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Abstract—The growing popularity of systems based on Unmanned
Aerial Vehicles (UAVs) is highlighting their vulnerability particularly
in relation to the positioning system used. Typically, UAV
architectures use the civilian GPS which is exposed to a number
of different attacks, such as jamming or spoofing. This is why it is
important to develop alternative methodologies to accurately estimate
the actual UAV position without relying on GPS measurements only.
In this paper we propose a position estimate method for UAVs based
on monocular visual odometry. We have developed a flight control
system capable of keeping track of the entire trajectory travelled, with
a reduced dependency on the availability of GPS signal. Moreover,
the simplicity of the developed solution makes it applicable to a wide
range of commercial drones. The final goal is to allow for safer flights
in all conditions, even under cyber-attacks trying to deceive the drone.

Keywords—Visual odometry, autonomous UAV, position
measurement, autonomous outdoor flight.

I. INTRODUCTION

DURING past years, the UAV market has been mainly

aimed at the military defense industry. However, the

recent advancements in microelectronics, the reduction in

manufacturing costs, the growth of computers’ computational

power, and their miniaturization, have caused an impressive

spread out in the diffusion and application of this technology

for civil purposes [1]. At the same time, the progress in

research fields like Artificial Intelligence and Computer Vision

allows the extraction of a wide range of useful information

during UAV flights. This is why, nowadays, UAVs are

used for: real-time monitoring and surveillance of dangerous

areas [2], improvement of everyday critical situations [3],

emergency rescue activity [4], and cooperation with humans

for entertainment or industrial purposes [5], while many

other future applications are just around the corner [6].

A particularly relevant aspect regarding the use of these

technologies is related to the safety of both the UAVs and

the information they gather/store. An increasingly widespread

problem comes from some kind of attacks aimed at disturbing

the correct functioning of a UAV to frustrate its use or steal

it. Since the flight of UAVs is strictly related to the goodness

of the available GPS signals, they can stop working properly

due to both signal-related problems (attenuation, reflections,

multi-paths, Canyon effect) and/or intentional external attacks

(jamming, spoofing, replay techniques) [7]. The first case

concerns a series of well-known GPS signal weaknesses, the

latter, instead, pertains to a set of possible GPS attacks based
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on how it works. Using one of these techniques, one can

force the UAV to interrupt its mission or deceive it to control

its behavior. In the past 10 years, cases of GPS-based drone

strikes have been increasingly reported in different countries,

like Russia, the UK, the USA, and Hong Kong to name

a few. Moreover, these attacks have had different targets,

like airports, ships, military equipment, civil celebrations, and

wildfires. For example, in Oct. 2018 in Hong Kong, attackers

caused 46 professional drones, used in a light show during a

local festival, to suddenly plummet into water (approximately

100,000$ of damage) [8]. In Dec. 2011, on the other hand,

Iran’s army managed to capture a USA Lockheed Martin

RQ-170 drone aircraft with a spoofing attack [9]. In June

2017, twenty ships navigating in the Black Sea reported their

navigation systems believed to be located miles away from

their actual position. Later, researchers find out evidence of

the incident being a GPS spoofing attack made by Russian

military powers [10].

II. RELATED WORKS

The emergence of GPS reliability problems has caused

the development of a series of techniques aimed to detect

jamming, spoofing, or other kinds of attacks and provide

some possible remedies. As reported in a survey about GPS

countermeasures against spoofing attacks [11], a large set of

possible techniques could be used to detect and disable such

attacks. Unfortunately, the countermeasures proposed do not

stop this kind of attack, merely alerting the user of the GPS

receiver about suspicious activities. This will decrease the odds

that a spoofing attack can succeed, but it will not prevent

it from happening anyway. For this reason, some different

and more effective ways of managing such a problem have

been presented, which are mainly related to the use of visual

odometry and some other sensors, to integrate the positioning

information of the UAV with visual information. In [12] the

authors proposed a procedure to control all six degrees of

freedom (DOF) of a UAV using the principle of optical flow

together with ultrasonic, infrared, inertial, and pressure data,

to enable fully autonomous flight for indoor applications.

Furthermore, authors in [13] presented another approach to

estimate the UAV translational velocity and position, again

based on an onboard optical flow sensor, to perform real-time

autonomous outdoor and indoor flight without using the GPS

information. These works show how sensor data fusion can

replace GPS information when it is blocked or unreliable. A

later work [14] proposed a small-scale low-cost ARM-based

stereo vision system, which is used not only as an onboard

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:16, No:6, 2022 

165International Scholarly and Scientific Research & Innovation 16(6) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
6,

 N
o:

6,
 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

58
2/

pd
f



sensor to continuously estimate 6-DOF UAV pose but also as

an onboard preprocessor for visual information extraction. In

[15] the authors presented a vision-based approach where the

vehicle was localized using a downward-looking monocular

camera with a visual SLAM algorithm in charge of tracking

the pose of the camera and building an incremental map

of the surrounding region. The objective of their work has

been to develop a vision-based micro aerial vehicle (MAV)

controller to be used in an unknown environment without the

aid of any infrastructure-based localization system or any prior

knowledge about the environment. All the previous solutions

have their own drawbacks related either to the reliability of

the developed system or to its practical viability (price, weight,

size, limited flight environment). It is important to note that all

the above-mentioned works used dedicated hardware or built

the UAV from scratch using sometimes complex algorithms

which require a relatively high computational cost for the

hardware usually available on-board in commercial UAVs.

In this paper, we present the results of an approach based

on monocular visual odometry capable of overcoming the

problems mentioned above. In particular, we are capable of

reducing the influence of GPS-based attacks by limiting the

drone’s dependence on such data to only some sub-parts of

flight. More precisely, we have developed a system that limits

the use of GPS to an initial phase of alignment. During

such a phase, a series of measurements is collected and then

used to reconstruct the entire trajectory traveled by the UAV

with reduced dependence on the availability of GPS data. In

little words, the drone can fly based on visual information

rarely integrated by GPS data. From the point of view of

the UAV’s equipment, our work requires the presence of a

stabilized 3-axis gimbal camera, an Inertial Measurement Unit

(IMU), and a barometric sensor. All these devices are already

usually present onboard commercial drones and consequently,

our research results can be applied without modifying the UAV

in any way. In fact, our experimental tests are based on the use

of a commercial drone available on the market, and our work

does not need to make any change to the way it operates, to

reach the highest possible compatibility level. The presented

solution is low-cost, accurate, and simple, it can be adapted to

a wide range of commercial drones without a major effort and

it can obtain remarkable results with very low requirements

from a hardware point of view. This will allow us to solve

the GPS reliability problem in a simple way and with a wide

range of possible applications.

III. VISUAL ODOMETRY

In general, visual odometry systems can be divided into

two main categories: mono visual odometry and stereo visual

odometry, being the second typically more reliable [16]. In

our case, however, we have used a monocular visual odometry

system, since most commercial drones have a single camera.

The mono systems only provide 2D positioning information

but without any knowledge about depths, because the depths

of scenes are, generally, not measurable with a single camera.

As a consequence, the trajectory can be reconstructed only

up to a scale factor. To estimate the scale factor, additional

information is needed coming from other sensors aboard the

UAV. In particular, in our work, we solved this problem using

the information collected by the barometer, which allows us

to reconstruct the altitude of the UAV with good precision.

Moreover, barometer data are reasonably resistant to external

attacks. So, once the position of the UAV has been estimated

up to a scale factor, thanks to odometry techniques, it will

be sufficient to replace the information about the z-axis with

that coming from the barometer, to obtain the complete correct

reconstruction.

The first approach we tried, and the most natural one,

is to estimate an affine 3D transformation between the ref
(GPS-based) coordinate system and the odometry one. To

employ this estimate in the trajectory reconstruction process,

the odometry-estimated z-coordinate is continuously replaced

with the one estimated by the barometer: in the following this

approach will be referred to as 3D + barom. Since the altitude

of the flight is considered as given, the error discussed in

the following is only related to x and y coordinates. This

assumption is also based on the fact that using barometer

measurements to replace GPS altitude leads to an error which,

at the flight altitude of a commercial drone (a few tens of

meters), can be considered negligible [17]. Moreover, it is

computed only for points higher than 15 meters, because it is

assumed that for lower altitudes landing systems are in use. A

second approach called 2D + barom was also tried: assuming

that the UAV takes off vertically (hence the orientation of

the z-axis of the odometry coordinate system is substantially

orthogonal to the ground), the training pairs are projected onto

the ground plane and a 2D affine transformation is estimated.

Then, before employing it in the trajectory estimate process,

the altitude estimation is added, again given by barometer

readings.

The other main problem of monocular visual-odometry

systems is the drift error [18]. This problem is usually

solved through local optimization (typically based on the

last m camera poses), sensor fusion, or by using prior

knowledge about the scene [19]. Another possible solution is

to periodically compare the GPS trace and the estimated one: if

no anomalies are detected, the GPS readings can be considered

“safe” and taken as additional input in a new alignment

procedure, performed on-the-fly. On the other hand, if the

GPS readings are considered not reliable, the trajectory must

be estimated with old data only. Performances can be further

improved, at the cost of a heavier computational burden, by

continuously realigning traces by exploiting visual cues in the

scene, under the assumption that a previous reference flight

has been done and such cues have been geotagged.

The odometry algorithm used in our work is based on the

Semi-Direct Visual Odometry (SVO) algorithm by Forster

et al. [20] whose open implementation is available [21].

This algorithm adopts a hybrid approach to visual odometry,

that uses both direct methods and feature-based methods.

Moreover, from the studies reported in the original paper,

it requires very few computational resources when compared

with most existing algorithms [20]. In fact, the SVO algorithm

can reach up to 400 frames per second on an i7 processor and

the time to process a single frame is only slightly higher even
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on a Jetson TX1 board.

IV. EXPERIMENTAL APPARATUS AND METHODOLOGY

In our experiments, we used two commercial drones from

DJI, namely: a Mavic 2 Enterprise Dual, and a Mavic

Pro. Both of these UAVs are equipped with: a 3-axis

gimbal-stabilized camera, a GPS module, a barometer, and an

Inertial Motion Unit (IMU) to store the acceleration, velocity,

and orientation of the UAV. It should be noted that the

camera frequency is 30 fps while the frequency of the GPS

module is only 10 Hz. This leads to a different sampling rate

between images and GPS data with a ratio of three images

for each GPS point. This is a relevant aspect that has been

mitigated by down-sampling the video at the same frame rate

as the GPS information to avoid the problems related to the

correct coupling of data. Moreover, even if down-sampling

is applied, no information is lost thanks to the fact that the

adopted sampling frequency is relatively high compared to

the drone flight speed. In fact, considering a flight altitude

between 60 and 90 meters and the speed of a UAV usually

around 4-8 m/s, the frames that are discarded due to the

down-sampling procedure do not produce a relevant scene

change for odometry calculation purposes.

To apply visual odometry, some prior knowledge of the

camera system is required. In this work, the pinhole camera

model was adopted, with RadTan distortion for the gimbal

camera of the UAV. The pinhole camera model is the most

widely used in computer vision, it is rather simple but

quite effective [22] as a first-order approximation of the

mapping from a 3D scene to a 2D image. To perform the

monocular camera calibration the camera_calibration
ROS package was used with a standard black-white chessboard

target [23]. The procedure takes as input the 3D coordinates

of object points and their corresponding 2D projections and

applies the algorithm proposed in [24], which is optimized

to exploit multiple views of the same planar surface. The

basic idea for our flight control system is to start every flight

by reaching a chosen target altitude and then performing

an alignment phase. The GPS measurements are acquired

and assumed to be the actual current UAV position, to

collect a certain number of pairs (Podom, PGPS). PGPS

is the position recovered with GPS: its coordinates are

in a Cartesian coordinate system, they are called ref and

follow ENU convention. Podom represents the corresponding

estimated position in the odometry coordinate system (which

has an arbitrary scale and whose origin and orientation

with respect to ref depends on the initial UAV pose).

Then, data collected in the alignment phase are used to

estimate the affine transformation, using one of the already

explained modes (2D + barom or 3D + barom). Lastly, the

obtained affine transformation is applied to all the subsequent

estimated odometry output, to get an approximation of

absolute positioning, concerning the takeoff point, without

relying anymore on GPS signal validity. In particular, the

duration of the alignment phase was fixed at 70 seconds,

which gives a good compromise between the need to collect

a certain number of corresponding points (required to achieve

a robust transformation), and the limited autonomy of the

vehicle battery. It is important to note that the selected duration

is perfectly compatible with the normal flight of a drone since

generally the UAV take-off procedure, up to the target altitude,

requires tens of seconds anyway. The proposed approach

works under the assumption that, during the alignment phase,

the GPS readings are reliable enough, which is reasonable

since the alignment is performed near the takeoff point (hence,

at a safe location). As already said, since down-sampling is

applied, a perfect time matching between images and GPS data

is not possible and so the pairing is not extremely precise

(it is one of the most impacting sources of error). It is

worth noticing that most of the other approaches assume a

high frame rate sensor stream to retrieve scale information in

monocular odometry via sensor fusion [25]. Furthermore, in

the first offline implementation of the software, which will be

illustrated in the next section, imprecise time matching is also

caused by the limited reliability of the flight log: it can be

noticed that the log reports the recording starting time with an

unpredictable delay (in a few cases it is negligible but it can

reach up to one second) with respect to the actual beginning

of storing camera frames. Hence, an offset compensation

procedure is performed during the hyper-parameters tuning,

to obtain good quality matches.

V. IMPLEMENTATION

The software implementation was divided into two phases,

called offline and online, explained below. This subdivision

was decided in order to ensure that the developed position

estimation method was safe and reliable before applying it to

real flights, so as not to endanger people and devices.

A. Offline Implementation

In the first phase of our work we used an offline setup,

namely, we analyzed data taken from a complete log of already

ended flights. For this reason, the ROS communication system

was used in this phase. In fact, in this way, we can publish the

data stored in the log files into a ROS topic and then subscribe

to it for retrieving the sensors’ information. This structure can

be easily used also in the real case, in which the messages

arrive in real-time from the UAV. In fact, if we replace the

source of streaming data from log files with real-time data,

this will not require any changes to our code. A first Python

utility takes care of transforming the GPS point coordinates,

taken from the flight log, into the coordinates of a Cartesian

reference system, centered on the takeoff place. To carry out

the transformation from GPS to Cartesian take-off reference

system, the transition from geodetic to ENU (East, North, Up)

coordinates has been made [26]. Moreover, another Python

script is responsible for streaming a saved video (which comes

from the drone’s internal storage) into a specific ROS topic.

For the odometry part, as already said, the SVO [20] algorithm

was used, of which a ROS implementation exists. After the

flight, data were analyzed from a python script that: a) aligns

the first portion of the odometry output with the GPS trace;

b) applies the obtained transformation to the entire odometry

output; c) computes an error metric based on the Euclidean
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distance formula. In particular, the matching process takes

care of an eventual time offset between the video stream’s

clock and the GPS clock. Then it further filters the matches

according to their height and speed. In fact, better results will

be obtained by keeping only the data with a height close

to the target altitude, since in this way the transformation

we get will be specialized to manage data obtained around

that height. Furthermore, choosing data with a sufficiently

low speed gives us better quality GPS measurements, thus

reducing the impact of imprecise matching. Since aggressive

filtering could reduce too much the number of matches used

in the estimation process (negatively affecting the robustness

of the transformation), adaptive tuning is applied during the

alignment phase. A RANSAC-based method was used [27],

taking advantage of the implementation offered by OpenCV,

to estimate the affine transformation between the two (i.e.

between odometry and ref). Transformation estimation is

iteratively repeated in a grid search manner with tunable

hyper-parameters [28]. The transformation that provides the

best performance on the validation data is selected to be

applied to the subsequent odometry output.

During this first offline implementation of our system,

we have therefore implemented and fine-tuned the position

estimation procedure. This procedure has produced interesting

results and for this reason we have decided to apply it to real

flights.

B. Online Implementation

The second phase, called online implementation, was about

the real-time version of the offline procedure. It was decided

to implement it through the remote execution of the odometry

process. Such an approach requires that a third device, in

addition to the drone and the remote controller, is connected

to the others and takes care of calculating the odometry. The

main advantage of this solution is related to the fact that

the UAV does not need any change (or a new homologation

procedure), and there is complete freedom regarding the

choice of the external hardware. Therefore it is possible

to easily tackle the problems related to the computational

burden. The limitations relate instead to the reduced range of

motion, due to the maximum distance between the external

device and remote controller, and the latency and stability

of the connection between them. If frames are lost, in the

communication between the remote controller and the remote

processing device, this could cause a great degradation of the

accuracy of the visual odometry. For this reason, in the next

future, it could be possible to proceed with an integration of

the external control board into the UAV, with the first one

connected to the latter as an extra payload. With this update,

it will be possible to run the same software developed for

this online implementation avoiding the problems of reduced

range of motion and connection stability introduced by remote

processing. Of course, this will impose an extra homologation

procedure for the drone before it can be used or the adoption of

a suitably modified payload (for the drones that can handle it).

Currently, partial protection regarding the connection stability

aspect can be achieved by maintaining a reduced distance

between the remote controller and the remote processing

device, minimizing the possibility of signal disturbance.

It was decided to perform the odometry process on a Linux

device, after sending the data to it from an Android application

specifically developed. This application was developed within

our research group, to receive the flight data from the UAV and

share them with the external device. Regarding the selected

equipment it was chosen to use a UP board with x86 64

architecture, equipped with an Ubuntu 16.04 operating system.

The UP board is a credit card size board with high performance

and low power consumption features, it was also provided with

a Wi-Fi module for connecting it to the wireless network.

Then, the procedure explained in the previous section was

re-implemented to estimate the position of the UAV through

the use of the odometry software. This procedure was adapted

to receive and process the video frame data in real-time.

Such data are provided by the Android application which

in turn receives it communicating with the UAV. In detail,

the procedure consists in collecting and aligning a series

of pairs of points, taken from the GPS and the odometry

function, and then estimating the affine transformation that

leads from one reference system to the other. Lastly, the

obtained transformation is applied to each new point coming

from the odometry function, replacing the value of the z-axis

with that retrieved from the barometer, thus obtaining the

estimated position of the UAV.

VI. RESULTS AND DISCUSSION

To evaluate the efficiency and the accuracy of the proposed

system, we did a certain number of flights in different contexts.

For each of them, we gathered the positional data given by

our visual odometry estimation and the corresponding GPS

data. Then the maximum and mean errors between the GPS

position and the visually estimated position during the whole

flight were calculated as a measure of the quality of the

visual estimations. The minimum error about the UAV position

during the flight was not reported, since in some moments, e.g.

immediately after the transformation estimation procedure, it

is equal to zero. Since the GPS position and the odometry

estimated position were reported in Cartesian coordinates, the

error was calculated as the Euclidean distance between two

points. This metric is sufficient to give an estimate of the

error since the two positions refer to the trajectory covered

by the same object. For this reason, there is no need for

metrics that consider both spatial and temporal information

in the trajectory, therefore the metrics needed to evaluate the

trajectory distance measures can be relaxed [29]. To analyze

the distribution of data, the first and third quartiles were

calculated along with the standard deviation, to have a measure

respectively of the interquartile range (IQR) and the variability

of the data around the mean error.

A. Offline Software Result Analysis

To test the offline procedure some flights were performed:

the list of flights with their properties is reported in Table

I, while the results are shown in Table II. The mean and

maximum errors, obtained for each flight after the alignment
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procedure, are reported using both transformation methods,

namely 2D + barom and 3D + barom.

TABLE I
OFFLINE TEST FLIGHTS

Flight Duration [s] Max distance [m] Target altitude [m]

A 325 281 81

B 356 167 61

C 388 99 31

D 103 174 109

E 269 120 81

F 192 173 83

G 210 58 30

TABLE II
COMPARISON OF THE RESULTS OBTAINED FOR 8 OFFLINE TEST FLIGHTS

Flight

2D + barom 3D + barom

AVG err. [m] MAX err. [m] AVG err. [m] MAX err. [m]

A 3.29 9.15 3.48 10.28

B 2.04 7.03 1.86 7.01

C 1.71 4.70 1.73 4.57

D 1.51 2.59 1.27 2.52

E 1.76 3.65 1.18 4.67

F 3.62 7.62 6.70 18.33

G 0.87 1.56 1.03 5.26

H 0.56 1.19 1.13 2.67

In general, the 2D + barom and 3D + barom modes

produce similar estimations. However, when evaluating the

altitude error, the 3D + barom performs slightly better (see

Figs. 1 and 2) even if its error drastically increases when the

UAV altitude decreases, particularly when it is about a few

tens of meters. On the other hand, the 2D + barom mode

works sufficiently well also during the descent phase.

Fig. 1 Flight G: 2D vs 3D. Comparison between 2D+barom and 3d+barom
modes

Fig. 2 Flight G: zoom. Comparison between 2D+barom and 3d+barom
modes

In the following, the histograms of the errors referring to

the data collected during some of the test flights are reported.

In Figs. 3 and 4, the left chart refers to the whole flight and the

right chart refers to the set of points that meet the condition

|z - target height| < 2 meters. In this way, after setting the

target height of the flight, only those points around it are

considered, hence removing the take-off and landing phases.

As can be seen, in both cases the maximum error occurs only

in a small number of positions, while most of the time the

error is low and comparable with the typical uncertainty of the

GPS receiver (usually around five meters). When only points

with an altitude near to the target altitude of the flight are

considered, 3D + barom mode performs almost equally or

rather slightly better.

Fig. 3 Histogram of error, Flight A. Comparison between 2D+barom and
3d+barom modes, considering the whole flight or just the target height

Fig. 4 Histogram of error, Flight C. Comparison between 2D + barom and
3d + barom modes considering the whole flight or just the target height
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In conclusion, the preferred mode is the 3D + barom one.

In fact, the 2D + barom mode would have an advantage only

during the take-off and landing phases but, since the UAV

already uses other positioning systems during such phases, it

is not worth using it. Another most flexible approach, currently

not employed because it would require more computations,

could be the estimation of a transformation for both the modes,

to switch among them in real-time according to the UAV’s

height evolution.

To make a comparative analysis, the value for the first and

third quartiles are reported in Table III, along with the IQR

and the standard deviation measures for each flight of this first

offline case, related to the error made with the 3D + barom
mode since it is the selected one.

TABLE III
ERROR DISPERSION ANALYSIS FOR 8 OFFLINE TEST FLIGHTS

Flight 1st quartile [m] 3rd quartile [m] IQR [m] Std. deviation [m]

A 2.56 3.88 1.32 1.49

B 0.89 2.02 1.13 1.28

C 1.07 2.41 1.34 1.36

D 1.10 1.54 0.44 0.46

E 0.69 1.29 0.60 0.87

F 3.90 6.99 3.09 4.46

G 0.51 1.30 0.79 0.84

H 0.94 1.46 0.52 0.55

B. Online Software Result Analysis

After the development of the online implementation, another

series of flights were performed to test its effectiveness. The

setup needed for each of these test flights is composed of the

UAV, the Android application, and the UP board. The latter

is in charge of running the main function of the software.

The application, instead, is the bridge that connects the remote

controller of the UAV to the UP board via Wi-Fi, to share data

and video information between them. When the UAV takes

off and reaches the minimum height required, the alignment

procedure starts, collecting the GPS and the visual odometry

positions to find the best affine transformation between them.

Once the optimal transformation was identified, the remainder

of the flight was computed calculating the estimated position

without using the GPS signal anymore. The results are shown

in Tables IV and V.

TABLE IV
COMPARISON OF THE RESULTS OBTAINED FOR 8 ONLINE TEST FLIGHTS

Flight Duration [s] Max distance [m] Target height [m] AVG err. [m] MAX err. [m]

I 125 67 49 5.81 12.82

J 108 82 68 5.86 17.36

K 119 91 79 8.18 19.72

L 170 142 69 6.60 19.70

M 204 186 68 9.27 19.09

N 165 196 56 9.15 22.63

O 155 162 61 5.34 12.07

P 195 158 73 5.78 15.91

TABLE V
ERROR DISPERSION ANALYSIS FOR 8 ONLINE TEST FLIGHTS

Flight 1st quartile [m] 3rd quartile [m] IQR [m] Std. deviation [m]
I 4.57 7.28 2.71 2.72
J 3.48 7.10 3.62 3.49
K 7.19 10.23 3.04 3.74
L 3.87 9.08 5.21 4.19
M 7.46 11.09 3.63 3.85
N 7.01 11.29 4.28 4.12
O 3.91 6.05 2.24 2.05
P 3.28 7.77 4.49 3.35

As can be seen, with similar flight properties between online

and offline test flights, also the results are roughly comparable.

The errors, both mean and maximum, in the online case

are just slightly worse than those of the offline procedure.

Furthermore, the statistical indicators reported in Table V,

show a reduced variability of the data around the average error,

both considering all the samples (as happens for the standard

deviation) and even better by removing the outliers (as in the

interquartile range case).

C. Result Evaluation

The differences between the results presented in Tables II

and III and those of Tables IV and V are caused by the fact that

the Wi-Fi connection between the board and the application

may sometimes be lost and therefore the related data are also

missing. This problem was expected since there are many

devices connected via Wi-Fi or radio signals. However, the

obtained results are still good and it is possible to perform

flights with an acceptable level of accuracy. The effectiveness

of the obtained results is also demonstrated by Figs. 5 and 6

which show the trajectory plots, containing the GPS position

and the estimated one, of two flights.

Fig. 5 Flight L. Comparison between GPS trajectory and estimated one
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Fig. 6 Flight P. Comparison between GPS trajectory and estimated one

The occurrence of the no-signal problem just discussed can

be observed in Fig. 5, where especially the orange points

related to the estimated position (but also the blue ones

about the GPS position) are very sparse, evidence that signal

reception was not ideal. To conclude, in the following, two

box-and-whisker diagrams are reported to graphically show the

variation of the statistical population about the error committed

during some flights.

Fig. 7 Box and whisker diagrams about error for all the performed flights

Fig. 8 Box and whisker diagrams overlapped with scatter plot about error

In particular, in Fig. 8, the box-and-whisker diagram of

some flights has been overlapped with a scatter plot about

the error committed in the corresponding flight. It shows the

data related to flights I, J, L, and O, to have a visualization

of the effective distribution of the errors. To facilitate the

readability of the graph, a uniform subsampling of the error

vectors was carried out to reduce the amount of data reported

to one-fifth of the total. As can be seen in the case of

flights J, N, K and P there is a non-negligible number of

outliers but this is due to the loss of communication that

sometimes occurs. Moreover, during the take-off and landing

phases, the error increases significantly, since we are using

an affine transformation estimated around the target altitude

of the flight. This increases the dispersion of the collected

dataset, as reported in Fig. 7 where for some flights the upper

whisker (related to the right tail of the distribution) may appear

surprisingly long. Such extension only indicates a wider error

distribution but does not affect the position accuracy of the

flight, since other positioning systems are in use during these

phases. In fact, in almost all the cases the whisker on the lower

end of the box is shorter than the other, and this indicates

that the distributions are generally positively skewed. This

means that most values are clustered around the left tail of

the distribution, that is the one closer to the null error value.

A further demonstration is shown in Fig. 8, where it can be

seen that the greatest concentration of values is focused around

the middle value of the dataset and below it.

Lastly, in Fig. 9 a comparison between the GPS trajectory

and the estimated one is shown. The GPS uncertainty is

reported as a circumference centered in the coordinates of the

GPS point and with a radius of 2.5 meters (since the GPS

uncertainty is usually around 5 meters). As can be seen most

of the time the error is low and the estimated position falls

within the circumference, therefore both points belong to the

same equivalence class. In conclusion, the estimated position

is comparable with the GPS receiver’s uncertainty.

Fig. 9 GPS uncertainty in comparison between GPS trajectory and estimated
one
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VII. CONCLUSION AND FUTURE WORKS

This work aimed to develop a flight system based on

a monocular visual odometry technique, to overcome some

limitations related to the use of GPS signals. In fact, since

nowadays the issues related to GPS reliability are more and

more numerous, this topic is becoming increasingly relevant

every day. All the experiments have been done using two

commercial drones from the DJI brand and relying on a

visual odometry algorithm, adapted from that proposed by

Forster et al. [20], called Semi-Direct Visual Odometry. During

the development phase, this algorithm was integrated initially

within an offline procedure, in which the information collected

during the flight is batch-processed at a later time, using

the GPS only during an initial alignment procedure to then

calculate the estimated position without using it anymore.

Then, in a subsequent phase, this procedure was transformed

into a real-time version of it. Moreover, a custom application

was developed to make communication between the remote

controller of the UAV and the board which performs the

remote processing possible.

From the performed test flights and the data analyzed, it

emerged that it was possible to create a reliable flight system

that retrieves the position of the UAV using only the camera

images, taken during the flight, without relying anymore

on the GPS information. Moreover, external processing is a

viable solution that enables us to apply our work to any

commercial UAV without requiring additional equipment or

heavy computational burdens. This was the answer we were

looking for to be able to improve the security of the UAVs

during their flights in a simple but effective way. Nevertheless,

some aspects can still be improved, among which the main one

is the accuracy level. This issue is closely linked to another

important problem which is the limited range of coverage

due to the type of connection used. Therefore, even if the

reached results have shown that our solution is feasible, some

aspects need to be fixed before actually using it in the field.

To be able to overcome such limitations another procedure

was studied and, although the idea is not yet implemented,

based on the analysis carried out, it seems to be able to solve

or at least limit the negative effects highlighted so far. Since

the main source of issues is the possible loss of connection,

which reduces the accuracy of the estimated position and also

limits the UAV’s range of action, it is necessary to reduce the

distance between the devices. To manage these problems, it

could be possible to proceed in the next future with the use

of an external board connected as an additional payload to the

UAV. However, there are some problems related to the weight

and energy consumption that the UAV should bear. These

problems lead to the necessity to look for a board that is, at the

same time, able to deliver the computational power for running

the software in real-time and able to keep energy consumption

as low as possible in order not to significantly burden the UAV

battery. A possible choice could be the NVIDIA Jetson Nano

board: it is an embedded system-on-module that can run the

Android O.S. and which can be connected to the UAV either

via a Wi-Fi module or using a wired connection. Moreover, the

specifications of this board satisfy the computational capability

required by the SVO algorithm. In fact, the typical RAM

usage by the odometry algorithm is about ≈700 MB, and

another ≈2 GB are required from the idle Android O.S., so

RAM requirements are widely met by the proposed board.

About the CPU requirements, in the paper by Forster et

al. [20] an extensive benchmark is reported. They used an

Intel Core i7-2760QM which, compared with the ARM A57

quad-core on the NVIDIA board results to have some extra

high-level features and a slightly higher clock frequency. From

a) publicly available benchmarks on these exact machines

and which involve similar operations [30], and b) validated

through performance comparisons on available machines in

our lab, we deduce that the performance degradation can be

conservatively assumed not to exceed 75%. This translates

into a performance degradation factor of ≈ 0.29x in the SVO

algorithm, resulting in 0.29 ∗ 400 ≈ [100 − 120] fps, which

still abundantly satisfies the real-time processing requirements

of the considered reference scenario. To conclude, therefore,

after only a first preliminary analysis and prototyping, this

new procedure promises to be an interesting development

that is worth to be further explored in the future. Besides

this new possible implementation, other improvements can be

carried out to improve the performance and the usability of the

flight system software. For instance, the duration of the initial

alignment phase could be reduced using information about

previous flights. To this aim, a dataset about the previously

overflown areas might be stored, performing the geotagging

of some significant key points detected. In this way, the UAV

would have in-memory information about the areas already

seen, which could accelerate the initial phase of each flight.

Moreover, these geo-tagged points can also be used to perform

a realignment procedure during the flight: when a known point

of interest (previously geotagged) appears in the framed scene

it can be taken as a reference to refine the estimated position

and to increase the overall accuracy.
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