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Abstract

This paper continues the study of model theory for fuzzy logics by addressing

the fundamental issue of classifying models according to their first-order theory.

Three different definitions of elementary equivalence for fuzzy first-order models

are introduced and separated by suitable counterexamples. We propose several

back-and-forth conditions, based both on classical two-sorted structures and

on non-classical structures, that are useful to obtain elementary equivalence in

particular cases as we illustrate with several examples.

Keywords: Mathematical fuzzy logic, first-order fuzzy logics, non-classical

logics, elementary equivalence, back-and-forth systems, model theory

1. Introduction

Starting from several seminal works (e.g. [33, 31, 24]) and firstly systematized

in Petr Hájek’s landmark monograph [22], mathematical fuzzy logic (MFL) has

been developed as a study of logical systems able to handle graded properties

(and related notions of partial truth, vagueness, fuzziness, imprecision, etc.). A5
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considerable amount of papers in the area have resulted in a deep knowledge

of, mainly, propositional fuzzy logics as collected in the series of handbooks [8].

However, propositional logics may be seen as insufficient for some purposes

because they involve only truth-functional connectives and are not expressive

enough to model some important problems in computer science and to provide10

a satisfactory tool for knowledge representation and analysis of reasoning with

graded predicates. There are indeed important areas in fuzzy set theory that

deal with first-order notions and thus can be formalized in first-order predicate

fuzzy logics such as fuzzy graphs [29], valued preference modelling [19], or fuzzy

orders and similarities [2].15

Predicate fuzzy logics in the full first-order language with universal and ex-

istential quantifiers and an arbitrary stock of functional and relational symbols

were already introduced in Hájek’s initial works. However, only recently they

have become the object of systematic research. The papers [23, 9] give axiom-

atizations and completeness theorems in a very general framework for graded20

logics and lay the foundations for an incipient model theory of such logics.

Elementary equivalence is a central notion in classical model theory that

allows to classify models by identifying those that validate the same first-order

sentences. It was introduced by Tarski [34] and later used by himself and Vaught

to study elementary extensions and elementary chains [35]. Inspired by the25

proof of Cantor’s theorem on countable dense linear orderings without end-

points [25, 27], back-and-forth systems of partial isomorphisms were introduced

to model theory, and a characterization of elementary equivalence in terms of

these systems was introduced in Fräıssé [20, 21]. Independently, the notion

was characterized using games in Ehrenfeucht [18]. For general surveys on the30

subject and historical overviews we refer the reader to [1, 5, 17, 26].

In the context of first-order fuzzy logics, the notion of elementary equivalence

was defined in [23, Definition 10], where it was used to characterize conservative

extensions of theories. A series of papers have followed this definition in various

contexts: characterization of strong completeness with respect to models based35

on a particular class of algebras [7], study of mappings and diagrams [11], ultra-
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product constructions [12], characterization of elementary equivalence in terms

of elementarily mappings [14], characterization of elementarily classes as those

closed under elementary equivalence and ultraproducts [13], and Löwenheim–

Skolem theorems for non-classical logics [15]. An alternative approach considers40

models of first-order fuzzy logics with evaluated syntax [32, 30]. Finally, an

independent, but related, stream of research is that of continuous model the-

ory, in which the underlying logic is essentially  Lukasiewicz logic expanded with

connectives for each continuous function [6, 4].

The goal of this paper is to contribute to the understanding of elementary45

equivalence of models of first-order fuzzy logics by focusing on two aspects:

a) considering three different possible generalizations of the classical notion

of elementary equivalence to the fuzzy case, that were not distinguished

in the previous literature, and

b) providing sufficient back-and-forth conditions to prove elementary equiv-50

alence of fuzzy models in particular cases.

The paper is organized as follows: after this introduction, Section 2 presents the

necessary preliminaries we need recalling several semantical notions from math-

ematical fuzzy logic, namely, the algebraic counterpart of extensions of the uni-

norm logic UL, fuzzy first-order models based on such algebras, and some basic55

model-theoretic notions. Section 3 defines the notions of elementarily equivalent,

filter-strong elementarily equivalent, and strongly elementarily equivalent fuzzy

models and separates them with natural counterexamples. Section 4 proposes

a classical approach to the problem of finding back-and-forth conditions for el-

ementary equivalence of fuzzy models by treating them as classical two-sorted60

structures. After this, Section 5 presents a genuinely non-classical approach

that, based on a syntactical notion of nested rank, allows to build layered back-

and-forth systems to prove elementary equivalence of fuzzy models restricted to

sentences up to a certain degree of syntactical complexity. Finally, Section 6

ends the paper by discussing a straightforward generalization of the results to65

a much wider framework and some other concluding remarks.
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2. Preliminaries

2.1. Fuzzy first-order models

Model theory studies mathematical structures using different formal lan-

guages. In this section we introduce fuzzy first-order models, the object of our70

study. On the one hand, they provide the semantics of first-order predicate

fuzzy logics. On the other hand, fuzzy first-order models can be seen also as

two-sorted classical structures. As a general reference for all the notions of

mathematical fuzzy logic that we will use in the paper one can consult the

handbook [8].75

As underlying propositional basis for the first-order predicate formalism, we

choose a well-established class of propositional fuzzy logics: residuated uninorm-

based logics (studied in [28]). Such class provides a reasonable framework with

several advantages: (1) it contains most of the well-studied particular systems of

fuzzy logic that can be found in the literature, (2) it includes weakening-free log-80

ics and, hence, it benefits from their modeling power for reasoning with graded

predicates as argued in [10], and (3) it retains the properties of associativity

and commutativity of the residuated conjunction which simplifies the language

and the formulation of many results.

These fuzzy logics can be introduced by means of algebraic semantics based85

on UL-algebras, that is, algebraic structures in the language L = {∧,∨,&,→

, 0, 1,⊥,>} of the form A = 〈A,∧A,∨A,&A,→A, 0
A
, 1

A
,⊥A,>A〉 such that

• 〈A,∧A,∨A,⊥A,>A〉 is a bounded lattice,

• 〈A,&A, 1
A〉 is a commutative monoid,

• for each a, b, c ∈ A, we have:

a&A b ≤ c iff b ≤ a→A c, (residuation)

((a→A b) ∧ 1
A

) ∨A ((b→A a) ∧A 1
A

) = 1
A
. (prelinearity)

It is interesting to observe that in such algebras the lattice order can be90

described in terms of → in the following way: a ≤ b iff (a→A b) ∧A 1
A

= 1
A

.
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A is called a UL-chain if its lattice is linearly ordered. If A is defined over

the real unit interval [0, 1] with its usual order, then it is called a standard UL-

chain and the operation &A is a residuated uninorm, that is, a left-continuous

binary associative commutative monotonic operation with a neutral element 1
A

95

(which need not coincide with the value 1).

Let FmL denote the set of propositional formulas written in the language of

UL-algebras with a denumerable set of variables and let FmL be the absolutely

free algebra defined on such set. Given a UL-algebra A, we say that an A-

evaluation is a homomorphism from FmL to A. The logic of all UL-algebras100

is defined by establishing, for each Γ ∪ {ϕ} ⊆ FmL, Γ `UL ϕ if and only if,

for each UL-algebra A and each A-evaluation e, we have e(ϕ) ≥ 1
A

, whenever

e(ψ) ≥ 1
A

for each ψ ∈ Γ. The logic UL is, hence, defined by means the

preservation of truth over all UL-algebras, where the notion of truth is taken as

belonging to the set of designated elements, or filter, FA = {a ∈ A | a ≥ 1
A}.105

The standard completeness theorem of UL proves that the logic is also complete

with respect to its intended semantics: the class of UL-chains defined over [0, 1]

by residuated uninorms (the standard UL-chains); this justifies the name of UL

(uninorm logic).

As we mentioned above, a majority of propositional fuzzy logics can be110

obtained by extending UL with additional axioms and rules (in a possibly ex-

panded language). A particular kind of expansions (we will refer to them in the

paper) is obtained by adding a truth-constant r for each value r in a chosen

algebra. We will also use some examples of logics satisfying the weakening law,

that is, extensions of UL in which, for each algebra A of the logic, >A = 1
A

115

(hence the filter is the singleton FA = {1A}) and ⊥A = 0
A

. We will use two

well-known examples of such logics with weakening: the Gödel–Dummett logic

G and the  Lukasiewicz logic �, respectively defined on the standard UL-chains,

[0, 1]G and [0, 1]� given by the following operations:
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a&[0,1]G b = min{a, b},

a→[0,1]G b =

 1, if a ≤ b,

b, otherwise,

a&[0,1]� b = max{0, a+ b− 1},

a→[0,1]� b =

 1, if a ≤ b,

1−a+b, otherwise.

120

A predicate language P is a triple 〈P,F,ar〉, where P is a non-empty set of

predicate symbols, F is a set of function symbols, and ar is a function assigning

to each symbol a natural number called the arity of the symbol. Let us further

fix a denumerable set V whose elements are called object variables. The sets

of P-terms, atomic P-formulas, and 〈L,P〉-formulas are defined as in classical125

logic. A P-structure M is a pair 〈A,M〉 where A is a UL-chain and M =

〈M, 〈PM〉P∈P , 〈FM〉F∈F〉, where M is a non-empty domain; PM is a function

Mn → A, for each n-ary predicate symbol P ∈ P; and FM is a function Mn →

M for each n-ary function symbol F ∈ F. An M-evaluation of the object

variables is a mapping v : V → M ; by v[x→a] we denote the M-evaluation130

where v[x→a](x) = a and v[x→a](y) = v(y) for each object variable y 6= x. We

define the values of the terms and the truth values of the formulas as:

‖x‖Mv = v(x),

‖F (t1, . . . , tn)‖Mv = FM(‖t1‖Mv , . . . , ‖tn‖
M
v ), for F ∈ F,

‖P (t1, . . . , tn)‖Mv = PM(‖t1‖Mv , . . . , ‖tn‖
M
v ), for P ∈ P,

‖◦(ϕ1, . . . , ϕn)‖Mv = ◦A(‖ϕ1‖Mv , . . . , ‖ϕn‖
M
v ), for ◦ ∈ L,

‖(∀x)ϕ‖Mv = inf≤A
{‖ϕ‖Mv[x→a] | a ∈M},

‖(∃x)ϕ‖Mv = sup≤A
{‖ϕ‖Mv[x→a] | a ∈M}.

If the infimum or supremum does not exist, the corresponding value is unde-

fined. We say that M is a model (or P-model if we want to stress the predicate135

language) if it is safe, that is, if ‖ϕ‖Mv is defined for each P-formula ϕ and

each M-evaluation v. Formulas without free variables are called sentences. Ob-

serve that if ϕ is a sentence, then its value does not depend on a particular

M-evaluation; we denote its value as ‖ϕ‖AM.
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The notion of fuzzy first-order model just defined allows to provide a seman-140

tics for the first-order counterparts of the propositional fuzzy logics we have

mentioned above. One can give axiomatizations and corresponding complete-

ness theorems for such first-order fuzzy logics; however, this is not the topic of

the present paper in which we concentrate on the study of the models.

The connection with two-sorted languages and structures is quite straightfor-145

ward. We have described it in formal details in [15, Section 7]. The idea is that

each fuzzy first-order structure 〈A,M〉 can be seen as a two-sorted structure:

(1) the first sort contains the elements of A and has the algebraic operations

as functionals applied to the first sort and taking values in the same sort, (2)

the second sort contains the elements of the domain M and has the functional150

symbols of the predicate language acting as inner functionals of the second sort

while the predicate symbols are functionals that apply to elements of the second

sort and return values in the first sort. The two-sorted language has an equality

symbol for each sort, which makes it expressive enough to describe the fuzzy

structure to a big extent. In particular, one can build two-sorted formulas to155

express truth values of formulas of our predicate languages for fuzzy logics.

Finally, let us recall several notions of mappings and homomorphisms be-

tween fuzzy first-order structures that will be used in the paper. Let A and B

be UL-chains and let 〈A,M〉 and 〈B,N〉 be P-structures. Let f be a mapping

from A to B, and g be a mapping from M to N . The pair 〈f, g〉 is said to be160

a mapping from 〈A,M〉 to 〈B,N〉. If f preserves all the existing infima and

suprema, then 〈f, g〉 is called a σ-mapping. A mapping 〈f, g〉 is said to be a

strong homomorphism if:

1) f is a homomorphism of UL-algebras.

2) g : M → N is a homomorphism between the algebraic reducts of the first-

order structures, that is, for every n-ary function symbol F ∈ P and

d1, . . . , dn ∈M ,

g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn)).
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3) For every n-ary predicate symbol P ∈ P and d1, . . . , dn ∈M ,

f(PM(d1, . . . , dn)) = PN(g(d1), . . . , g(dn)).

We say that a strong homomorphism 〈f, g〉 is an elementary homomorphism

if for every formula ϕ(x1, . . . , xn), and d1, . . . , dn ∈M ,

f(‖ϕ(d1, . . . , dn)‖AM) = ‖ϕ(g(d1), . . . , g(dn))‖BN .

2.2. Back-and-forth systems for fuzzy first-order models165

Now we introduce the notions of partial isomorphism and of back-and-forth

systems between two fuzzy first-order structures. These notions are not new

but a reformulation of the usual definitions for classical two-sorted structures.

Definition 1 (Partial Mapping). Let 〈A,M〉 and 〈B,N〉 be P-models. Let p

be a partial mapping from A to B, and r be a partial mapping from M to N .170

The pair 〈p, r〉 is said to be a partial mapping from 〈A,M〉 to 〈B,N〉.

Definition 2 (Partial Isomorphism). A partial mapping 〈p, r〉 is a partial iso-

morphism from 〈A,M〉 to 〈B,N〉 if

1. p and r are injective,

2. for every n-ary connective λ ∈ L, and every a1, . . . , an ∈ A, such that

a1, . . . , an, λ
A(a1, . . . , an) ∈ dom(p),

p(λA(a1, . . . , an)) = λB(p(a1), . . . , p(an)),

3. for every n-ary functional symbol F ∈ P and every d1, . . . , dn ∈ M such

that d1, . . . , dn, FM(d1, . . . , dn) ∈ dom(r),

r(FM(d1, . . . dn)) = FN(r(d1), . . . , r(dn))

4. For every n-ary predicate symbol R ∈ P and d1, . . . , dn ∈ M such that

d1, . . . , dn ∈ dom(r),

p(RM(d1, . . . , dn)) = RN(r(d1), . . . , r(dn)).
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Remark 3. Observe that from the second condition of Definition 2 it follows175

that p(0
A

) = 0
B

and p(1
A

) = 1
B

, whenever such elements are in the domain of

p. This, together with the first condition, implies that for every a ∈ dom(p), a ∈

FA if and only if p(a) ∈ FB. Observe, finally, that clause 4 states implicitly that

for every n-ary relational R, and every d1, . . . , dn ∈ M , such that d1, . . . , dn ∈

dom(r), it holds that RM(d1, . . . , dn) ∈ dom(p).180

An example of a partial isomorphism is 〈∅, ∅〉. A less trivial example is

described as follows:

Example 4. Let P be a predicate language with a binary predicate symbol R

and a binary functional symbol F . Consider the P-models 〈A,M〉, and 〈A,N〉,

where M = N = {0, 1, 2}, and A is the UL-chain defined on {0, 12 , 1} by the

monoidal operation given by the table:

∗ 0 1
2 1

0 0 0 0

1
2 0 1

2 1

1 0 1 1

Observe that FA = { 12 , 1} (because the constant 1 is interpreted as the neu-

tral element 1
2). The interpretation of F in both models is the operation ⊕

defined as follows:

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

RM is defined by the matrix:
0 1 1

1
2

1
2 1

1 1 1
2
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and RN is defined by the matrix:
0 1 0

1 1
2 1

0 1 1
2


Now consider the partial mapping 〈p, r〉 from 〈A,M〉 to 〈A,N〉, where p =

IdA and r = {〈1, 2〉, 〈2, 1〉}. It is easy to check that 〈p, r〉 is a partial isomor-

phism.185

Example 4 shows that, for a partial mapping 〈p, r〉 to be a partial isomor-

phism, dom(r) is not necessarily a substructure of M (similarly, it is easy to

obtain an example showing that dom(p) is not necessarily a subalgebra of A).

From Definition 2 it easily follows a particular way in which, in the case of

relational languages, partial isomorphisms preserve atomic formulas:190

Lemma 5. Let P be a relational language and 〈p, r〉 a partial isomorphism

between P-structures 〈A,M〉 and 〈B,N〉. Then, for every atomic formula

ϕ(x1, . . . , xn), and d1, . . . , dn ∈ dom(r),

‖ϕ(d1, . . . , dn)‖AM ∈ F
A ⇒ ‖ϕ(r(d1), . . . , r(dn))‖BN ∈ F

B.

The previous lemma cannot be extended to languages with functional sym-

bols. Indeed, consider in Example 4 the formula R(x⊕ y, y). Then it is easy to

compute that ‖R(x⊕ y, y)(2, 1)‖AM = 1 ∈ FA but ‖R(x⊕ y, y)(r(2), r(1))‖AN =

0 /∈ FA.

We can now use partial isomorphisms to introduce back-and-forth systems195

between fuzzy first-order structures.

Definition 6 (Finitely isomorphic structures). Two P-structures 〈A,M〉 and

〈B,N〉 are said to be finitely isomorphic, written 〈A,M〉 ∼=f 〈B,N〉, if there is

a sequence 〈In | n ∈ N〉 with the following properties:

1. Every In is a non-empty set of partial isomorphisms from 〈A,M〉 to200

〈B,N〉.

2. For each n ∈ N, In+1 ⊆ In.
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3. (Forth-property I) For every 〈p, r〉 ∈ In+1 and m ∈M , there is 〈p, r′〉 ∈ In
such that r ⊆ r′ and m ∈ dom(r′).

4. (Back-property I) For every 〈p, r〉 ∈ In+1 and n ∈ N , there is 〈p, r′〉 ∈ In205

such that r ⊆ r′ and n ∈ rg(r′).

5. (Forth-property II) For every 〈p, r〉 ∈ In+1 and a ∈ A, there is 〈p′, r〉 ∈ In
such that p ⊆ p′ and a ∈ dom(p′).

6. (Back-property II) For every 〈p, r〉 ∈ In+1 and b ∈ B, there is 〈p′, r〉 ∈ In
such that p ⊆ p′ and b ∈ rg(p′).210

Definition 7 (n-finitely isomorphic structures). Given a natural number n, we

say that two P-structures 〈A,M〉 and 〈B,N〉 are n-finitely isomorphic, written

〈A,M〉 ∼=n 〈B,N〉, if there is a sequence 〈Im | m ≤ n〉 satisfying the properties

of the previous definition.

3. Elementary equivalence in fuzzy first-order models215

In this section we show that, in fuzzy first-order models, the usual classical

notion of elementary equivalence can be generalized in three different meaning-

ful ways. We will define them and give examples to show that they are not

equivalent.

Definition 8. Given two UL-chains A and B, we say that two P-models220

〈A,M〉 and 〈B,N〉 are elementarily equivalent (in symbols: 〈A,M〉 ≡ 〈B,N〉)

if they are models of the same sentences, i.e., for every P-sentence σ, ‖σ‖AM ∈

FA if and only if ‖σ‖BN ∈ FB.

Definition 9. Given a UL-chain A, we say that two P-models 〈A,M〉 and

〈A,N〉 are filter-strongly elementarily equivalent (in symbols: 〈A,M〉 ≡fs225

〈A,N〉) if they are models of the same sentences to the same degree, i.e. for

every P-sentence σ, ‖σ‖AM ∈ FA if and only if ‖σ‖AN ∈ FA and, moreover,

‖σ‖AM = ‖σ‖AN whenever ‖σ‖AM ∈ FA.

These two notions are clearly equivalent for logics with weakening, because

then FA = {1A}. We can add yet a stronger one.230
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Definition 10. Given a UL-chain A, we say that two P-models 〈A,M〉 and

〈A,N〉 are strongly elementarily equivalent (in symbols: 〈A,M〉 ≡s 〈A,N〉) if

for every P-sentence σ, ‖σ‖AM = ‖σ‖AN.

The following lemma (a generalization of [16, Propositions 6.1 and 6.2]) will

be useful to obtain examples of elementarily equivalent models.235

Lemma 11. Let A and B be two UL-chains, 〈A,M〉 and 〈B,N〉 two P-models

and let 〈f, g〉 be a strong homomorphism from 〈A,M〉 to 〈B,N〉. If f is a σ-

mapping and g is onto, then 〈f, g〉 is an elementary homomorphism. Moreover,

if f is one-to-one, we have 〈A,M〉 ≡ 〈B,N〉.

Proof. Let 〈f, g〉 be a strong homomorphism such that f is a σ-mapping and g is240

an onto mapping. By induction on the complexity of the formulas we show that

〈f, g〉 is an elementary homomorphism, that is, for every formula ϕ(x1, . . . , xn),

and d1, . . . , dn ∈M ,

f(‖ϕ(d1, . . . , dn)‖AM) = ‖ϕ(g(d1), . . . , g(dn))‖BN .

• Let ϕ(x1, . . . , xn) be atomic. Suppose that ϕ = P (t1, . . . , tk)(x1, . . . , xn).

We first prove that, for every P-term t(x1, . . . , xn), and every d1, . . . , dn,

g(‖t(d1, . . . , dn)‖M) = ‖t(g(d1), . . . , g(dn))‖N . (1)

We proceed by induction over the complexity of the term. If t is a variable

x, then g(‖x(d)‖M) = g(d) = ‖x(g(d))‖N. Assume that the inductive245

hypothesis holds for the terms t1, . . . , tk and let t = F (t1, . . . , tk), where

F is a k-ary functional symbol and the variables of the terms ti are in

{x1, . . . , xn}. We can write the following chain of equalities:

12



g(‖F (t1, . . . , tk)(d1, . . . , dn)‖M) =

g(FM(‖t1(d1, . . . , dn)‖M , . . . , ‖tk(d1, . . . , dn)‖M)) =

FN(g(‖t1(d1, . . . , dn)‖M), . . . , g(‖tk(d1, . . . , dn)‖M)) =

FN(‖t1(g(d1), . . . , g(dn))‖N , . . . , ‖tk(g(d1), . . . , g(dn))‖N) =

‖F (t1, . . . , tk)(g(d1), . . . , g(dn))‖N .

The second equality is due to the fact that f is an homomorphism of250

algebras and the third equality is justified by applying the inductive hy-

pothesis.

Now given the atomic formula P (t1, . . . , tk)(x1, . . . , xn), we have:

f(‖P (t1, . . . , tk)(d1, . . . , dn)‖AM) =

f(PM(‖t1(d1, . . . , dn)‖M , . . . , ‖tk(d1, . . . , dn)‖M)) =

PN(g(‖t1(d1, . . . , dn)‖M), . . . , g(‖tk(d1, . . . , dn)‖M)) =

PN(‖t1(g(d1), . . . , g(dn))‖N , . . . , ‖tk(g(d1), . . . , g(dn))‖N) =

‖P (t1, . . . , tk)(g(d1), . . . , g(dn))‖N .

The second equality is due to the fact that 〈f, g〉 is a strong homomorphism255

and the third equality is justified by applying (1).

• Now, let λ ∈ L be a k-ary connective, and

ϕ(x1, . . . , xn) = λ(ψ1, . . . , ψk)(x1, . . . , xn).

Assume inductively that the property holds for the formulas ψ1, . . . , ψk.

We have:
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f(‖λ(ψ1, . . . , ψk)(d1, . . . , dn)‖AM) =

f(λA(‖ψ1(d1, . . . , dn)‖AM , . . . , ‖ψk(d1, . . . , dn)‖AM)) =

λB(f(‖ψ1(d1, . . . , dn)‖AM), . . . , f(‖ψk(d1, . . . , dn)‖AM)) =

λB(‖ψ1(g(d1), . . . , g(dn))‖BN , . . . , ‖ψ1(g(d1), . . . , g(dn))‖BN) =

‖λ(ψ1, . . . , ψk)(g(d1), . . . , g(dn))‖BN .

The second equality is due to the fact that f is an homomorphism of260

algebras and the third equality is justified by applying the inductive hy-

pothesis.

• Let ϕ(x1, . . . , xn) = (∃y)ψ(x1, . . . , xn) and assume inductively that the

property holds for the formula ψ. We have:

f(‖(∃y)ψ(d1, . . . , dn)‖AM) =

f(sup{‖ψ(d, d1, . . . , dn)‖AM | d ∈M}) =

sup{f(‖ψ(d, d1, . . . , dn)‖AM) | d ∈M}) =

sup{‖ψ(g(d), g(d1), . . . , g(dn))‖BN) | d ∈M}) =

sup{‖ψ(e, g(d1), . . . , g(dn))‖BN) | e ∈ N}) =

‖(∃y)ψ(g(d1), . . . , g(dn))‖BN

265

The second equality is due to the fact that f is a σ-mapping, the third

by the inductive hypothesis and the fourth because g is onto. The case of

the universal quantifier is done analogously.

Moreover, if f is one-to-one, we can guarantee that for every a ∈ A, a ∈ FA

if and only if f(a) ∈ FB. Indeed, if a ≥ 1
A

, then f(a) ≥ f(1
A

) = 1
B

(using that270

f is a homomorphism of UL-algebras); conversely if f(a) ≥ 1
B

= f(1
A

), then

f(a)∧f(1
A

) = f(a∧1
A

) = f(1
A

), so by injectivity, a∧1
A

= 1
A

. Consequently,

since 〈f, g〉 is an elementary homomorphism, 〈A,M〉 ≡ 〈B,N〉.

Similarly, observe that if there is an elementary homomorphism 〈IdA, g〉 from
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〈A,M〉 to 〈A,N〉, then 〈A,M〉 ≡s 〈A,N〉. Therefore, in all the Löwenheim–275

Skolem theorems proved in [15] for structures over a fixed UL-chain one always

obtains a (bigger or smaller) model which is strongly elementarily equivalent to

the initial one.

The following example shows two models (for a logic with weakening) which

are filter-strongly elementarily equivalent but not strongly elementarily equiva-280

lent.

Example 12. Consider a predicate language with only one monadic predicate P

and take two models over the standard Gödel chain, 〈[0, 1]G,M〉 and 〈[0, 1]G,N〉.

The domain in both cases is the set of all natural numbers N and the interpre-

tation of the predicate is respectively defined as:285

PM(n) =

 3
4 −

1
n , if n ≥ 2,

0, 0 ≤ n ≤ 1.

PN(n) =

 1
2 −

1
n , if n ≥ 2,

0, 0 ≤ n ≤ 1.

On the one hand, ‖(∃x)P (x)‖M = 3
4 but ‖(∃x)P (x)‖N = 1

2 , so the models

are not strongly elementarily equivalent. On the other hand, we will see that

elementary equivalence still holds. Take f as any non-decreasing bijection from

[0, 1] to [0, 1] such that f( 3
4 ) = 1

2 , f(1) = 1, f(0) = 0, and for every n ∈ N,

f( 3
4 −

1
n ) = 1

2 −
1
n . It is clear that f is a G-homomorphism preserving suprema290

and infima. Then we can consider the σ-mapping 〈f, Id〉 and apply Lemma 11

to obtain that 〈[0, 1]G,M〉 ≡ 〈[0, 1]G,N〉.

Now the following example shows two models which are elementarily equiv-

alent but not filter-strongly elementarily equivalent.

Example 13. Consider the same predicate language of Example 12 and take

again two models 〈A,M〉 and 〈A,N〉 with both domains M and N equal to

the set of all natural numbers N. We take both models over the same algebra,
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namely, the residuated lattice defined in the real unit interval by the uninorm:

x &A y =

 min{x, y}, if y ≤ 1− x,

max{x, y}, if y > 1− x,

and its residuum:

x→A y =

 max{1− x, y}, if x ≤ y,

min{1− x, y}, if y > x.

The interpretation of the unique predicate in both models is as follows:

PM(n) =

 4
5 −

1
n4 , if n ≥ 2,

0, if 0 ≤ n ≤ 1.

PN(n) =

 3
5 −

1
n4 , if n ≥ 2,

0, if 0 ≤ n ≤ 1.

The neutral element of the uninorm is 1
2 . The filter is FA = [ 12 , 1]. Now, ob-295

serve that we have: ‖(∃x)P (x)‖M = 4
5 but ‖(∃x)P (x)‖N = 3

5 , so the models are

not filter-strong elementarily equivalent because they assign different true values

to the sentence (∃x)P (x). However, we can prove that they are elementarily

equivalent. Indeed, consider the function f : [0, 1] −→ [0, 1] defined as f(x) = x

for each x ∈ ( 4
5 , 1], f( 4

5 ) = 3
5 , and by taking for each interval [ 45−

1
n4 ,

4
5−

1
(n+1)4 ]300

the usual affine transformation into the interval [ 35 −
1
n4 ,

3
5 −

1
(n+1)4 ], the usual

affine transformation from [ 12 ,
4
5 −

1
24 ] into [ 12 ,

3
5 −

1
24 ], and finally defining

f(x) = 1−f(1−x) for each [0, 12 ). It is clear that f preserves order, suprema and

infima, it is injective and, for each x ∈ [0, 1], f(1−x) = 1−f(x); using this it is

easy to check that f is an A-homomorphism. Therefore, we can apply Lemma 11305

to the elementary homomorphism 〈f, IdN〉 and obtain that 〈A,M〉 ≡ 〈A,N〉.

4. A sufficient condition for elementary equivalence

The goal of this section is to use the characterization of elementary equiv-

alence for classical many-sorted structures to obtain a sufficient condition for
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elementary equivalence for fuzzy first-order models. We will obtain such condi-310

tion in the next theorem and afterwards we will discuss through examples its

applicability and limitations.

Theorem 14. Let P be a finite predicate language. Let 〈A,M〉, 〈B,N〉 be

P-models. The following holds:

a) 〈A,M〉 ∼=f 〈B,N〉 ⇒ 〈A,M〉 ≡ 〈B,N〉.315

b) Assume that there is 〈In | n ∈ N〉 : 〈A,M〉 ∼=f 〈A,N〉 such that for every

n, and every 〈p, r〉 ∈ In, p � A ⊆ IdA. Then, 〈A,M〉 ≡s 〈A,N〉.

Proof. To prove a), assume that 〈A,M〉 ∼=f 〈B,N〉. By Fräıssé’s Theorem for

classical logic (see e.g. [17, Theorem 2.1]), when seen as classical two-sorted

structures, 〈A,M〉 and 〈B,N〉 are elementarily equivalent. We should prove320

that for each sentence σ, ‖σ‖AM ∈ FA iff ‖σ‖BN ∈ FB. Assume, for instance, that

‖σ‖AM ∈ FA, i.e. ‖σ‖AM ∧ 1
A

= 1
A

. Using this and [15, Lemma 39], we obtain

that 〈A,M〉 |= (∃1x)(Eσ(x)∧(x∧1 ≈1 1)) and thus, since they are elementarily

equivalent as classical two-sorted structures, 〈B,N〉 |= (∃1x)(Eσ(x)∧ (x∧ 1 ≈1

1)). Now, using the unicity of the truth-values [15, Corollary 40], we obtain325

‖σ‖BN ∈ FB. The reverse implication is completely symmetric.

As for b), without loss of generality, we assume that A is finite and we expand

the language P adding a new truth constant symbol for every element of A and

we expand the structures accordingly. Since 〈A,M〉 ∼=f 〈A,N〉, we have also

that 〈A,M, a〉a∈A ∼=f 〈A,N, a〉a∈A. As a consequence of part a) of this theorem,330

we have that 〈A,M, a〉a∈A ≡ 〈A,N, a〉a∈A and thus 〈A,M〉 ≡s 〈A,N〉.

The converse implication of the previous theorem is not true in general.

Consider the following counterexample:

Example 15. Let P be a finite predicate language, M a classical one-sorted

finite model and B2 the two-element Boolean algebra. Now take an infinite L-335

algebra A. Since B2 is a subalgebra of A, we can also see the classical model

〈B2,M〉 as a model over the algebra A, namely 〈A,M〉. Clearly then 〈B2,M〉 ≡

〈A,M〉 but it is not true that 〈B2,M〉 ∼=f 〈A,M〉. Otherwise the two models
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will be elementarily equivalent from the point of view of classical logic and also

their algebras. This is impossible because, by the classical results, one algebra340

which is finite cannot be elementarily equivalent to an infinite algebra.

The following examples show how one can apply in particular cases (fuzzy

models over the  Lukasiewicz, Gödel and arbitrary standard UL-algebras) the

condition of Theorem 14 to obtain elementary equivalence.

Example 16. Let P be a predicate language with a unique binary relational

symbol E. Consider the P-models 〈[0, 1]�,N1〉 and 〈[0, 1]�,N2〉, where the do-

mains of N1 and N2 are [0, 1]Q and [0, 1], the rational and the real unit interval

respectively. The relations EN1 and EN2 (similarity relations) are defined as

follows:

EN1(x, y) = 1− |x− y|, for every x, y ∈ [0, 1]Q,

EN2(x, y) = 1− |x− y|, for every x, y ∈ [0, 1].

Now we show that 〈[0, 1]�,N1〉 ≡ 〈[0, 1]�,N2〉 by building a system of partial345

isomorphisms and using Theorem 14. Observe that a partial isomorphism be-

tween 〈[0, 1]�,N1〉 and 〈[0, 1]�,N2〉 is given by the set of pairs 〈Id [0,1], r〉, where

r is a bijection, dom(r) ⊆ [0, 1]Q, and rg(r) ⊆ [0, 1] in such a way that, for every

x, y ∈ dom(r), |x−y| = |f(x)−f(y)|. Then, we define a system of partial isomor-

phisms where, for each n ∈ N, In is the set of all the finite partial isomorphisms350

with the identity for the algebraic part. Now we prove that conditions 1 − 6 in

Definition 6 are satisfied. Condition 1: Observe that 〈Id [0,1], ∅〉 ∈ In; therefore,

In 6= ∅. Condition 2 is obvious. Condition 3: Suppose that 〈Id , r〉 ∈ In+1

and let d ∈ [0, 1]Q. Suppose also that dom = {d1, . . . , dk}. Take an element

e ∈ [0, 1] such that |d1 − d| = |r(d1)− e| and take r′ = r ∪ {〈d, e〉}. Condition 4355

is analogously proved and conditions 5 and 6 are trivial.

Example 17. Let us consider the predicate language P in Example 16, and the

P-models 〈[0, 1]G,M1〉 and 〈[0, 1]QG,M2〉, where [0, 1]QG is the restriction of the

algebra [0, 1]G to the rational numbers, and where the domains of M1 and M2

are [0, 1] and [0, 1]Q, respectively. The relations EM1 and EM2 are both defined
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in the same form as follows:

EMi(x, y) =

 1, if x = y,

min{x, y}, otherwise.

When x = y, we have:

p(EM1(x, y)) = EM1(r(x), r(y)).

If x 6= y, then we have: p(min{x, y}) = min{r(x), r(y)}.

We define a a system of partial isomorphisms where, for each n ∈ N, In is

the set of all the pairs 〈p, r〉 such that p and r coincide over dom(p) ∪ dom(r)

and they are finite partial isomorphisms preserving the order.360

Example 18. Let P be a predicate language with a unique binary relational

symbol E and let A be a standard UL-chain. Consider a P-model 〈A,M〉 with

the following properties:

1. EM is a similarity.

2. For each a ∈ [0, 1], there are d, e ∈M such that EM(d, e) = a.365

3. For every d ∈M , the set [d] = {e ∈M | EM(d, e) > 0} is infinite.

4. For every d ∈M , the set M \ [d] is also infinite.

5. For every d, e ∈M , if e /∈ [d], [d] ∩ [e] = ∅.

6. For every d ∈ M there is a unique a ∈ A, 0 < a < 1 such that for every

e ∈ [d], e 6= d, EM(d, e) = a.370

Notice that, if we define for each a ∈ (0, 1) the set Ma = {d ∈ M |

there is e ∈ M with EM(d, e) = a}, then {Ma | a ∈ (0, 1)} is a partition of

the domain M .

Take another model 〈A,N〉 with analogous properties on a possibly different

domain. Let 〈p, r〉 be a partial mapping from 〈A,M〉 to 〈A,N〉 such that:375

• p is the identity on A,

• r is injective,
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• for every d ∈ dom(r), if d ∈Ma then r(d) ∈ Na.

Then 〈p, r〉 is a partial isomorphism. We can define a system of partial isomor-

phisms where, for each n ∈ N, In is the set of all such finite partial isomor-380

phisms. Notice that the sets Ma and Na may have different cardinalities.

5. Finitely isomorphic fuzzy first-order models

By using the notion of n-finitely isomorphic structures introduced in Def-

inition 7, in this section we aim at refining the results of the previous one in

such a way that back-and-forth systems only use as many layers as necessary385

to guarantee that two models are n-elementarily equivalent (that is to say, in

order to be models of the same sentences up until a given complexity n). The

complexity of the sentences is measured using a modification of the syntactic

degree of formulas introduced by Hájek in [22, Definition 5.6.7].

The results in this section are achieved in a purely non-classical approach.390

In this case, the translation to two-sorted structures and classical results is not

useful because it would not be so finely grained. The reason is that, intuitively

speaking, the translation does not preserve the rank of the formulas involved,

making it, in some cases, actually much bigger.

Definition 19 (Nested rank of a formula). Let P be a predicate language. Given395

a P-formula ϕ we define by induction the nested rank of ϕ, denoted by NR(ϕ),

as follows.

- If ϕ is atomic (given by a predicate or a 0-ary connective), NR(ϕ) = 0.

- For every n ≥ 1, every P-formulas ϕ1, . . . , ϕn and every n-ary connective

λ ∈ L,

NR(λ(ϕ1, . . . , ϕn) = NR(ϕ1) + . . .+NR(ϕn) + 1.

- For every P-formula ϕ, NR((∀x)ϕ) = NR((∃x)ϕ) = NR(ϕ) + 1.

Observe that, by the definition of nested rank, if both L and P are finite,400

and we fix a finite set of variables V0, then, for any n ≥ 0, the set {ϕ P-formula

in variables in V0 | NR(ϕ) ≤ n} is finite.
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Definition 20. Given P-models 〈A,M〉 and 〈B,N〉, we write

〈A,M〉 ≡n 〈B,N〉

whenever 〈A,M〉 and 〈B,N〉 are models of the same sentences of nested rank

≤ n.

Analogously, we can define strong n-equivalence from models over the same405

algebra:

Definition 21. Given two P-models 〈A,M〉 and 〈A,N〉, we write

〈A,M〉 ≡sn 〈A,N〉

whenever ‖σ‖AM = ‖σ‖AN, for every P-sentence σ of nested rank ≤ n.

We are ready to present the non-classical proof of Theorem 14 for the case

of strong n-equivalence using, without loss of generality, only finite relational

languages.410

Theorem 22. Let P be a finite relational predicate language, 〈A,M〉 and

〈A,N〉 be P-models and n ∈ N. Assume that 〈A,M〉 ∼=n 〈A,N〉 via a system

〈Im | m ≤ n〉 such that for every m ≤ n, and every 〈p, r〉 ∈ Im, p � A ⊆ IdA.

Then 〈A,M〉 ≡sn 〈A,N〉.

Proof. By induction on the complexity of formulas we show that415

(∗) For every formula ϕ(x1, . . . , xk), 〈p, r〉 ∈ Im with NR(ϕ) ≤ m ≤ n, and

d1, . . . , dk ∈ dom(r), ‖ϕ(d1, . . . , dk)‖AM = ‖ϕ(r(d1), . . . , r(dk))‖AN.

• Let R(x1, . . . , xk) be an atomic formula. Since 〈p, r〉 is a partial isomorphism,

by condition 5 of Definition 2 we have:

RM(d1, . . . , dk) = RN(r(d1), . . . , r(dk)).

• Consider now the formula λ(α1, . . . , αl) in variables {x1, . . . , xk}, where λ is an

l-ary connective with l ≥ 1. Let 〈p, r〉 ∈ Im with NR(λ(α1, . . . , αl)) ≤ m ≤ n,
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and d1, . . . , dk ∈ dom(r). Assume inductively that the property (∗) holds for

α1, . . . , αl. By Definition 19 we have:

NR(λ(α1, . . . , αl)) = NR(α1) + . . .+NR(αl) + 1,

then NR(αi) ≤ m − 1 for each i ∈ {1, . . . , l}. By Definition 6, we have that

〈p, r〉 ∈ Im−1. Then we apply the inductive hypothesis and we obtain for each

i ∈ {1, . . . , l},

‖αi(d1, . . . , dk)‖AM = ‖αi(r(d1), . . . , r(dk))‖AN .

Therefore,

‖λ(α1, . . . , αl)[d1, . . . , dk]‖AM = ‖λ(α1, . . . , αl)[r(d1), . . . , r(dk)]‖AN .

• Let now (∃y)ϕ(y, x1, . . . , xk) be an existential formula, 〈p, r〉 ∈ Im with

NR((∃y)ϕ) ≤ m ≤ n, and d1, . . . , dk ∈ dom(r). By Definition 19 we have

that NR((∃y)ϕ) = NR(ϕ) + 1 and thus NR(ϕ) ≤ m− 1. For every d ∈M , by

the (Forth Property I) of Definition 6, there is 〈p, r′〉 ∈ Im−1 such that r ⊆ r′

and d ∈ dom(r′). Then, by the inductive hypothesis,

‖ϕ(d, d1, . . . , dk)‖AM = ‖ϕ(r′(d), r′(d1), . . . , r′(dk))‖AN .

The same argument can be done for every e ∈ N using the (Back Property I)

of Definition 6. Consequently, since r ⊆ r′ and d1, . . . , dk ∈ dom(r),

{‖ϕ(d, d1, . . . , dk)‖AM | d ∈M} = {‖ϕ(e, r(d1), . . . , r(dk)‖AN | e ∈ N}.

We can conclude that ‖(∃y)ϕ(d1, . . . , dk)‖AM = ‖(∃y)ϕ(r(d1), . . . , r(dk))‖AN. The

case of the universal formulas is anologous. Finally, from (∗) if we consider only

sentences ϕ, it follows that 〈A,M〉 ≡sn 〈A,N〉.420

We now present a counterexample to show that the right-to-left implication

does not always hold.

Example 23. Consider a predicate language with only one monadic predicate

symbol P and take two models over any [0, 1]-valued chain A, 〈A,M〉 and
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〈A,N〉. The domain of M is the set of all natural numbers N and the do-425

main of N is N∪{∞} (the natural numbers enriched with a new element). The

interpretations of the predicate are respectively defined as:

PM(n) =

 1− 1
n , if n ≥ 1,

0, if n = 0.

PN(n) =


1− 1

n , if n ∈ N, and n ≥ 1,

0, if n = 0,

1, if n =∞.

Observe that the only sentences of nested rank 0 or 1 are 0-ary connectives

or sentences of the form (∀x)P (x) or (∃x)P (x), and thus clearly 〈A,M〉 ≡s1
〈A,N〉. However, it is not the case that 〈A,M〉 ∼1 〈A,N〉, because in the430

domain of M no element could be related to ∞ in any partial isomorphism, due

to condition 4 of Definition 2).

Finally, we obtain another non-classical proof of Theorem 14 for the case of

elementary equivalence when the two models have different algebras. For the

proof of the following theorem we will slightly modify the definition of rank of

the existential and universal formulas as follows:

NR((∃y)ϕ) = NR((∀y)ϕ) = NR(ϕ) + 3.

Theorem 24. Let P be a finite relational predicate language and 〈A,M〉 and

〈B,N〉 be P-models. The following holds for every n ∈ N:

〈A,M〉 ∼=n 〈B,N〉 ⇒ 〈A,M〉 ≡n 〈B,N〉.

Proof. Assume that 〈A,M〉 ∼=n 〈B,N〉 via 〈Im | m ≤ n〉. By induction on the

complexity of the formulas we show that

(∗∗) For every formula ϕ(x1, . . . , xk), 〈p, r〉 ∈ Im with NR(ϕ) ≤ m ≤ n, and

d1, . . . , dk ∈ dom(r), there is a pair 〈p′, r′〉 ∈ Im−NR(ϕ) with p ⊆ p′, r ⊆ r′,

such that ‖ϕ(d1, . . . , dk)‖AM ∈ dom(p′), and

p′(‖ϕ(d1, . . . , dk)‖AM) = ‖ϕ(r′(d1), . . . , r′(dk))‖BN .
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• Let R(x1, . . . , xk) be an atomic formula. Since 〈p, r〉 is a partial isomorphism,

by condition 4 of Definition 2 we have:

p(RM(d1, . . . , dk)) = RN(r(d1), . . . , r(dk)).

• Consider now the formula λ(α1, . . . , αl) in the variables {x1, . . . , xk}, where

λ is an l-ary connective with l ≥ 1. Let 〈p, r〉 ∈ Im with NR(λ(α1, . . . , αl)) ≤

m ≤ n, and d1, . . . , dk ∈ dom(r). Assume inductively that the property (∗∗)

holds for α1, . . . , αl. By Definition 19 we have:

NR(λ(α1, . . . , αl)) = NR(α1) + . . .+NR(αl) + 1.

We define now two sequences of partial mappings:

p ⊆ p1 ⊆ p2 ⊆ . . . ⊆ pl,

and

r ⊆ r1 ⊆ r2 ⊆ . . . ⊆ rl,

such that435

i) ‖αj(d1, . . . , dk)‖AM ∈ dom(pi), for j ≤ i ≤ l,

ii) 〈pi, ri〉 ∈ Im−(NR(α1)+...+NR(αi)),

iii) pi(‖αj(d1, . . . , dk)‖AM) = ‖αj(ri(d1), . . . , ri(dk))‖BN, for j ≤ i ≤ l.

By inductive hypothesis, there is 〈p1, r1〉 ∈ Im−NR(α1) with p ⊆ p1, r ⊆ r1 such

that ‖α1(d1, . . . , dk)‖AM ∈ dom(p1), and

p1(‖α1(d1, . . . , dk)‖AM) = ‖α1(r1(d1), . . . , r1(dk))‖BN .

By iterating this same procedure we can obtain the desired sequences.

Now, given 〈pl, rl〉 ∈ Im−(NR(α1)+...+NR(αl)), by the (Forth Property II) of

Definition 6, there is 〈p′, r′〉 ∈ Im−NR(λ(α1,...,αl)), with pl ⊆ p′, rl ⊆ r′, and such

that ‖λ(α1, . . . , αl)(d1, . . . , dk)‖AM ∈ dom(p′). Finally, by Definition 2,

p′(‖λ(α1, . . . , αl)(d1, . . . , dk)‖AM) = ‖λ(α1, . . . , αl)(r
′(d1), . . . , r′(dk))‖BN .
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• Let (∃y)ϕ(y, x1, . . . , xk) be an existential formula, 〈p, r〉 ∈ Im withNR((∃y)ϕ) ≤

m ≤ n, and d1, . . . , dk ∈ dom(r). By the modified definition of rank we

have stated just before the statement of this theorem, we have NR((∃y)ϕ) =

NR(ϕ) + 3. Now we show that there is 〈p′, r′〉 ∈ Im−NR((∃y)ϕ) with p ⊆ p′,

r ⊆ r′ and such that ‖(∃y)ϕ(d1, . . . , dk)‖AM ∈ dom(p′) and

p′(‖(∃y)ϕ(d1, . . . , dk)‖AM) = ‖(∃y)ϕ(r′(d1), . . . , r′(dk))‖BN .

By the (Forth Property II) of Definition 6, if a = ‖(∃y)ϕ(d1, . . . , dk)‖AM, then440

there is a pair 〈p′, r〉 ∈ Im−1 with a ∈ dom(p′) and p ⊆ p′.

Let b = ‖(∃y)ϕ(r(d1), . . . , r(dk))‖BN, we show that p′(a) = b. By (Back

Property II) of Definition 6, there is a pair 〈p′′, r〉 ∈ Im−2 with b ∈ rg(p′′), and

p′ ⊆ p′′. Let b0 ∈ A be such that p′′(b0) = b.

We show that p′(a) ≥ b and b0 ≥ a. As a consequence p′(a) = b and

the partial isomorphism 〈p′, r〉 will have the desired properties, with 〈p′, r〉 ∈

Im−NR((∃y)ϕ), p ⊆ p′, ‖(∃y)ϕ(d1, . . . , dk)‖AM ∈ dom(p′), and

p′(‖(∃y)ϕ(d1, . . . , dk)‖AM) = ‖(∃y)ϕ(r(d1), . . . , r(dk))‖BN .

We prove that p′(a) ≥ b, the proof that b0 ≥ a is analogous. For every e ∈ N ,

we show that p′(a) ≥ ‖ϕ(e, r(d1), . . . , r(dk))‖BN, and since b is the supremum of

all these values, we will obtain that p′(a) ≥ b. Let e ∈ N , by the (Back Property

I) of Definition 6, there is a partial mapping re such that e ∈ rg(re), r ⊆ re,

and 〈p′′, re〉 ∈ Im−3. Let d ∈ M be such that re(d) = e. By the inductive

hypothesis, there is a pair 〈p0, r0〉 ∈ Im−3−NR(ϕ) with p′′ ⊆ p0, re ⊆ r0, such

that ‖ϕ(d, d1, . . . , dk)‖AM ∈ dom(p0) ,and

p0(‖ϕ(d, d1, . . . , dk)‖AM) = ‖ϕ(e, r0(d1), . . . , r0(dk))‖BN .

Since a = ‖(∃y)ϕ(d1, . . . , dk)‖AM, we have:

p′(a) = p0(a) ≥ p0(‖ϕ(d, d1, . . . , dk)‖AM) = ‖ϕ(e, r0(d1), . . . , r0(dk))‖BN ,

and thus p′(a) ≥ b. The case of the universal formulas is analogous. Finally, by445

Remark 3, and (∗∗), it follows that 〈A,M〉 ≡n 〈B,N〉.
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Example 15 shows that the converse implication of Theorem 24 is not true

in general.

6. Generalization and conclusions

The previous sections have been presented as an investigation of conditions450

for elementary equivalence of fuzzy first-order models, understood as the se-

mantics of first-order fuzzy logics built over propositional logics extending the

uninorm logic UL. Such formulation is convenient because it already covers (the

models of) the majority of first-order fuzzy logics studied in the literature and

already allows to find a wealth of examples and counterexamples to illustrate455

the merits and limitations of our results.

However, a careful inspection of the proofs of the theorems that we have

obtained reveals that, actually, we have not used many properties of the under-

lying logical and algebraic framework. Observe that from all the connectives

present in UL and its extensions only three have been really used: the constant460

1 that determines the filter that allows to define logical consequence, and the

implication → and conjunction ∧ that determine the order relation in the alge-

bras that is essential to define the filter and the semantics of quantified formulas.

Other connectives, commutativity, residuation, and prelinearity have actually

played no role.465

Therefore, the whole paper could be rewritten, while keeping the same

proofs, for the much wider framework of non-classical first-order algebraizable

logics proposed in [9] based on algebraizable propositional logics (in the sense

of [3]) which includes the majority of non-classical systems deeply studied in

the literature. In fact, we have used this general framework in our previous in-470

vestigation, closely related to the present one, of Löwenheim–Skolem theorems

for non-classical logics [15].

In any case, either in the fuzzy formulation that we have chosen or in the

possible general framework just mentioned, this paper has presented some ad-

vances in the central topic of elementary equivalence, that is, the classification475
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of fuzzy structures according to their first-order theory. We have shown how

the classical definition of elementary equivalence splits into three non-equivalent

notions for non-classical logics. Using first a translation to classical two-sorted

structures and later directly using non-classical structures, we have found back-

and-forth conditions that turn out to be sufficient, but not necessary, for the480

defined notions of elementary equivalence. We have illustrated their use with

natural examples of fuzzy structures.

At this point there are several directions that should be pursued in further

investigations. For instance, it would be desirable to find other usable criteria

actually equivalent to elementary equivalence; a possibility to be explored would485

be back-and-forth conditions based on some generalized notion of Ehrenfeucht–

Fräıssé games. A good understanding of elementary equivalence and back-and-

forth systems will lead to study other important issues such as categoricity,

definability, saturation, and quantifier elimination.
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GF15-34650L.500

References

[1] J. Barwise, Back and forth through infinitary logic, in: Studies in Model

Theory, Vol. 8 of MAA Studies in Mathematics, M. Morley, 1973, pp. 5–34.

27
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scientifiques de l’Université d’Alger 2 (1955) 273–295.555

29
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