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Abstract 24 

Indirect measures of soil invertebrate body mass M based on equations relating the latter to 25 

body length (l) are becoming increasingly used due to the required painstaking laboratory 26 

work and the technical difficulties involved in obtaining some thousands of reliable weight 27 

estimates for animals that can be very small. The implicit assumption of such equations is that 28 

  dM
dV

δ=  , where V is body volume and δ is a constant density value. Classical Euclidean 29 

scaling implies that 3V l M∝ ∝ . One may thus derive M from l when  the latter can provide a 30 

good estimate of V and the assumption of a constant δ is respected. In invertebrates, equations 31 

relating weight to length indicate that the power model always provides the best fit. However, 32 

authors only focused on the empirical estimation of slopes linking the body mass to the length 33 

measure variables, sometimes fitting exponential and linear models that are not theoretically 34 

grounded. This paper explicates how power laws derive from fundamental Euclidean scaling 35 

and describes the expected allometric exponents under the above assumptions. Based on the 36 

classical Euclidean scaling theory, an Equivalent Sphere is defined as a theoretical sphere 37 

with a volume equal to that of the organism whose body mass must be estimated. The 38 

illustrated application to a data set on soil oribatid mites helps clarify all these issues.  Lastly, 39 

a general procedure for more precise estimation of M from V and  δ is suggested. 40 

 41 

Key words: volume; density; scaling; weight; indirect estimate; soil invertebrates 42 
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Introduction 43 

Weighing soil invertebrates with accurate electronic microbalances involves painstaking 44 

laboratory work to obtain a very high number of measures for animals that can be very small 45 

(i.e., microarthropods < 0.5 mm3).  Completing accurate estimates for relatively large 46 

terrestrial invertebrates (molluscs, coleopterans) can be very time consuming, especially for 47 

community studies requiring thousands of measures. There are high quality ecological works 48 

based on indirect measures of body mass derived from equations relating the latter to body 49 

size (e.g. Saint-Germain et al. 2007). Thanks to earlier research, similar equations are 50 

available for other animal groups, including microarthropods such as oribatid mites (i.e., 51 

Berthet 1964; Lebrun 1971) and springtails (Petersen, 1975), and many insects (Rogers et al. 52 

1976). However, when using size equations for weight estimates, different parameters are 53 

required for different shape types (Berthet 1967; Lebrun 1971). Bias may also arise from 54 

sexual dimorphisms (females bigger than males) or life cycles (gravid vs non-gravid). 55 

Unfortunately, equations are usually built on empirical grounds: authors search for the model 56 

that best fits data on body mass (M) and length (l). In some cases models not theoretically 57 

grounded in biometrical and geometrical principles, for example linear models, were also 58 

tested and (not surprisingly) found to have a very poor fit (i.e. Brady and Noske 2006). The 59 

present paper undertakes a theoretical analysis of the implicit assumptions and logic that 60 

underlie past research on empirical M-l  relationships. Furthermore, stemming from theory, a 61 

more general approach is proposed with an example of application to the soil oribatid mite 62 

data set compiled by Lebrun (1971).   63 

 64 
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Theory 65 

In agreement with reports by specialists on many invertebrate taxa (i.e.: Petersen, 1975; 66 

Rogers et al. 1976; Berg 2000; Brady and Noske 2006), Lebrun (1971) found a very good fit 67 

when using the power model  68 

log( ) log log( ) log( )a bM cL W M c a L b W= → = + +  (eq. 1) 69 

for relating body mass M to length measures L (total length) and W (maximum width) in 70 

oribatid mites. Interestingly, Lebrun did not seem to realise the theoretical meaning of 71 

parameters a, b and c. Instead, he implicitly used them as typical statistical parameters of 72 

model fitting routine. We here argue that the fit of such equations is excellent because 73 

   dM
dV

δ=  (eq. 2) 74 

and  75 

3V l M∝ ∝ (eq. 3) 76 

which implies that the constant c of (eq. 1) must also include information on density δ. Let us 77 

assume that the body shape of oribatids is well approximated by an ellipsoid of dimensions L, 78 

W and H (Fig. 1). The letter H indicates body height, a rarely available parameter that is 79 

difficult to measure. Let us also define an equivalent sphere (EqSph) as the sphere with a 80 

volume equal to that of the above ellipsoid or of any other shape oribatids can assume. The 81 

oribatid volume is therefore 82 

34 4
3 3V LWH rπ π= = , where r is the radius of EqSph and L, W and H are the three axes of 83 

the ellipsoid. 84 

It follows that 1/3 1/3 1/3r L W H= . 85 

From eq. 2 and Lebrun’s model of eq. 1 it follows that 86 

3 3 34
3 4

a b a bc cV L W r r L Wπ
δ δπ

⎛ ⎞= = ⇒ = ⎜ ⎟
⎝ ⎠

 eq. (4).  87 
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From Euclidean scaling and the proportionality of eq. 3, the first perhaps evident but 88 

important conclusion is that a + b = 3 because 3 a bV l L W∝ ∝  and L and W are lengths. This 89 

result is empirically confirmed by the regression results of Lebrun (1971), who for example 90 

found that in three different data sets on oribatid mites with different shapes,  a and b were 91 

respectively 1.50 and 1.50, 2.10 and 0.90, 1.60 and 1.40. This is simply a consequence of 92 

classical Euclidean scaling by eq. 2 and 3 and indicates that L and W allow a good estimation 93 

of the volume V. This definitely clarifies the theoretical meaning of original Lebrun’s 94 

parameters: they regulate the allometric scaling between body mass and length and are not 95 

simple statistical parameters. The same would be true if it were possible to accurately estimate 96 

M from just L. In this case, the equation would become 97 

3 3 34
3 4

b bcr cL r Lδ π
δπ

= ⇒ = eq. (5) 98 

 and b = 3 because 3 3V L l∝ ∝ . Accordingly,  empirical results obtained for several taxa (e.g. 99 

spiders, beetles, flies and midges) usually obey or very nearly obey this equation (Petersen, 100 

1975; Rogers et al. 1976; Berg 2000; Brady and Noske 2006). The interpretation is that the 101 

more L allows good estimation of V, the more it allows estimation of M. Accordingly, if b ≠ 3 102 

then the one known dimension does not allow correct indirect estimation of volume. 103 

Alternatively, the assumption of eq. 2 is wrong but, as clearly shown below, this is highly 104 

unlikely because of the fundamental characteristics of biological tissues. 105 

Eq. 5 can be written as   106 

3
3 33 4

34
c rr l c

l
δπ

δπ
⎛ ⎞= ⇒ = ⎜ ⎟
⎝ ⎠

eq. (6) 107 

with l  is any linear length that combined with the parameter δ allows precise estimation of V. 108 

The most interesting feature of this formulation is that when regressions relating M to l result 109 

in a very good fit, it is possible to appropriately estimate V from l . Note that l is not 110 

necessarily a classical standard length like total length or width. It can also be a combination 111 
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of several l that allow a good estimation of V. This is more clearly explained below. The more 112 

l is similar to r, the more c is near to δ in the sense that 113 

 4lim 3l r
c δπ

→
=  114 

If one can therefore find any l for which the volume of EqSph can be calculated assuming r = 115 

l, then the regression model allows the estimation of animal density. In practice this is very 116 

difficult. However, in theory, assuming that one can find such an l, one must then collect a 117 

large array of weights and lengths for the best estimate of δ: under the above assumptions, this 118 

is achieved using the model that provides the most accurate estimate of M based on l, and this 119 

is possible because l allows estimation of V. If one finds a very good model (R2 > 0.98), then 120 

the estimated δ can be used to also estimate the M of other animals, provided that one has an 121 

equation for estimating V from length measures. This would eliminate the need to estimate the 122 

parameters of eq. (4), which seem to be affected by shape variations, as stressed in earlier 123 

works (e.g. Lebrun, 1971). Unfortunately, there is no principle or geometrical rule allowing 124 

the a priori identification of an l = r . The only solution is to obtain precise estimates of 125 

density δ through direct laboratory measurements. Firstly, this would help verify the 126 

reasonable assumption of eq. 2. Secondly, when a close estimate of δ is obtained, it is possible 127 

to fit models derived from eq. (5). If these provide an excellent fit (R2 > 0.98), the ratio (r/l) 128 

can be precisely estimated from δ and c, the latter being the regression constant. One can then 129 

use this ratio and the experimental value of δ to estimate any M using the EqSph volume. 130 

Knowledge of  r/l and δ from the model estimate of c  allows a priori calculation of any 131 

organism volume by estimating the volume of the EqSph with 3 33
4

cr l
δπ

= . One can then use 132 

M Vδ= to estimate body mass. 133 

An important feature of this theory is that, at first approximation, an almost optimal value of δ 134 

can be derived on physical and basic biological grounds. Oribatid mites float in a NaCl-135 

saturated water solution, which has a specific gravity ≈ 1.20: this means that the specific 136 
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gravity of oribatids is below this value. This characteristic buoyancy allows wet extraction of 137 

soil animals and does not come as a surprise. Indeed, the specific gravity of all biological 138 

tissues is slightly higher than that of water (1.00) because cells and tissues mainly consist of 139 

water and dissolved or suspended macromolecules and organelles.  For instance, early works  140 

already indicated that the specific gravity of arthropod blood ranges from 1.012 to 1.043 141 

(Rustum Maluf, 1969). Accordingly, the specific gravity of Chironomus larvae ranges from 142 

1.026 to 1.045 (Edwards, 1957). In general, classical laboratory measurements of specific 143 

gravity performed across several phyla (from protozoa to higher invertebrates) result in values 144 

of 1.001 to 1.046 (Williams, 1900). Such narrow ranges are characteristic of living organisms, 145 

including vertebrates, notwithstanding the macroscopic differences between tissues like bone 146 

and blood (i.e. Morales et al., 1945; Watanabe et al. 2006). For example, recent measures on 147 

Baikal seals indicate that this species has a specific gravity of 1.027 to 1.046 (Watanabe et al. 148 

2006). Although small variations of the third decimal digit may have important biological 149 

implications because, for instance, they affect body buoyancy, for the aim of this paper and 150 

given the lack of precise experimental measurements on oribatid mites, an average value of 151 

1.030 ± 0.015 is assumed. Specific gravity is a dimensionless number equal to the ratio 152 

between the density of the target object and that of water at 4 °C and 1 atm, which is 0.999 ≈ 153 

1 g/cm3. However, at a given environmental pressure, water density changes as function of 154 

temperature. Nevertheless, between 4°C and 30 °C water density varies from 0.999 g/cm3 to 155 

0.996 g/cm3 and thus, given the adopted approximation for specific gravity, a density δ = 1.03 156 

g/cm3 can be assumed.  157 

 158 
An example: models for oribatid body mass estimates 159 

We reanalysed data reported in Appendix (1) from the original work of Lebrun (1971). 160 

They consist of 44 associated measures of body length, width and weight from 36 oribatid 161 

mites species of different shape that are encountered within this ecologically important soil 162 
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taxon. Linear models (obtained by least squares estimates) were used to derive log M from log 163 

L and log W. In particular, competing models built on the above theory were: model 1, 164 

Lebrun’s model of eq. 1; model 2, called the “L model”, which assumes that l = L; model 3, 165 

called the “W model”, is the same as model 2 but with l  = W ; model 4, called the “Mean 166 

model”, where l = f (L, W)= L + W. 167 

Competing model equations were: 168 

model 1: log log log logM c a L b W= + + , with a + b expected to equal 3. 169 

models 2 and 3: log log logM c a l= + , with l = L or W and a = 3 170 

model 4: ( )log log log ( , )M c a l f L W= + =  with a = 3 and l = L+W 171 

Models 2, 3 and 4 have interesting potential applications. For instance, if model 4 had the best 172 

fit, then one could estimate the EqSph volume V  by assuming δ = 1.03 g/cm3 and calculating 173 

the ratio r/l using eq. 6, without having to take into account body shape and associated 174 

variations in a and b (Lebrun, 1971). The model 4 assumption that l = L+W is based on the 175 

idea that oribatids usually have an ovoidal shape, the volume of which could be well 176 

approximated by a sphere with a radius intermediate between that of half the two largest body 177 

measures (total Length and maximum Width). According to this idea, one can simply include 178 

this information by summing the two linear measures (l = L+W).  179 

Lastly, Lebrun (1971) stated that the model 1 parameters change if one performs separate 180 

analyses on species after grouping them into morphological categories. For example,  Lebrun 181 

(1971) identified three main categories: Achipteriforms, which have a more or less elongate 182 

oval shape (this includes superfamilies like Pelopoidea, Oribatelloidea and Ceratozetoidea), 183 

Caraboidiforms, which have a squared silhouette (e.g. the genera Carabodes and 184 

Tectocepheus)  and Nothroiforms, with a squared to almost triangular shape (e.g.  Camisia 185 

and Nothrus). Other morphological types may include Phthiracariform (spheroidal to ovoidal) 186 

or Hypochthoniiform, which may be approximated by a combination of different (squared 187 
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trapezoid shape. Lebrun’s estimate of parameters a and b varied a lot among the different 188 

categories. Here, the classification used in assessing the Lebrun hypothesis does not exactly 189 

match but strongly resembles that proposed by Lebrun (1971; see the “Shape” column in 190 

Appendix 1). The following two models were thus also considered among the competing 191 

ones:   192 

model 5: log log log log shapeM c a L b W= + + + , under the hypothesis that shape only 193 

effects c. 194 

model 6: log log shape* log shape* log shapeM c a L b W= + + +  under Lebrun’s interaction 195 

hypothesis that different shapes also have different a and b values. 196 

The model-building strategy was based on the idea that not all possible models but only those 197 

with precise theoretical foundations must be considered during statistical analysis (Burnham 198 

and Anderson, 2002; Johnson and Omland, 2004). This approach is rather different from that 199 

adopted in past similar studies, where authors just empirically searched for the best fitting 200 

model and accordingly tested several different types of regressions, including very 201 

improbable ones that assume M l∝ . In keeping with the logic of this paper, model 202 

assessment and selection was thus based on Akaike’s theoretic approach and information 203 

criterion corrected for sample size (AICc: Burnham and Anderson, 2002; Johnson and 204 

Omland, 2004). One of the advantages of this strategy with respect to more traditional ones 205 

(e.g. hypothesis testing based on likelihood ratios) is that the competing models analysed in 206 

the present paper are not nested. In these cases, AIC is one of the best model-assessment tools 207 

(Johnson and Omland, 2004). Models were ranked according to Akaike’s criterion and the 208 

minimum AICc (below AICmin) was used as the reference for calculating the AIC difference 209 

(Δi) and model weights (wi). Models within 2 AIC units of the AICmin were considered 210 

competitive and more plausible than the others, and their weights were considered a measure 211 

of their robustness (Burnham and Anderson 2002). Linear models were performed using R 212 
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(The R Foundation for Statistical Computing Version 2.3.0 (2006-04-24) ISBN 3-900051-07-213 

0), available at http://www.r-project.org.  214 

 215 

Results and concluding remarks 216 

All models resulted in an excellent fit with very high adjusted R2, but ranking based on 217 

Akaike’s criterion (Tab. 1) clearly showed that model 4 was the best model with a weight > 218 

0.80 and  Δ AICc with respect to the second-best model > 3, indicating that all other 219 

competing models are weak to very weak with respect to the best one (Burnham and 220 

Anderson 2002). Although Lebrun’s interaction hypothesis represented by model 6 apparently 221 

resulted in the best fit because it had the highest R2, it was highly penalised by Akaike’s 222 

information criterion because of the very high number of parameters, which make it non-223 

parsimonious relative to its predictive power (Burnham and Anderson 2002). This shows that 224 

one can simply estimate the EqSph volume without taking into account shape variations: they 225 

do play a role, but in the framework of the presented theory their role seems irrelevant. 226 

The estimated a parameter is always consistent with theoretical expectations (Table 2): the 227 

only significant exception is the poor fit of model 3, which indicates that W alone does not 228 

provide a reliable estimate of V and thus of M. In general, the two worst models are those that 229 

consider only one measure; it therefore seems fundamentally important to have at least two 230 

linear measures to jointly represent body size and allow a reliable estimate of body volume. 231 

For the best model the constant log c = -17.17 ± 0.46. For δ = 1.03 10-6 μg/μm3, (r/l) = 0.201 232 

(the same units of Appendix 1 were used in these calculations). Therefore, future estimates of 233 

the body mass M of an oribatid can be based on the volume of the EqSph with r = 234 

0.201(L+W). For example, one can take L = 571 μm and W = 249 μm from the first entry of 235 

Appendix (1). This results in an r = 165 μm, an oribatid volume V = EqSph V= 4/3πr3= 1.88 236 

107 μm3 and body mass M = 19.4 μg. The observed M = 18.1 μg. One can also estimate r for 237 

each datum and plot M as function of r or, equivalently, of its EqSph V (Fig. 2). A power law 238 
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with exponent a ≈ 3 obviously relates r to M, whereas a linear model with slope ≈ δ relates M 239 

to EqSph V. 240 

Part of the residual variations are likely due to the fact that δ was assumed and not 241 

experimentally measured. It probably also varies slightly (of the order of 10-3) across species, 242 

populations and individuals. Nevertheless, the collected data allow reliable estimates and are 243 

therefore promising for future application, especially if one considers the very small size of 244 

these animals. Ecological studies which aim to obtain precise population biomass and energy 245 

estimates would of course require accurate length measures of the populations inhabiting the 246 

study area, because generic measures from literature are subject to very high local variability 247 

(known since Lebrun, 1971). Furthermore, error propagation occurs when estimates are 248 

derived from functions combining estimated variables and their errors. Lastly, the formulated 249 

theory has been particularly successful in the case of oribatids and its extension to other taxa, 250 

especially to those for which weight and length data are already available, deserves further 251 

attention.   252 

 253 
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Table 1. Competing models ranked according to the AIC criterion 286 

Model R2 K Δ AICc Akaike’s Weight

4: [ ]log log logM c a L W= + +  0.979 3 0.000 0.823

1: log log log logM c a L b W= + +  0.978 4 3.362 0.153

5: log log log log shapeM c a L b W= + + +  0.978 7 7.781 0.017

6: log log shape* log shape* log shapeM c a L b W= + + +  0.983 13 9.532 0.007

2: ( )log log logM c a L= +  0.957 3 31.435 <0.001

3: log log logM c a W= +  0.931 3 52.520 <0.001

*,  interaction; R2, adjusted squared R; K, number of parameters including the estimation of 287 

residual σ2; shape, four morphological categories defined after Lebrun (1971)288 
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Table 2. Observed and expected scaling exponents 289 

 Estimated a ± SE Estimated b ± SE Theoretical Value

Model 4 (Mean model) 3.00 ± 0.07 NP a = 3

Model 1 (Lebrun) 1.90 ± 0.20 1.10 ± 0.17 a + b = 3 

Model 5 (Lebrun shape) 2.01 ± 0.32 1.01 ± 0.28 a + b = 3

*Model 6 (Lebrun interaction) for shape A 2.10 ± 0.85 0.93 ± 0.74 a + b = 3

Model 2 (L model) 3.09 ± 0.10 NP a = 3

Model 3 (W model) 2.63 ± 0.11 NP a = 3

* shape parameters for C, Q and S were not significantly different with respect to A and are 290 

therefore not reported. NP, not present.  291 

292 
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Figure captions 292 

Fig.1 The oribatid mite Scheloribates laevigatus. L = total length, W = maximum width, H = height. 293 

Fig. 2 Plot of observed weight versus the radius r and equivalent sphere volume EqSph, as 294 

estimated from model 4 (Mean model) parameters and assuming δ = 1.03 10-6 μg/μm3 295 

296 
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Figure 1: 296 

 297 

298 
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Figure 2: 298 

 299 

300 
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Appendix 1. The Lebrun data set (Lebrun, 1971). The “Shape” column is after Lebrun (1971) 300 
Species Length (μm) Width (μm) Weight (μg) Shape
Nanhermannia nana 571 249 18.1 C
Hypochthonius rufulus 632 316 22.1 Q
Eniochthonius minutissimus 358 179 4.4 Q
Nothrus silvestris 739 343 47.2 Q
Platynothrus peltifer 826 444 62.9 Q
Hermannia gibba 905 531 94.2 S
Ceratoppia bipilis 740 451 64.8 S
Hermanniella granulata 750 531 75.3 S
Tectocepheus velatus 307 173 4.2 C
Xenillus tegeocranus 960 600 55.8 C
Cepheus cepheiformis 677 483 58.8 C
Carabodes femoralis 646 383 42.6 C
Adoristes ovatus 649 401 42.8 A
Oribatula tibialis 435 279 14.6 S
Chamobates incisus 351 205 6.5 A
Euzetes globulus 1174 893 329.9 A
Diapterobates humeralis 727 476 60.9 S
Achipteria coleoptrata 620 406 39.6 A
Oribatella calcarata 623 417 38.1 A
Oribatella quadricornuta 507 321 24 A
Oppia quadricarinata 220 120 1.3 S
Oppia ornata 275 150 2.2 S
Oppia subpectinata 325 170 3.2 S
Damaeus auritus 1030 691 195 S
Damaeus onustus 1511 1018 625 S
Nothrus palustris 1025 611 172 Q
Nothrus palustris 424 209 9.3 Q
Nothrus palustris 490 232 16.2 Q
Nothrus palustris 637 311 35.2 Q
Nothrus palustris 825 431 62.8 Q
Chamobates schützi 367 255 8.3 A
Liebstadia similis 503 289 19.4 A
Scheloribates laevigatus 564 348 28.1 A
Parachipteria punctata 572 386 34.8 A
Eupelops sp 474 328 19.9 A
Carabodes femoralis 626 382 40.7 C
Odontocepheus elongatus 613 243 21.4 C
Nothrus silvestris 503 221 15.3 Q
Nothrus silvestris 605 275 27.2 Q
Platynothrus peltifer 483 227 12.7 Q
Platynothrus peltifer 693 341 38.5 Q
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Camisia spinifer 1023 459 115 Q
Camisia spinifer 590 276 24.1 Q
Camisia exuvialis 609 254 25.9 Q
A, achipteriform; C, caraboidiform; S, spheroidal; Q, quadrangular  301 
 302 
 303 


