
18 January 2025

Iadanza, E., Chilleri, C. (2019). Input Clinical Parameters for Cardiac Heart Failure Characterization Using
Machine Learning. In IFMBE Proceedings (pp.328-334). Cham : Springer [10.1007/978-3-030-30636-6_45].

Input Clinical Parameters for Cardiac Heart Failure Characterization Using
Machine Learning

Publisher:

Published:

DOI:10.1007/978-3-030-30636-6_45

Terms of use:

Open Access

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. Works made available under a Creative Commons license can be used according to the terms and
conditions of said license.
For all terms of use and more information see the publisher's website.

Availability:

Springer

This version is availablehttp://hdl.handle.net/11365/1215385 since 2022-09-05T15:27:27Z

Original:

This is the peer reviewed version of the following article:



 1 

Input Clinical Parameters for Cardiac Heart Failure Characterization Using 
Machine Learning 

E. Iadanza1 and C. Chilleri2 

1 University of Florence/Department of Information Engineering, Florence, Italy 
2 Degree Course in Mechanical Engineering / School of Engineering, Florence, Italy 

Abstract — Congestive Heart Failure (CHF) is a serious 
chronic cardiac condition that brings high risk of urgent hospi-
talization and could lead to death.  In this work we show how all 
the input clinical parameters for classifying CHF using Machine 
Learning can be acquired. The requested input are Blood Pres-
sure, Heart Rate, Brain Natriuretic Peptide, Electrocardio-
gram, Blood Oxygen Saturation, Height, Weight and Ejection 
Fraction. The next step will be designing a novel device and con-
necting it to our Machine Learning classifier. A particular at-
tention will be put to the assessment of electromagnetic compat-
ibility (EMC) with other devices, taking into account that this 
new device will be used in many different settings (home, out-
door, etc.). 
 
Keywords — Congestive Heart failure, Machine Learning, Clin-
ical input, Device, Home monitoring, ECG, Blood Pressure, 
Heart Rate, SpO2, BNP, Ejection Fraction, Weight, Height. 

 
 

I. INTRODUCTION 
 
In this work it is described how to acquire input features to 
feed a Machine Learning (ML) Decision Support System 
(DSS) for Congestive Heart Failure (CHF) aiming at offering 
an efficient and cost-effective solution to enforce patients’ 
home monitoring, in order to prevent inappropriate hospital-
izations while improving the ability of self-diagnosing exac-
erbations.  
This solution is based on the improvement of the multi-sens-
ing device proposed by Pollonini et al. [1], together with the 
machine learning DSS described by Guidi et al. [2][3][4]. 
The clinical parameters that are needed as input to the se-
lected machine learning classifier, described in [2] are the 
following:  

• 12-Lead ECG 
•  Systolic Blood Pressure 
•  Diastolic Blood Pressure 
•  Ejection Fraction 
•  Height  
•  Weight 
•  Oxygen Saturation 
•  Heart Rate 
•  BNP (Brain Natriuretic Peptide) or NT-proBNP 

 

Our study started by examining the most recent scientific de-
velopments in literature, focused on different wearable health 
devices and home telemonitoring systems. [5] The purpose 
of all devices is to be comfortable, small in dimensions, easy-
to-use, unobtrusive and interoperable among various compu-
ting platforms, in order to provide better health care service 
and affordable price for aging people.    
Flexibility is also a crucial point for wearable devices. Ma-
jumder et al. presented a review of the development in wear-
able systems by comparing the most significant contributions 
in each field. [6] Wearable sensors attracted the attention of 
many researchers in recent years according to the develop-
ment in low-power and compact wearables (sensors, actua-
tors, smart textiles). However, the necessity of monitoring a 
set of physiological parameters with a minimum number of 
electrodes and sensors that also ensure information privacy 
and data security needs more research and technology devel-
opments. Hence, we will treat each parameter aiming at ob-
taining an improved multi parameter system that can be ade-
quate for the scope of the ML algorithms. 
All the adopted sensors will be based on contactless meas-
urement techniques, thus avoiding the use of gel for the con-
duction of the signal and possible skin irritation due to con-
tact. Wearable and textile-based sensors are still a new field 
with opportunities to build innovative products and has be-
come one of the main research avenues in the textile field. [7] 
 

II. METHODS 
 
A. 12-Lead ECG 

 
To obtain a full 12-leads Electrocardiogram (ECG), instead 
of using the typical approach of using 10 electrodes, we con-
sider adopting the EASI model, proposed by Dower [8] and 
further improved by using ML and regression techniques [9]. 
The EASI-lead monitoring system requires only five, opti-
mally placed, electrodes and it can adequately reconstruct the 
waveforms of the 12 leads. The signals are derived from four 
thorax electrodes plus one reference electrode: this reduced 
number of electrodes improves the comfort and mobility for 
the patients while reducing the sensitivity to noise. The EASI 
lead system uses the Frank [10] E, A, and I electrode loca-
tions, plus an electrode S. The electrode S is positioned at the 
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upper sternum, E at the lower sternum, A and I at the left and 
right mid-axillary, respectively, while the final electrode can 
be placed at any positions for ground. In Dower’s method 
paired signals A-I, E-S and A-S are used, derived as a 
weighted linear sum. [8] This could be a good basis for de-
riving a 12-leads ECG. 
 

  
 

Figure 1: Standard 12-lead ECG System (left) vs. EASI-
lead System (right) [9] 
  
In a recent research Kaewfoongrungsi et al. [9] compared 
five different ML and regression techniques to find which 
model was more effective in deriving 12-leads ECG signals. 
From their experiments they concluded that the best perfor-
mance was obtained using Support Vector Regression (SVR) 
and Artificial Neural Network (ANN). Based on the existing 
literature, we assume that the accuracy of this solution could 
be sufficient for the scope of the ML algorithms. Different 
considerations might be done, should the EASI model be 
used by a cardiologist for performing his diagnosis, which is 
not our case [11]. 
 
B. Systolic Blood Pressure and Diastolic Blood Pressure 
 
Cuffless blood pressure monitoring has been presented in 
previous researches in which recent efforts in developing 
next-generation blood pressure monitoring devices with in-
novative wearable sensors were highlighted. [12] Pulse Wave 
Velocity (PWV) could be one possible method to estimate 
noninvasive cuffless blood pressure (BP). It can be obtained 
using the distance and the Pulse Transit Time (PTT) of the 
blood between two arterial sites. A common way to measure 
PWV and PTT is by combining the ECG signal and the pho-
toplethysmography (PPG) acquired at the level of the finger 
or the toe. Moreover, there are several main measurements 
that can be applied, such as accelerometers, pressure sensors, 
and bioimpedance (BI). In case of the PPG sensor, the need 
for a light-emitting source for the reflection method and the 

necessity of a direct and tight contact with the skin are draw-
backs. It can require higher levels of power and users might 
feel uncomfortable. [13]  
 
Calculation:    PWV=  D/PTT 

 

 
Figure 2. Methodology of pulse wave velocity (PWV)-based 
blood pressure (BP) estimation. D is the distance from the 
arterial sites. [13] 
 
In order to cope with the limitations of the above described 
methods, Liu et al. [14] replaced the PPG signal with the im-
pedance-plethysmography (IPG), used to detect the PTT. 
Then, they designed an IPG arm ring that could measure an 
accurate IPG signal. They compared the change of PTTPPG 
(the PTT from the ECG and the PPG signals) with that of 
PTTIPG (from the ECG and the IPG signals). Their results 
showed that the change of the systolic pressure had a better 
relationship with the change of the PTTIPG compared to the 
PTTPPG (r = 0.700 vs. r = 0.450). Moreover, the IPG ring with 
spot electrodes would be more suitable to develop with the 
wearable cuffless blood pressure monitors. This happens be-
cause the electrodes are placed symmetrically and the IPG 
ring could be rotated around, so they only need to make slight 
contact with the skin. Soft material would not feel uncom-
fortable to patients.  
Although these approaches are interesting, Simjanoska et al. 
[15] have developed a method for the BP estimation by using 
only ECG signals. They acquired BP by introducing com-
plexity analysis in the feature extraction process as well as a 
stack of ML models for more robust predictive models. In the 
experimental results they obtained that with the use of a cal-
ibration, the method can achieve results close to those of a 
common medical device for BP estimation. This research 
represents a contribution on the use of ECG sensor without 
additional devices for detecting BP. It provides with a de-
monstrable relationship between BP and ML that could be an 
innovative development in this field.  
However, there is still a need for a more in-depth analysis 
about the most accurate cuffless method. 
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C. Ejection Fraction 

 
Ejection Fraction (EF) refers to the measurement, expressed 
in percentage, of  blood amount pumped out of the ventricles 
with each contraction. EF measurement requires Echocardi-
ography or Magnetic Resonance Imaging.  
Hence, this clinical parameter could not be simply acquired 
in the proposed device, without requiring external input from 
these pieces of equipment. 
 
 
D. Weight and Height  
 
This parameter is crucial for diagnosis CHF worsening. 
There are some methods for estimating both weight and 
height using computer vision. Weight measurement using 
these techniques is currently not accurate enough, therefore 
it will be acquired using a Bluetooth scale, according to Pol-
lonini et al. [1]. Instead Height will be detected with a 
webcam, using computer vision systems. 
 
 
E. Oxygen Saturation 
 
The blood oxygen saturation level (SpO2) indicates the per-
centage of oxygenated hemoglobin molecules in arterial 
blood. For its detection, a textile-based sensing principle for 
long term PPG monitoring could be adopted [16]. This pho-
tonic textile, using embroidered optical fibers and working in 
reflection mode, bestows a highly flexibility. It is very versa-
tile for wearable long-term monitoring, allowing the meas-
urements in different parts of the body and enhancing the ac-
ceptance of the wearer. SpO2 was determined by using a 
modified Beer-Lambert law for measuring the light attenua-
tion at two different wavelengths (632 nm and 894 nm). All 
the recorded data were imported into MATLAB R2012b for 
further signal processing.  
 

 
 
 

Figure 3. Sketch presenting embroidered optical fibers. 
Where (1) optical fibers stitched to couple the light out; (2) 
three-dimensional embroidered black ring to prevent light 
short circuit. (3),(4) and (5) represent rings of optical fibers 
stitched to couple the light in. Each “V”-shaped line in the 
rings represents a portion of a single optical fiber (left).Top 
view of the photonic textile: light is delivered by the central 
fiber, while the black ring prevents “short circuit”. A woven 
textile is used (right). [16] 
 
F. Heart Rate 
 
Heart Rate (HR) can be easily extracted from ECG (R-peak) 
or PPG signals [16][17]. Although these measurements have 
two different physiological origins, they contain a similar 
heart rate information. The PPG monitor is the same used for 
detecting SpO2, therefore we could monitor both these pa-
rameters using a single device.  
Instead, for heart rate detection from ECG the most used al-
gorithm was developed by Pan and Tompkins [17] and later 
improved by many authors. In 2006 Paoletti et al. [18] com-
pare it with a new algorithm. They demonstrated that both 
algorithms showed similar performances in order to detect 
QRS complexes, but the new one had the advantage of being 
faster.  
 
G. BNP (Brain Natriuretic Peptide) or NT-proBNP 
 
BNP or NT-proBNP are identified as the standard biomarkers 
for CHF diagnosis and prognosis. Sarangadharan et al. [19] 
developed a hand-held field effect transistor (FET) based bi-
osensor aiming at detecting Brain Natriuretic Peptide (BNP) 
from a single drop of whole blood, without sample pre-treat-
ments. They created an integrated portable biosensor system 
that could allow whole blood diagnostics in five minutes. It 
works by separating the cells from plasma using gravity. The 
authors also show their device can be used both in a face 
down or a face up configuration, with no significant differ-
ences in performance. Hence its portability and its rapid di-
agnosis could be a plus for home caring and clinical applica-
tion. 
 

 
IV. CONCLUSION 

  
In this paper we showed how all the required parameters for 
feeding a ML decision support system for CHF can be ac-
quired using simple techniques and sensors that might be en-
gineered in a single hardware device. The next step will be 
designing this novel device and connecting it to our ML clas-
sifier [20]. In previous researches Guidi et al. investigated 
some techniques for classifying CHF, such as Classification 
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And Regression Tree (CART), Random Forest and other al-
gorithms, obtaining good results in severity assessment and 
in reducing clinical errors. [3] [21] 
A particular attention should be put in assessing the electro-
magnetic compatibility (EMC) with other devices (electro 
medical equipment, personal devices, home devices), taking 
into account that this new device will be used in many differ-
ent settings (home, outdoor, etc.). [22] 
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