binding proteins (ferritin and lipocalin). Finally, the 
genes of the DAPs identified may facilitate the production of transgenic 
flax lines with enhanced Cd-tolerance and accumulation capacities for 
remediating Cd-contaminated soils. 

Nicotiana tabacum (Tobacco) is a model dicot plant and an important 
cash crop globally. It can accumulate large amounts of heavy metals in 
its large-sized leaves (Fig. 1). Proteomic changes in the leaves of two 
cultivars with contrasting Cd-tolerance traits ‘Yunyan2’ (tolerant) and 
‘Guiyan1’ (sensitive) were compared using hydroponic experiments 
with 50 µm Cd (Xie et al., 2014). A total of 18 Cd-induced DAPs were 
identified, of which epoxide hydrolase, enoyl-acyl-carrier-protein 
reductase, NPALDP1, chlorophyll a/b binding protein-25, HSP-70, and 
14–3–3 proteins accumulated more copiously in ‘Yunyan2’ than in 
‘Guiyan1’. The elevated levels of photosynthesis-related proteins like 
NPALDP1, CAB25, GAPDH subunit B, and OEC3 may effectively protect 
the photosynthetic apparatus against Cd-induced toxicity (Xie et al., 
2014). Similarly, thioredoxin-like proteins may stabilize the electron 
transfer chain, thereby promoting ATP synthase activity and alleviating 
Cd-induced photoinhibition of PSI and PSII; and maintaining the rates of 
chlorophyll synthesis in tobacco leaves under Cd-stress (Zhang et al., 
2020a, 2020b). 

Solanum lycopersicum (tomato) cultivars, ‘Pusa Ruby’ (PR, Cd- 
tolerant), and ‘Calabash Rouge’ (CR, Cd-sensitive) demonstrated con
trasting properties in Cd-tolerance and accumulation. Proteomic anal
ysis revealed that the significantly enhanced DAPs in ‘CR’ roots were 
mostly intracellular proteins, whereas those in ‘PR’ roots were extra
cellular and envelope proteins (Rodríguez-Celma et al., 2010). More
over, the accumulation of DAPs in roots was Cd-dose-dependent: those 
involved in the glycolytic pathway, TCA cycle, and respiration were 
accumulated under low-Cd (10 μM) stress, whereas those involved in 

Cd-detoxification (GST) were accumulated under high-Cd (100 μM) 
stress. Recently, a large number of Cd-responsive phosphoproteins were 
identified in leaves of ‘PR’ and ‘CR’; and the levels in the abundance of 
ABC transporters, chaperones, HSPs, phosphatases, kinases, kin
ase/phosphatases, phytohormone-related proteins, and transcription 
factors differed in ‘PR’ and ‘CR’ under Cd-stress (Table 1, Marques et al., 
2021). These results indicated an underlying proteomic basis for the 
differential and contrasting Cd-tolerance traits in both tomato cultivars. 

Helianthus annuus (Sunflower) is considered to be a hyper
accumulator due to its ability for high-Cd-accumulation in shoots 
(Fig. 1) (Lopes Júnior et al., 2015). It is tolerant to long-term Cd-expo
sure (50 or 700 mg Cd per 770-mL-pot for 45 days). Proteomic analysis 
revealed that photosynthesis was the main metabolic process affected by 
high Cd concentrations, with the DAPs identified in leaves being 
involved mainly in energy synthesis and stress response, like ribulose-1, 
5-bisphosphate carboxylase (RuBisCO), transketolase, and HSPs (Lopes 
Júnior et al., 2015). 

Some woody species such as poplar are efficient in the uptake of 
heavy metals, mainly due to their highly developed root system (Fig. 1) 
(Zacchini et al., 2009), and a high capacity for storing metals in the 
trunk permanently (Harada et al., 2010). Many clones of Populus exhibit 
a high-Cd-accumulation potential with no apparent physiological 
toxicity (Unterbrunner et al., 2007). Hence, Populus trees have widely 
been used as a model woody species in phytoremediation of 
Cd-contaminated soils (Laureysens et al., 2005; Utmazian et al., 2007; 
Marmiroli et al., 2013; De Oliveira and Tibbett, 2018; El-Mahrouk et al., 
2020). A comparative proteomic study of Populus leaf and cambial tissue 
revealed an important tissue-specific response under Cd-stress (Durand 
et al., 2010). To screen the poplar clones for suitability to phytor
emediation, the proteomic changes in the leaves of three clones were 
compared under Cd-stress (Marmiroli et al., 2013). The results obtained 
demonstrated that proteins related to defense, stress response, and 
carbohydrate metabolism were significantly influenced as was observed 
in previous studies (Kieffer et al., 2008, 2009a, 2009b; Durand et al., 
2010). The proteins associated with the maintenance of photosynthetic 
capacity and amino acid synthesis were found to be abundant in the 
hybrid clone A4A, indicating that A4A was more tolerant to short-term 
Cd-stress when compared to the other two clones. However, the effects 
of long-term Cd-stress on A4A growth rate and biomass production need 
to be ascertained before the selection of A4A for large-scale application 
in the phytoremediation of Cd-polluted soils. 

3. Insights into Cd-tolerance, translocation, and accumulation 
in plants based on proteomic studies 

Cd-hyperaccumulation in plants requires enhanced root uptake, 
increased xylem loading, augmented translocation from roots to shoots, 
and then final sequestration into vacuoles and cell walls in shoots 
(Uraguchi et al., 2009; Verbruggen et al., 2009; Isaure et al., 2015). In 
this section, we discuss the vital aspects of Cd-relevant processes in 
plants and highlight the differences in Cd-tolerance and accumulation 
traits across plant species based on physiological, biochemical, and 
proteomic data (Table 2). 

3.1. Cd response and tolerance 

Being a non-essential element, Cd is highly toxic to plants even at 
very low concentrations. At the cellular level, Cd causes oxidative stress, 
disrupts membrane integrity via excessive production of ROS, and in
terferes with the functioning of various cellular processes (Cuypers et al., 
2010). The aerial parts of plants exhibit conspicuous symptoms under 
prolonged Cd-stress, e.g., chlorosis, retarded growth, senescence, and 
substantial loss in crop yield (Cuypers et al., 2010; Zhang et al., 2021). 
Even the physiology and morphology of Cd-tolerant plants, such as 
water hyacinth, are adversely impacted by Cd-stress (Wang et al., 2012). 
The effects of Cd-toxicity are more prominent in algae or hydrophytes 
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with the whole plant being exposed to Cd present in the water. The cell 
structure of microalgae is especially vulnerable to Cd-toxicity due to 
remarkable changes in thylakoid ultrastructure (Mota et al., 2015) and 
an increase in the number and size of vacuoles (León-Vaz et al., 2021). 

Proteomic studies have shown that Cd significantly influenced gen
eral defense and stress responses, and various metabolic pathways 
especially photosynthesis in a Cd-dose and –duration-dependent manner 
(Table 2). For example, levels of most enzymes involved in carbon fix
ation and light-dependent reactions (e.g., RuBisCO, carbonic anhydrase) 
were significantly diminished in poplar leaves both under short- and 
long-term exposure to Cd (14–56 days) (Kieffer et al., 2008, 2009a; 
Durand et al., 2010; Visioli et al., 2010; Marmiroli et al., 2013; Yang 
et al., 2015b; Dai et al., 2020), whereas the levels of enzymes involved in 
respiration (e.g., glycolysis and TCA cycle) were significantly increased 
(Durand et al., 2010; Yang et al., 2015b). The enhanced respiration rates 
in leaves supply more energy to plants adapted to long-term Cd-stress. 
Obviously, Cd-induced changes in the proteome profile shared some 
similarities across species but often exhibited specificity across plants at 
the organ, tissue, and even cellular levels (Table 2). The data from 
proteomic studies suggested that the changes in protein profiles corre
lated well with the physiological, morphological, and structural changes 
observed in plants under Cd-stress. Most Cd-inducible DAPs were 
localized to the cell wall, plasma membrane, vacuole, and cytosol 
indicating that these organelles are not only primary sites for 
Cd-sequestration and stress response but are also highly susceptible to 
Cd-toxicity. 

Proteomic analysis demonstrated that plants employ similar DAPs to 
alleviate Cd-stress across species (Yang et al., 2015b). For example, 
unicellular algae (Mota et al., 2015; León-Vaz et al., 2021) and soybean 
suspension cells (Sobkowiak and Deckert, 2006) demonstrated similar 
Cd-induced proteomic changes, such as elevated levels of stress-related 
proteins and ROS scavenging enzymes. Several types of proteins, 
involved in cellular functions such as photosynthesis, energy and 

carbohydrate metabolism, transcription and translation, oxidation and 
reduction, and stress responses exhibited similar patterns of change 
across most plants studied (Table 2, Fig. 2). 

To cope with Cd-stress, plants whether Cd-tolerant or Cd-sensitive, 
employ a range of cell detoxification mechanisms (Fig. 2). Apart from 
extrusion through the plasma membrane, the most common mechanisms 
to minimize the Cd2+ toxicity include chelation with thiol ligands (e.g., 
glutathione and PCs), sequestration into the vacuole (Verbruggen et al., 
2009; Isaure et al., 2015), and immobilization into the cell wall (Wang 
et al., 2021a, 2021b). Cd-chelation with PCs, sequestration into vacu
oles, and efflux into the apoplast were observed in both the hyper
accumulator A. halleri and the non-accumulator Arabidopsis lyrata, but at 
different levels of intensity (Isaure et al., 2015). Thus far, three types of 
transporters involved in sequestering of Cd into vacuoles have been 
identified: CAX-type antiporters (Korenkov et al., 2009), Heavy Metal 
ATPases (e.g., HMA3) (Morel et al., 2009; Ueno et al., 2010; Miyadate 
et al., 2011; Krämer, 2010; Isaure et al., 2015) and PCs transporters 
[ABCC1 and 2] (Mendoza-Cózatl et al., 2011; Park et al., 2012). 

The extent of Cd-tolerance varied not only across plant species, 
populations, and crop varieties (e.g., Zhao et al., 2006; Ahsan et al., 
2012; Li et al., 2021), but also at the level of organs, especially roots, and 
leaves. The impact of Cd-toxicity was more prominent in roots than in 
leaves (Fig. 2). This can be explained by the early induction of some 
stress-related proteins, such as HSPs and GST in roots, while most pro
teins involved in primary metabolism pathways like glycolysis, TCA 
cycle, and N/S metabolism were significantly depressed (Kieffer et al., 
2009b). The potential for Cd-resistance in plants can be improved 
through genetic engineering techniques (Ueno et al., 2010), leading to 
increased efficiency in the species employed for the phytoremediation of 
Cd-contaminated soils. 

Table 2 
The increased DAPs and pathways in Cd hyperaccumulators and/or Cd-tolerant plant materials under Cd stress.  

Commonly increased DAPs under Cd stress Increased pathways and their 
roles in response to Cd 

Plant species Reference 

Proteins involved in starch degradation, 
gluconeogenesis, and N/S assimilation, antioxidant 
enzymes and HSPs 

Energy supply, Cd chelation and 
detoxification 

Chlorella sorokiniana León-Vaz et al. (2021) 

Enzymes of glycolysis and the TCA cycle, e.g. pyruvate 
dehydrogenase, glyceraldehyde 3-phosphate 
dehydrogenase and enolase 

Glycolysis, TCA cycle in leaf, 
providing metabolic energy and 
redox power for Cd 
detoxification 

Poplar, rice, soybean, 
tomato, Sargassum 
fusiforme 

Kieffer et al. (2009a); Lee et al. (2010);  
Rodríguez-Celma et al. (2010); Hossain et al. (2012);  
Yang et al. (2015a,b); Zhang et al. (2015) 

Antioxidants and ROS scavenging enzymes, e.g. 
glutathione, thioredoxin, peroxiredoxin, peroxidase, 
ascorbate oxidase, NADH dehydrogenase, 
superoxide dismutase, phospholipase D 

Anti-oxidative system, Cd 
tolerance, detoxification and 
oxidative stress defense 

Chlamydomonas 
reinhardtii, soybean, rice, 
cucumber, poplar 

Gillet et al. (2006); Sobkowiak and Deckert (2006); 
Ahsan et al. (2007); Cai et al. (2011);Hossain et al. 
(2012); Sun et al. (2016); Yang et al. (2016); Zhong 
et al. (2017); Huang et al. (2019) 

Stress proteins, e.g. pathogenesis-related proteins Stress defense Poplar, rice Kieffer et al., (2008, 2009b); Lee et al. (2010);  
Lomaglio et al. (2015); Yang et al. (2015a,b) 

Glycolipid transfer protein Membranes protection and 
stabilization. 

Rice Cai et al. (2011) 

Chaperone, heat shock proteins, 14–3–3 protein, zinc 
finger protein 

Protein synthesis, folding and 
transport, degradation 

Physcia adscendens, 
poplar, tomato 

Rustichelli et al. (2008); Huang et al. (2019); Marques 
et al. (2021) 

Transcription factor, e.g. eukaryotic translation 
initiation factor (elF) 

Protein metabolism, protein 
synthesis, folding and transport, 

Poplar, tomato Huang et al. (2019); Marques et al. (2021) 

Kinase, kinase/phosphatase Cd signaling Tomato Marques et al. (2021) 
Glutathione S-transferase Glutathione metabolism Soybean, Physcia 

adscendens, rice 
Sobkowiak and Deckert (2006); Rustichelli et al. 
(2008); Lee et al. (2010); Cao et al. (2017) 

Histone H2B, chalcone synthase, proteins associated 
with lignin biosynthesis 

DNA replication and repair, 
stress response, Cd-chelating 
pathways 

Soybean, wheat Sobkowiak and Deckert (2006); Ahsan et al. (2012);  
Jian et al. (2020) 

Wall proteins, e.g. pectin methylesterase Cd defence, cell wall 
restructuring and lignification in 
leaf and shoot 

Poplar, alfalfa Yang et al. (2015a,b); Gutsch et al. (2018a,b); Gutsch 
et al. (2019) 

HMA, ABC transporters Cd transport and localization Cucumber, tomato Gong et al. (2017); Marques et al. (2021)  
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3.2. Root-shoot translocation of Cd 

In terrestrial plants, roots are the first organ to be exposed to Cd- 
toxicity. Cd2+ enters the roots through apoplastic binding and/or sym
plastic uptake. Apoplastic binding involves Cd2+ influx through the 
process of sorption. Cd2+ enters into the symplast via plasma membrane- 
bound transporters/channels dedicated to divalent cations (e.g., Zn2+, 
Fe2+, Ca2+, and Mg2+) but with low specificity for Cd2+. After root 
uptake, Cd is transported via the apoplast or symplast to the endodermal 
boundary, then loaded into the xylem, and eventually transported across 
a long distance to the shoots (Fig. 3) (Clemens and Ma, 2016; Song et al., 
2017). Efficient translocation of Cd from roots to shoots, especially a 
high rate of xylem loading is physiologically crucial for enhanced 
hyperaccumulation capability (Lu et al., 2008). Xylem loading of Cd2+

in the hyperaccumulator, A. halleri is a rapid, energy-dependent process, 
which appears to be associated in part with the Zn2+ and Fe2+ trans
location pathways. Cd is predominantly translocated as aqueous free 
Cd2+ ions through the xylem vessels (Ueno et al., 2008). 

Hyperaccumulators usually have a greater capacity for translocating 
Cd2+ from roots to aerial parts when compared to low-Cd-accumulating 
plant species. In rice, root-to-shoot Cd translocation through the xylem is 
the major process to influence the accumulation of Cd in shoots and 
grains (Uraguchi et al., 2009). The root-to-shoot Cd translocation re
quires the loading of symplastic Cd2+ into the xylem by Heavy Metal 
ATPases (Pence et al., 2000; Papoyan and Kochian, 2004; Hanikenne 
et al., 2008; Wong and Cobbett, 2009) or by other transporters such as 
CAL1 in rice (Luo et al., 2018). HMA4 encodes a P-type ATPase that 
loads Zn2+ and Cd2+ into the xylem. High expression of HMA4 was 
necessary for Zn- and Cd-tolerance and hyperaccumulation in A. halleri 
(Hanikenne et al., 2008; Willems et al., 2010). Root-selective expression 
of AtCAX4 and AtCAX2 resulted in reduced foliar Cd-accumulation in 
field-grown N. tabacum (Korenkov et al., 2009). 

Thus far, studies on Cd2+ uptake and translocation in roots mainly 
involved proteomic analysis of whole roots. The identification of 
changes in the proteome profile at subcellular sites like cell walls and 
vacuoles, and transfer cells is the key to revealing the mechanisms un
derlying the uptake, translocation, and sequestration of Cd2+ in hyper
accumulators. Several Cd-inducible transport proteins in the roots of 
S. plumbizincicola were observed to be highly upregulated (Zhu et al., 
2022). These transporters were located either in the plasma membrane 

or in the tonoplast. The mechanism behind the coordination of these 
transporters with each other in Cd translocation and sequestration in 
hyperaccumulators remains unclear. 

3.3. High-Cd-accumulation in shoots 

The aerial parts of a plant, especially the leaves are major organs 
involved in sequestering Cd. Genome-wide association studies indicated 
HMA3 to be the primary determinant of natural variation in the Cd- 
accumulation potential of A. thaliana leaves (Chao et al., 2012). As 
observed in roots, Cd-chelation with glutathione and PCs in leaves is an 
important process in minimizing Cd-toxicity both in Cd-tolerant plants 
(Clemens, 2001; Park et al., 2012) and in hyperaccumulators (Ver
bruggen et al., 2009). Cd mainly accumulates in the xylem, phloem, and 
mesophyll tissue in leaves, with a Cd-reallocation process (Isaure et al., 
2015). Mesophyll is a major storage site considering its volume. At the 
cellular level, vacuoles and cell walls were identified to be the major 
sites for Cd sequestration and accumulation in leaves (Fig. 4). 

Owing to its large volume, the vacuole is the most important final 
storehouse for toxic heavy metals like Cd2+. Vacuolar sequestration can 
protect the cytoplasm against metal toxicity (Isaure et al., 2015). Many 
metal transporters were identified in purified tonoplasts from barley 
leaves exposed to Cd-stress through proteome-based analysis, including 
CAX1 (induced by low Cd2+) and AtMRP3, an ABC transporter homolog 
(induced by high Cd2+) (Schneider et al., 2009). CAX1a might play a role 
in vacuolar Cd2+ transport. AtMRP3 was able to partially rescue a 
Cd2+-sensitive yeast mutant. In addition, high expression of HMA3 
allowed storage of Cd in the vacuoles of T. caerulescens by functional 
characterization of HMA3 (Ueno et al., 2011), the distribution of Cd in 
different tissues of S. alfredii was detected by using X-ray micro
fluorescence assay (Tian et al., 2011). The roles of these transporters in 
Cd2+ detoxification should be further investigated. 

Cell walls are another important storage point of Cd in the aerial 
parts of plants (Fig. 4). For instance, up to 35 % of Cd was localized in 
the cell walls of mesophyll and epidermal cells in the Cd- 
hyperaccumulator, T. caerulescens (Cosio et al., 2005). In leaves of 
M. sativa plants exposed to Cd, most DAPs with increased abundance 
(163/212) from cell wall fractions were identified as secretory proteins 
involved in defense and cell wall restructuring, especially pectin meth
ylesterase (Gutsch et al., 2018a, 2018b). These DAPs in cell walls were 

Fig. 2. The key proteins and pathways involved in Cd response and accumulation in plant roots. Thick red arrows indicate the Cd-inducible increased proteins. CAX, 
cation/H+ exchanger; CCH, copper transport protein; GP, glutathione peroxidase; GR, glutathione reductases; HMA, heavy metal ATPases; HK, hexokinase; PcaP1, 
plasma membrane-associated cation-binding protein 1; PCS, phytochelatins; PDR7, pleiotropic drug resistance 7; PGC, polygalacturonase; PGM, phosphogluco
mutase; PME, pectin methylesterase; SUSY, sucrose synthase; UGPase, UDP–glucose pyrophosphorylase; XTH, xyloglucan endotransglucosylase/hydrolase. 
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mainly involved in defense response, cell wall lignification, and carbo
hydrate metabolism corroborating previous observations that the cell 
wall acts as an effective barrier against Cd-stress. Proteomic analyses 
additionally revealed that a majority of the DAPs induced by Cd-stress in 
Populus leaves were localized in chloroplasts and mitochondria, sug
gesting important roles of these organelles in the response and adapta
tion of plants to Cd-stress (Visioli et al., 2010). 

However, the functions of a large number of Cd-induced proteins in 
leaves are not yet identified. Emphasis needs to be placed on studying 
the importance of the DAPs elevated on exposure to Cd, as they may be 
essential in recalibrating metabolism under stress conditions (Gong 
et al., 2015). The DAPs commonly induced by Cd-stress in a variety of 
plant species and the metabolic pathways with which they are associ
ated are summarized in Table 2. These DAPs mainly include 
stress-related proteins (e.g., HSPs), enzymes of glycolysis and the TCA 
cycle, antioxidants, ROS scavenging enzymes, transcription factors, 
kinases/phosphatases, GST, cell wall proteins, and Cd2+ transporters 
among others. These upregulated, Cd-inducible DAPs would be more 
important for Cd-adaptation in plants than the depressed DAPs, an 
important point to be remembered when developing Cd-tolerant plants 
through breeding or genetic engineering. High levels of accumulation of 
Cd in the harvestable, aerial parts of plants provide insights into a new 
prospect for efficient phytoremediation of Cd-contaminated 
environments. 

4. Methodological deficiencies in proteomic analysis of Cd- 
stress in plants 

Proteomic approaches have been widely used to explore the mech
anisms underlying differential Cd-tolerance and accumulation across 
plant species, but some methodological deficiencies in these studies 
need to be addressed in the future. 

Firstly, the proteomic experiments were not carefully designed. Cd- 

induced proteomic changes in plants were mostly analyzed in hydro
ponic experiments with plants or their cells exposed to short-term Cd- 
toxicity (Table 1). The hydroponic experiments could not accurately 
mimic the real-life environment. The physical and chemical properties 
of the soil significantly affect Cd mobility in soil and Cd concentration in 
plant tissues (Albert et al., 2021). It is generally accepted that the 
expression of stress tolerance traits in plants is largely dependent on the 
interaction of genotype × environment (abiotic or biotic) (Wu et al., 
2017). Plants often exhibit varying levels of Cd-tolerance at different 
stages of development (Gutsch et al., 2018a). Only a limited number of 
studies have been conducted by growing plants in Cd-contaminated soils 
while studying the effects of Cd-stress over the whole plant growth 
period (e.g., Gutsch et al., 2018a, 2018b). Therefore, it is necessary to 
enhance the number of proteomic studies in plants (especially crops) 
grown in Cd-contaminated fields or soils. The data obtained from such 
studies would help in screening varieties of existing crops for 
high-Cd-tolerance and accumulation traits for usage in large-scale 
remediation of Cd-contaminated soils. 

Secondly, the methodology used, especially in protein extraction, 
separation, and identification is questionable. Extraction of high-quality 
proteins from plant tissues is very difficult, mainly due to interference 
from various secondary metabolites such as polyphenols, poly
saccharides, and organic acids (Wu et al., 2014; Niu et al., 2018). Most 
proteomic studies utilized less-efficient aqueous extraction protocols, 
followed by 2D-gel-based separation, and Coomassie Blue visualization, 
often resulting in the identification of a limited number of Cd-induced 
DAPs by MS/MS (Table 1). In particular, the low abundance levels 
and hydrophobicity of membrane proteins make their extraction and 
resolution difficult, often failing in identifying proteins by using MS/MS 
(Kongpracha et al., 2022). To address these drawbacks, several methods 
such as ultracentrifugation, precipitation, and treatment with urea or 
alkaline solutions have been applied (Kongpracha et al., 2022). Only a 
few studies utilized sensitive or powerful techniques, such as 2D-DIGE 

Fig. 3. Cd translocation from plants roots to aerial parts by xylem. The key major metal transporters involved in Cd transport and accumulation in roots and aerial 
parts were highlighted. The vacuoles are displayed in yellow. ZNT1, Zinc transporter 1; ITR1, myo-inositol transporter 1; NRAMP, natural resistance-associated 
macrophage protein; CAX4, cation/H+ exchanger 4; CAL1, Cd accumulation in leaf 1; ABC, ATP-binding cassette transporter; HMA, heavy metal ATPases. 
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(2D-Difference gel electrophoresis) (Gutsch et al., 2018a, 2018b), 
gel-free iTRAQ (isobaric tags for relative and absolute quantification), 
SILAC (stable isotope labeling by amino acids) (Schneider et al., 2009), 
and 2D-liquid chromatography (Visioli et al., 2010). Thus, the methods 
utilized need to be optimized for enhanced information on Cd-induced 
proteomic changes in plants. 

Moreover, most studies were conducted at the whole plant or organ 
level, while only a handful of studies have investigated the subcellular 
(in isolated vacuoles and microsomes) and tissue-specific proteomic 
changes induced by Cd-stress (Schneider et al., 2009; Ahsan et al., 
2012). Through the isolation of plasma membrane proteins in 
S. plumbizincicola, numerous novel transport proteins were identified, of 
which SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 were validated 
for their Cd-specific transport activity in yeast (Zhu et al., 2022). 
Therefore, due to the cell specificity of proteomic responses (Gong et al., 
2015), the protocols and techniques used in proteome-based analyses at 
the cellular or even subcellular levels need to be further updated, along 
with those employed at organ or tissue levels, to identify Cd-induced 
cell-specific responses in plants. 

5. Conclusions and prospects for future research 

This review focuses on proteomic studies in Cd-tolerant and 
-hyperaccumulating plants exposed to Cd-toxicity, including unicellular 
or multicellular algae, hydrophytes, model species, and common crops. 
Proteomic research revealed a set of Cd-induced DAPs that facilitates the 
understanding of the molecular mechanisms in hyperaccumulators 
involved in resistance to and accumulation of Cd or other heavy metals. 
However, identifying the specific functions of these DAPs is incomplete 
and the complex regulatory networks associated with them are largely 
unclear. Functional characterization of the Cd-responsive DAPs through 
knock-out or overexpression of their genes is necessary for engineering 
Cd-tolerant plants. Moreover, complex biological events usually involve 
the interplay of genes, transcripts, proteins, metabolites, and lipids. It is 
necessary to further strengthen the multi-omic analyses of Cd-induced- 
stress in Cd-hyperaccumulators and Cd-tolerant crops by involving 
integrative research. 

Finally, phytoextraction efficiency depends largely on Cd- 

accumulation capacity and plant biomass. Many plants face a conflict 
between higher-Cd-accumulation capacity and enhanced biomass pro
duction. It is imperative to develop Cd-tolerant plants for phytor
emediation through genetic engineering and to breed Cd-resistant crop 
varieties, which allow higher-Cd-accumulation in straws but lower-Cd- 
concentration in grains for ensuring food safety. 
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