
UNIVERSITÀ DEGLI STUDI DI SIENA

Dipartimento di Ingegneria dell’Informazione

e Scienze Matematiche

DI

Real World Problems through Deep

Reinforcement Learning

Luca Pasqualini

Ph.D Thesis in Information Engineering and Science

Supervisor

Prof. Marco Maggini

Co-supervisor

Prof. Maurizio Parton

Siena, 2022

Abstract

Reinforcement Learning (RL) represents a very promising field in the umbrella

of Machine Learning (ML). Using algorithms inspired by psychology, specif-

ically by the Operant Conditioning of Behaviorism, RL makes it possible to

solve problems from scratch, without any prior knowledge nor data about the

task at hand. When used in conjuction with Neural Networks (NNs), RL has

proven to be especially effective: we call this Deep Reinforcement Learning

(DRL). In recent past, DRL proved super-human capabilities on many games,

but its real world applications are varied and range from robotics to general

optimization problems.

One of the main focuses of current research and literature in the broader

field of Machine Learning (ML) revolves around benchmarks, in a never ending

challenge between researchers to the last decimal figure on certain metrics.

However, having to pass some benchmark or to beat some other approach as

the main objective is, more often than not, limiting from the point of view

of actually contributing to the overall goal of ML: to automate as many real

tasks as possible.

Following this intuition, this thesis proposes to first analyze a collection

of really varied real world tasks and then to develop a set of associated mod-

els. Finally, we apply DRL to solve these tasks by means of exploration and

exploitation of these models. Specifically, we start from studying how using

the score as target influences the performance of a well-known artificial player

of Go, in order to develop an agent capable of teaching humans how to play

to maximize their score. Then, we move onto machine creativity, using DRL

i

in conjuction with state-of-the-art Natural Language Processing (NLP) tech-

niques to generate and revise poems in a human-like fashion. We then dive

deep into a queue optimization task, to dynamically schedule Ultra Reliable

Low Latency Communication (URLLC) packets on top of a set of frequencies

previously allocated for enhanced Mobile Broad Band (eMBB) users. Finally,

we propose a novel DRL approach to the task of generating black-box Pseudo

Random Number Generators (PRNGs) with variable periods, by exploiting

the autonomous navigation of a state-of-the-art DRL algorithm both in a

feedforward and a recurrent fashion.

ii

Contents

Abstract . i

1 Introduction 3

1.1 Motivations . 3

1.2 General concepts . 4

1.2.1 Reinforcement Learning (RL) 5

1.2.2 Framework . 9

1.3 Research questions and contributions 10

1.4 Thesis structure . 12

1.5 List of Publications . 15

2 AlphaGo Score Targeting through Reinforcement Learning 17

2.1 Introduction . 18

2.2 Score as Target . 19

2.2.1 Leela Zero and SAI . 19

2.2.2 Leela Zero Score . 20

2.2.3 Training . 21

2.3 Results . 23

2.3.1 Qualitative Evaluation 25

2.3.2 Quantitative Evaluation 25

2.4 Discussion . 27

3 Neural Poetry through Reinforcement Learning 31

3.1 Introduction . 32

iii

Contents

3.2 Generate and Revise Poems . 34

3.2.1 Conditional Poem Generator 35

3.2.2 Detector . 38

3.2.3 Prompter . 39

3.3 Revision as a Navigation Task 40

3.3.1 Vanilla Policy Gradient 42

3.3.2 Proximal Policy Optimization 42

3.4 Results . 43

3.4.1 Conditional Poem Generator 44

3.4.2 Prompter . 44

3.4.3 Revision as a Navigation Task 45

3.4.4 Generate and Revise Poems 46

3.5 Discussion . 48

4 Resource Slicing through Reinforcement Learning 51

4.1 Introduction . 51

4.2 Low-Latency Traffic on Narrow-Band System Model 53

4.2.1 The eMBB Scheduler . 54

4.2.2 The URLLC agent . 55

4.2.3 URLLC and eMBB Coexistence 56

4.3 The DRL Agent . 57

4.3.1 System Model as a MDP 57

4.3.2 Reward Function . 58

4.3.3 Algorithm and Neural Network Architecture 59

4.4 Results . 60

4.4.1 Bernoulli Distribution 62

4.4.2 Poisson Distribution . 64

4.5 Towards Reliability and Multi-Frequencies Communication . . . 65

4.5.1 Greedy Algorithm . 66

4.5.2 Multi-Frequencies DRL Agent 67

4.5.3 MDP with Continuous Action Space 69

4.5.4 Hierarchical MDPs . 70

4.5.5 Results . 72

4.6 Discussion . 75

iv

Contents

5 Pseudo Random Number Generation through Reinforcement

Learning 77

5.1 Introduction . 78

5.2 Pseudo Random Number Generation 79

5.2.1 Binary Formulation and fully observable MDP 80

5.2.2 Recurrent formulation and partially observable MDP . . 81

5.2.3 Reward Function through NIST Test Suite 83

5.2.4 Algorithm and Neural Network Architecture 84

5.3 Results . 85

5.4 Discussion . 91

6 Conclusions and Future Works 95

6.1 Summary of Contributions . 97

6.2 Issues and avenues of research 99

Bibliography 103

v

List of Figures

1.1 ©[1, figure 3.1] The agent-environment interaction is made at

discrete time steps t = 0, 1, 2, At each time step t, the

agent use the state St ∈ S given by the environment to selects

an action At ∈ A. The environment answers with a real number

Rt+1 ∈ R ⊂ R called reward, and a next state St+1. Going on,

we obtain a trajectory S0, A0, R1, S1, A1, R2, 6

2.1 Uncalibrated Elo ratings of various LZS networks during train-

ing, expressed w.r.t. the amount of self-plays. 23

2.2 Match table between LZS networks and SAI networks, where

hashes, estimated Elo ratings and relative differences are dis-

played. 27

2.3 Calibrated Elo ratings of various LZS networks and associated

SAI 9×9 networks in the first run, expressed w.r.t. the amount

of self-plays. 28

2.4 Calibrated Elo ratings of various LZS networks and associ-

ated SAI 9×9 networks in the second run, expressed w.r.t. the

amount of self-plays. 29

vii

List of Figures

3.1 Overall Generate and Revise scheme on an example poem. The

conditional poem generator (light blue module) produces a draft

poem, which is iteratively revised by the detector (pale yellow)

- Prompter (light orange) modules until satisfaction of certain

criteria. At each step the detector identifies the word to replace,

heart highlighted in red, while the prompter is responsible for

finding the substitute, eyes highlighted in green. 35

3.2 Rewards yielded by using PPO and VPG with respect to the

number training volleys, in the experiment of Section 3.4.4 with

100 poems in the environment. 49

4.1 Toy example of the resource allocation and codeword placement

for the eMBB users, F = 3, Σ = 2, M = 4. Resources are

allocated at slot boundaries, while codewords are a, b ∈ W1,

c, d ∈ W2 and |a| = |b| = |c| = |d| = 6. 54

4.2 Percentage of eMBB codeword in outage versus activation prob-

ability pu, T = 1400. 62

4.3 Percentage of eMBB codewords in outage versus the different

percentage of classes of codeword for probability of activation

pu = 0.3. 63

4.4 Percentage of eMBB codeword in outage versus Poisson rate λu. 64

4.5 Multi-frequencies setting: average total reward versus arrival

rate λu for regular training period 73

4.6 Multi-frequencies setting: average total reward versus arrival

rate λ for really long training period 74

5.1 Experiment on BF with B = 80. The learning curve is different

and the average total reward is better with π̂BF . Volleys are

composed of 1000 episodes each and the fixed length of each

trajectory is T = 40 steps. 86

5.2 Experiment on BF with B = 200. Despite the similar learning

curve, there is a huge difference in the achieved average total

reward per episode between π̂BF and πBF at the end of the

training process. Volleys are composed of 1000 episodes each

and the fixed length of each trajectory is T = 100 steps. 87

viii

List of Figures

5.3 Experiment on BF with B = 400. The difference in the achieved

average total reward per episode between π̂BF and πBF is sim-

ilar to the case with B = 200, while the learning curve is differ-

ent. Volleys are composed of 1000 episodes each and the fixed

length of each trajectory is T = 200 steps. 87

5.4 Average total rewards during training of πRF with N = 2 and

T = 100. Volleys are composed by 2000 episodes each. 88

5.5 average total rewards during training of πRF with N = 5 and

T = 100 steps. Volleys are composed by 2000 episodes each. . . 89

5.6 average total rewards during training of πRF with N = 10 and

T = 100 steps. Volleys are composed by 2000 episodes each. . . 89

5.7 A graphical representation of 3 sequences of 1000 bits generated

by the same trained πRF with their NIST score. Images are

obtained by stacking the 1000 bits in 40 rows and 25 columns,

then ones are converted to 10 × 10 white squares and zeros to

10× 10 black squares. The resulting image is smoothed. 90

5.8 Average total rewards of a random agent on BF and RF for

short sequences . 93

5.9 Average total rewards of a random agent on BF and RF for

medium sequences. 93

5.10 Average total rewards of a random agent on BF and RF for long

sequences. 94

ix

List of Tables

3.1 Perplexity measured on the validation (Val) and test (Test)

sets of the poem generator, trained with or without conditional

features. 44

3.2 Perplexity measured on the validation (Val) and test (Test) sets

of the prompter module, trained with or without conditional

features. 45

3.3 Results of the experiments with the PPO-based agent on poem

reconstruction task of Section 3.4.3. The averaged total rewards

after the first volley and the last volley are reported, respectively. 46

3.4 VPG vs PPO: Reward on the experiment of Section 3.4.4 with

10, 100, 200, 500 and 1000 poems. PPO is also evaluated with

an environment that continuously generates new drafts (dynamic). 48

3.5 Two examples of generated poems with generate and revise ap-

proach given a target rhyme scheme, before the revision itera-

tive steps. 50

3.6 Two examples of generated poems with generate and revise ap-

proach given a target rhyme scheme, after the revision iterative

steps. 50

4.1 Total reward versus activation probability pu. 61

4.2 Average number of URLLC packets not served before the end

of the episode. 62

Chapter 1

Introduction

O
ne of the main goal of computer science as a whole is to automate all the

processes of gathering and elaboration of various kind of information.

By automating these processes, multiple problems can be solved in a way that

requires no human involvement and in a really fast way, thanks to the advances

in materials and technology. Sometimes, however, there are problems whose

solutions are hard to automate. Thanks to machine learning, a multitude of

real world problems have been solved without the need for humans to actually

code a solution, i.e. an algorithm to solve them.

Machine learning research can either be theoretical or practical, with the

latter focusing more on applying existing methods to some kind of tasks to

solve them, while the former has the never ending goal of improving the sta-

bility and the overall performance of the algorithms employed. This thesis is

very grounded into the real world and as such is very practical in nature.

In Section 1.1 we analyze the core reasons from this work and what this

thesis and the research behind it aim to achieve, while in Section 1.2 we detail

the general concepts common to all chapters of the thesis. In Section 1.3

we report the main questions guiding our research, while in Section 1.4 we

describe the overall structure of the thesis. Finally, in Section 1.5 we detail

all the research papers published within the period of this research and which

are also directly involved in the work presented in the thesis.

1.1 Motivations

Current research and literature in the machine learning field is very often

focused on competing on some benchmarks, in a never ending challenge be-

tween authors to the last decimal figure on one or more metrics appropriate to

4 1. Introduction

the task at hand. While beating competitors’ approaches on various datasets

could be an appealing perspective for a researcher, it being the sole focus of

research could be quite limited from the point of view of contributing to the

overall goal of our field’s research: to automate as many problems as possible.

By automate we mean the task of automating the creation of the automated

processes of gathering and elaborating the information that constitute the core

of computer science as a whole.

The approach of this thesis is completely opposite to the usual collection of

metrics computed within various toy tasks. Our goal is to lay not that far from

the real world. Indeed, our goal is to apply known algorithms and methods

to real world problems, investigating if it is possible to solve them with the

least possible amount of prior knowledge. In this journey we’ll play a lot with

modeling appropriate simulations to real world problems in order to be solved

by machine learning methods. While these models are naturally simplifications

of the real tasks, they are realized with the goal of being as consistent to the

real world as possible. By employing specific algorithms to each one of these

simulations and by adapting these algorithms were required, we aim to propose

one or multiple way to solve these real world tasks completely from scratch.

Are you ready to tag along on our journey?

1.2 General concepts

A very promising field of machine learning is reinforcement learning, inspired

by psychology, specifically by the Operant Conditioning of Behaviorism. With

reinforcement learning it is really possible to train computers from scratch,

without prior knowledge nor data about the task at hand. Of course, while

this makes reinforcement learning capable of solving tasks of really varied

nature, it also makes it a very hard field to work in, and to successfully apply

its methods to a certain task is no easy feat.

All the research presented in this thesis revolves around reinforcement

learning, in a way or another. The way reinforcement learning is involved de-

pends on the task at hand: it could be in conjunction with supervised learning,

working alongside some kind of heuristic or just applied as is. Multiple algo-

rithms or versions of the same algorithm are also employed. While algorithms

1.2. General concepts 5

change, the general ideas remain the same, and they are all described in 1.2.1.

To correctly apply algorithms to multiple problems, a certain standardiza-

tion is required. Custom solution might be required on certain tasks, but to

have a clear standard and a proved functioning base is really helpful to make

sure results are consistent. More often than not, proving that a reinforcement

learning method can work on a certain task is already a huge portion of the

study itself. Because of that, a framework comprising many reinforcement

learning algorithms has been developed during the period of this research.

This framework has been applied to all tasks described in this thesis, with

the sole exception of the one described in the first chapter. This framework is

described in 1.2.2.

1.2.1 Reinforcement Learning (RL)

For a comprehensive, motivational and thorough introduction to RL, we strongly

suggest reading from 1.1 to 1.6 in [1].

RL is learning what to do in order to accumulate as much reinforcement

as possible during the course of actions. This very general description, known

as the RL problem, can be framed as a sequential decision-making problem as

follows.

Assume an agent is interacting with an environment. When the agent

is in a certain situation - a state - it has several options - called actions.

After each action, the environment will take the agent to a next state, and

will provide it with a numerical reward, where the pair "state, reward" may

possibly be drawn from a joint probability distribution, called the model or

the dynamics of the environment. The agent will choose actions according

to a certain strategy, called policy in the RL setting. The RL problem can

then be stated as finding a policy maximizing the expected value of the total

reward accumulated during the interaction agent-environment.

To formalize the above description, see Figure 1.1 representing the agent-

environment interaction.

At each time step t, the agent receives a state St ∈ S from the environment,

and then selects an action At ∈ A. The environment answers with a numerical

reward Rt+1 ∈ R ⊂ R and a next state St+1. This interaction gives raise to a

6 1. Introduction

Figure 1.1: ©[1, figure 3.1] The agent-environment interaction is made at

discrete time steps t = 0, 1, 2, At each time step t, the agent use the

state St ∈ S given by the environment to selects an action At ∈ A. The

environment answers with a real number Rt+1 ∈ R ⊂ R called reward, and a

next state St+1. Going on, we obtain a trajectory S0, A0, R1, S1, A1, R2, . . .

trajectory of random variables:

S0, A0, R1, S1, A1, R2, . . .

In the case of interest to us, S,A and R are finite sets. Thus, the environment

answers the action At = a executed in the state St = s with a pair Rt+1 =

r, St+1 = s′ drawn from a discrete probability distribution p on S × R, the

model (or dynamics) of the environment:

p(s′, r|s, a) := p(s′, r, s, a) := Pr(St+1 = s′, Rt+1 = r|St = s,At = a).

Note the visual clue of the fact that p(·, ·|s, a) is a probability distribution for

every state-action pair s, a.

Figure 1.1 implicitly assumes that the joint probability distribution of

St+1, Rt+1 depends on the past only via St and At. In fact, the environ-

ment is fed only with the last action, and no other data from the history. This

means that, for a fixed policy, the corresponding stochastic process {St} is

Markov. This gives the name Markov Decision Process (MDP) to the data

(S,A,R, p). Moreover, it is a time-homogeneous Markov process, because p

does not depend on t. In certain problems the agent can see only a portion

of the full state, called observation. In this case, we say that the MDP is

partially observable. Observations are usually not Markovian, because the non

1.2. General concepts 7

observed portion of the state can contain relevant information for the future.

In this paper we model a PRNG as an agent in a partially observable MDP.

When the agent experiences a trajectory starting at time t, it accumulates

a discounted return Gt:

Gt := Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞
∑

k=0

γkRt+k+1, γ ∈ [0, 1].

The return Gt is a random variable, whose probability distribution depends

not only on the model p, but also on how the agent chooses actions in a certain

state s. Choices of actions are encoded by the policy, i.e. a discrete probability

distribution π on A:

π(a|s) := π(a, s) := Pr(At = a|St = s).

A discount factor γ < 1 is used mainly when rewards far in the future are

less and less reliable or important, or in continuing tasks, that is, when the

trajectories do not decompose naturally into episodes.

The average return from a state s, that is, the average total reward the

agent can accumulate starting from s, represents how good is the state s for

the agent following the policy π, and it is called state-value function:

vπ(s) := Eπ[Gt|St = s].

Likewise, one can define the action-value function (known also as quality or

q-value), encoding how good is choosing an action a from s and then following

the policy π:

qπ(s, a) := Eπ[Gt|St = s,At = a].

Since the return Gt is recursively given by Rt+1 + γGt+1, the RL problem

has an optimal substructure, expressed by recursive equations for v∗ and q∗.

If an accurate description of the dynamics p of the environment is available

and if one can store in memory all states, then dynamic programming iterative

techniques can be used, and an approximate solution v∗ or q∗ to the Bellman

optimality equations can be found. From v∗ or q∗ one can then easily recover

an optimal policy: for instance, π∗(s) := argmaxa∈Aq∗(s, a) is a deterministic

optimal policy.

8 1. Introduction

However, in most problems we have only a partial knowledge of the dy-

namics, if any. This can be overcome by sampling trajectories St = s,At =

a,Rt+1, St+1, At+1, Rt+2, . . . to estimate the q-value qπ(s, a) = Eπ[Gt|St =

s,At = a], instead of computing a true expectation. Moreover, in most prob-

lems there are way too many states to store them in memory, or just to go

through every state just once. In this case, the estimate of qπ(s, a) must be

stored in a parametric function approximator qπ(s, a;w), where w is a param-

eters vector living in a dimension much lower than |S ×A|. Due to their high

representational power, Deep Neural Networks (DNN) are nowadays widely

used as approximators in RL: the combination of DNN with RL is called Deep

Reinforcement Learning (DRL).

Iterative dynamic programming techniques can then be approximated, giv-

ing a family of algorithms known as Generalized Policy Iteration algorithms.

They work by sampling trajectories to obtain estimates of the true values

Eπ[Gt|St = s,At = a], and using supervised learning to find the optimal pa-

rameters vector w for qπ(s, a;w). This estimated q-value is used to find a

policy π′ better than π, and iterating over this evaluation-improvement loop

usually gives an approximate solution to the RL problem.

Generalized Policy Iteration is value-based, because uses a value function

as a proxy for the optimal policy. A completely different approach to the RL

problem is given by Policy Gradient (PG) algorithms. They estimate directly

the policy π(a|s; θ), without using a value function. The parameters vector θt
at time t is modified to maximize a suitable scalar performance function J(θ),

with the gradient ascent update rule:

θt+1 := θt + α◊�∇J(θt).

Here the learning rate α is the step size of the gradient ascent algorithm,

determining how much we are trying to improve the policy at each update,

and ◊�∇J(θt) is any estimate of the performance gradient ∇J(θ) of the policy.

Different choices for the estimator corresponds to different PG algorithms.

The vanilla choice for the estimator ◊�∇J(θt) is given by the Policy Gradient

Theorem, leading to an algorithm called REINFORCE and to its baselined

derivatives, see for instance [1, Section 13.2 and forward]. Unfortunately,

vanilla PG algorithms can be very sensitive to the learning rate, and a single

update with a large α can spoil the performance of the policy learned so far.

1.2. General concepts 9

Moreover, the variance of the Monte Carlo estimate is high, and a huge amount

of episodes are required for convergence. For this reason, several alternatives

for ◊�∇J(θt) has been researched.

In the thesis we mostly use PG algorithms. The two main algorithms we

use are described in Chapter 3. We saw that PG algorithms, and Proximal

Policy Optimization in particular, performs quite well on all of our tasks. At

the end of our journey we will also discuss what we think are the reasons for

this.

1.2.2 Framework

The framework used for all RL algorithms, with the sole exception of the study

presented in Chapter 2, is USienaRL1.

This framework allows for environment, agent and interface definition using

a preset of configurable models. While agents and environments are direct

implementations of what is described in the RL theory, interfaces are specific

to this implementation. Under this framework, an interface is a system used to

convert environment states to agent observations, and to encode agent actions

into the environment. This allows to define agents operating on different

spaces while keeping the same environment. By default an interface is defined

as pass-through, i.e. a fully observable state where agents action have direct

effect on the environment.

While there exists multiple frameworks for RL research available in liter-

ature, we developed a custom solution from scratch in order to better control

and understand the underlying algorithms. In various occasions, algorithms

are unstable because of numerical problem due to hyperparameters or certain

reward values. Having designed and coded from scratch all algorithms em-

ployed in this thesis, while them being still part of a cohesive, standardized

and tested framework, allows us to better understand which hyperparameters

need tuning or which algorithm is better suited to solve certain kind of tasks.

Moreover, each task is modeled into an environment designed to be com-

patible with this framework. Reward are designed with both the algorithms

stability and the goal of the task in mind. This process is known in literature

1Available on PyPi and also on GitHub: https://github.com/InsaneMonster/

USienaRL.

10 1. Introduction

as reward engineering. Reward engineering and reward transmission back and

forth between the environments and the algorithms is completely managed by

the framework.

1.3 Research questions and contributions

Research always start from one or more questions. In the case of this thesis,

since we are focusing on applying RL to the real world, we can define one main

question: is RL capable of solving real world problems?

Naturally, this question is both too broad and too complex to be answered

in just one breath. It also depend on the task at hand! We can decompose

this question into multiple questions, each one focused on a specific problem.

In what follows, all these questions are reported, as well as the proposed

contributions we made to answer each one of them. Each contribution defines

a research path we followed, and we discuss in detail, chapter by chapter, all

of them throughout the thesis.

1. AlphaGo is a powerful software capable of playing Go at superhuman

strength. While incredibly powerful, it doesn’t know how to play to max-

imize its score. In the real world, many passionate players are eager to

learn from the software but it is hard to learn a definite strategy when all

the final set of moves are not optimal, usually even bad. Is it possible to

make use of AlphaGo superhuman strength to learn from it in a complete

way? Is it possible to take the score into account directly while using the

AlphaGo algorithm?

2. Leela Zero Score is an AlphaGo-like software we propose to study the

behaviour of the machine player when the algorithm is trained on scores

instead of binary outputs. Developing this software also allowed us to

verify a well known statement among the researchers of this field: "using

a score doesn’t work".

3. One of the most human skills of them all is creativity. Machines do not

know how to create, while humans, often, do. With respect to machine

learning, Language Generation Models are used to generate sentences

given a context. Poetry, while being just text in a way, it has to adhere

1.3. Research questions and contributions 11

to a specific set of rules, like rhyme schemes or a specific metric. In

order to achieve this, poets start from a draft, iteratively refining it until

the desired meaning is conveyed in the required form. Is it possible for an

algorithm to refine a poem? Can creativity be injected into this process

by letting the algorithm to find a good solution by itself, from scratch?

4. A generate and revise framework for poetry is what we propose

to mimic the human creative process, i.e. to generate poems that are

repeatedly revisited and corrected, as humans do, in order to improve

their overall quality. The task of revising poems according to their de-

sired rhyme scheme is framed in the context of RL, injecting creativity

into the process by exploring a solution from scratch. We also show how

this approach is general and not only limited to fixing a poem rhyme

scheme.

5. Recent advances in telecommunication technology and protocols, like the

advent of 5G networks, generated a large amount of possible interesting

avenues for research. One of them is to find out how to efficiently manage

the coexistence of multiple types of traffic, each one with its own set of

stringent requirements, incompatible one another. Is it possible to use an

algorithm to automatically find one optimal, or at least good, solution?

What kind of RL algorithms can achieve this result and how should the

task be modeled as a MDP to be efficiently solved?

6. A resource slicing model is proposed as modeled task, where ultra-

reliable low-latency communications and enhanced Mobile BroadBand

traffics have to coexist on a time-frequency resource grid. We address

the problem of devising a suitable MDP for the task and of training a

good DRL agent, employing a state-of-the-art PG algorithm. We show

that the policy devised by the DRL agent never violates the latency

requirement of URLLC traffic and, at the same time, manages to keep

the number of eMBB codewords in outage at minimum levels, when

compared to other state-of-the-art schemes.

7. In the field of cryptography, RL has little to now use. In most real world

applications, where security is important but there are not enough re-

sources to employ true-random numbers, pseudo-random numbers are

12 1. Introduction

employed in their place. Machine learning is often used to break the de-

terministic algorithms used to generate such pseudo-random numbers, or

at the very least to imitate one of them. Is it possible to use the learn-

ing from scratch approach of RL in the field of cryptography, specifically

by generating from scratch pseudo-random numbers generators? If so,

which algorithms have greater performances and how should this task be

modeled as a MDP to be solved?

8. Two innovative approaches to the task of generating pseudo-

random numbers generators is what we propose to address this task.

Specifically, we first train a RL agent to learn a policy to solve an N -

dimensional navigation problem. In this context, N is the length of the

period of the sequence to generate and the policy is iteratively improved

using the average score of an appropriate test suite run over that period.

Then, we also show how the aforementioned approach can be improved

by learning a policy to solve a partially observable MDP, where the full

state is the period of the generated sequence and the observation at

each time step is the last sequence of bits appended to such state. Both

approaches are innovative and they lay the foundation of a research path

not undertaken by anyone before.

To sum up, we take multiple real world task to analyze. We define appro-

priate system models and, according to the model, we study how algorithms

behave. Through their behaviour, we assess if solving the problem by means

of RL is a feasible. If it is, we analyze how good of a solution we get compared

to other state-of-the-art approaches, like heuristics or other machine learning

methods.

In the following section, we organize each contribution into chapters, each

chapter representing one leg of our journey into the application of RL to real

world tasks.

1.4 Thesis structure

In the following Chapters the thesis will try to answer the research questions

described in Section 1.3, detailing each one of the introduced contributions.

1.4. Thesis structure 13

1. In Chapter 2 a practical study of the AlphaGo algorithm from a score

perspective is presented. Indeed, AlphaGo and all of its derivatives can

play with superhuman strength because they are able to predict the win-

loss outcome with great accuracy. However, Go as a game is decided by

a final score, and in final positions AG plays sub-optimal moves: this

is not surprising, since AG is completely unaware of the final score, all

winning final positions being equivalent from the win-rate perspective.

This can be an issue, for instance when trying to learn the “best” move

or to play with an initial handicap. Moreover, there is the theoretical

quest of the “perfect game”. No empirical or theoretical evidence can be

found in the literature to support the folklore statement that “using a

score instead of a win-rate doesn’t work”. We present Leela Zero Score

an AG-like software built to support or disprove this “doesn’t work”

statement. For simplicity, we will keep the following discussion focused

on the sole game of Go, but we keep in mind that our approach is also

applicable to all other games where similar conditions apply, i.e. having

a score as result of a match.

2. In Chapter 3 we analyze the human creative process of writing, proposing

an approach to emulate it through a machine. When humans write some-

thing, their text is usually revisited, adjusted, modified, rephrased, even

multiple times, in order to better convey meanings, emotions and feel-

ings that the author wants to express. Amongst the noble written arts,

Poetry is probably the one that needs to be elaborated the most, since

the composition has to formally respect predefined meter and rhyming

schemes. We discuss a framework to generate poems that are repeatedly

revisited and corrected, as humans do, in order to improve their overall

quality. We frame the problem of revising poems in the context of RL

and we compare two PG algorithms over the task. Our model generates

poems from scratch and it learns to progressively adjust the generated

text in order to match a target criterion. We evaluate this approach in

the case of matching a rhyming scheme, without having any information

on which words are responsible of creating rhymes and on how to co-

herently alter the poem words. The proposed framework is also general

and, with an appropriate reward shaping, it can be applied to other text

14 1. Introduction

generation problems.

3. In Chapter 4 we present a RL solution to a novel and very relevant re-

search issue in the field of 5G and beyond 5G (B5G) networks: how to

manage the coexistence of different types of traffic, each with very strin-

gent but completely different requirements. We propose a DRL algo-

rithm to slice the available physical layer resources between ultra-reliable

low-latency communications (URLLC) and enhanced Mobile BroadBand

(eMBB) traffic. Specifically, in our setting the time-frequency resource

grid is fully occupied by eMBB traffic and we train the DRL agent to

employ PPO, a state-of-the-art DRL algorithm, to dynamically allocate

the incoming URLLC traffic by puncturing eMBB codewords. We show

that the policy devised by the DRL agent never violates the latency

requirement of URLLC traffic and, at the same time, manages to keep

the number of eMBB codewords in outage at minimum levels, when

compared to other state-of-the-art schemes.

4. Finally, in Chapter 5 we propose an innovative approach to the field

of cryptography, specifically to the task of generating statistically un-

correlated numbers, i.e. Pseudo-Random Numbers (PRNs). They are

generate through specific algorithms known as Pseudo Random Number

Generators (PRNGs). Test suites are used to evaluate PRNGs qual-

ity by checking statistical properties of the generated sequences. These

sequences are commonly represented bit by bit. Machine learning tech-

niques are often used to break these generators, i.e. approximating a

certain generator or a certain sequence using a NN. But what about us-

ing machine learning to generate PRNs generators? We first propose a

RL approach to the task of generating PRNGs from scratch by learning

a policy to solve an N -dimensional navigation problem. In this context,

N is the length of the period of the sequence to generate and the policy is

iteratively improved using the average score of an appropriate test suite

run over that period. This approach lays the foundation of our study

on PRNG and relies on a feedforward NN operating a fully observable

MDP. Then, we also propose a more advanced approach to the same

task, by learning a policy to solve a partially observable MDP, where

the full state is the period of the generated sequence and the observa-

1.5. List of Publications 15

tion at each time step is the last sequence of bits appended to such state.

We use a LSTM architecture to model the temporal relationship between

observations at different time steps, by tasking the LSTM memory with

the extraction of significant features of the hidden portion of the MDP’s

states. We also show that modeling a PRNG with a partially observable

MDP and an LSTM architecture largely improves the results of the fully

observable feedforward approach.

1.5 List of Publications

In the following, a list of the research contributions produced during the period

of this research is provided.

Peer reviewed journal papers

1. Pasqualini, L. and Parton, M. (2020). “Pseudo random number gen-

eration through reinforcement learning and recurrent neural networks”.

Algorithms (13), 11, 307

Candidate Contribution: approach conceptualization and modeling,

design and development of the experimental campaign

Peer reviewed conference papers

1. Pasqualini, L. and Parton, M. (2020). “Pseudo random number gener-

ation: A reinforcement learning approach”. Procedia Computer Science,

170, pp. 1122–112 (IWSMAI 2020)

Candidate Contribution: approach conceptualization and modeling,

design and development of the experimental campaign

2. Zugarini, A., Pasqualini, L., Melacci, S. and Maggini, M. (2021). “Gen-

erate and Revise: Reinforcement Learning in Neural Poetry”. (IJCNN

2021)

Candidate Contribution: conceptualization, design and development

of RL solution, joint design and development of the experimental cam-

paign

16 1. Introduction

3. Saggese, F., Pasqualini, L., Moretti, M. and Abrardo, A. (2021). “Deep

Reinforcement Learning for URLLC data management on top of sched-

uled eMBB traffic”. (accepted for publication at 2021 GLOBE-

COM - IEEE Global Communications Conference)

Candidate Contribution: conceptualization, design and development

of RL solution, joint design and development of the experimental cam-

paign

4. Meloni, E., Pasqualini, L., Tiezzi, M., Gori, M., and Melacci, S. (2021).

“SAILenv: Learning in Virtual Visual Environments Made Simple”. In

International Conference on Pattern Recognition (ICPR 2020)

Candidate Contribution: design and development of the visual envi-

ronment: coding, modeling, texturing, user experience

5. Meloni, E., Tiezzi, M., Pasqualini, L., Gori, M., and Melacci, S. (2021).

“Messing Up 3D Virtual Environments: Transferable Adversarial 3D Ob-

jects”. (ICMLA 2021)

Candidate Contribution: design and development of the visual envi-

ronment: coding, modeling, texturing, user experience

Chapter 2

AlphaGo Score Targeting through

Reinforcement Learning

The first leg of our journey into the applications of reinforcement learning in

real world tasks could not refrain to start from the study of very first applica-

tion breaking through all news media around the world: AlphaGo (AG). As

software, AG is just playing Go at superhuman level strength, but the same

approach to learning from scratch can be applied to a large variety of board

games, like chess. AG and all of its derivatives can play with such super-

human strength because they are able to predict the win-loss outcome with

great accuracy. However, Go as a game is decided by a final score, and in

final positions AG plays sub-optimal moves: this is not surprising, since AG is

completely unaware of the final score, all winning final positions being equiv-

alent from the win-rate perspective. This can be an issue, for instance when

trying to learn the “best” move or to play with an initial handicap. Moreover,

there is the theoretical quest of the “perfect game”. Thus, a natural question

arises: is it possible to train a successful AG-like DRL agent to predict scores

instead of win-rates?

No empirical or theoretical evidence can be found in the literature to sup-

port the folklore statement that “this doesn’t work”. In this chapter we present

Leela Zero Score (LZS), an AG-like software built to support or disprove the

“doesn’t work” statement. LZS is built on the open source solution known as

Leela Zero (LZ), and is trained to predict scores instead of win-rates. For sim-

plicity, we will keep the following discussion focused on the sole game of Go,

but we keep in mind that our approach is also applicable to all other games

where similar conditions apply, i.e. having a score as result of a match.

18 2. AlphaGo Score Targeting through Reinforcement Learning

2.1 Introduction

The game of Go has been a landmark challenge for AI research since its very

beginning. It is very suited to AI, with the importance of patterns and the

need for deep exploration, and very tough to actually solve, with its whole-

board features and subtle interdependencies of local situations. Nowadays,

AI has reached superhuman level in the game of Go with the well-known

DeepMind algorithm AlphaGo Zero [2] (AGZ), a zero-knowledge evolution of

AG [3]. More generally, any perfect information two-player zero-sum game

like Go can be tackled efficiently by DeepMind algorithm AlphaZero [4] (AZ).

In perfect information two-player zero-sum games, where the win/lose out-

come is given by a final score difference, maximizing this score difference is

still an open and important question. In fact, AG derivatives play suboptimal

moves in the endgame. The open-source clean room implementation of AGZ

known as LZ [5] is also known to play suboptimal moves, see Section 4.4 in

[6].

This phenomenon is rooted in the win/lose reward in the RL pipeline.

Giving a reward of 1 (win) or 0 (lose) at the end of the game means that AG

derivatives maximize the winrate instead of the actual score difference. It is a

folklore statement that replicating the AG pipeline using score instead of the

binary outcome as a primary target is unsuccessful. A qualitative argument

is that score is unlikely to be a successful reward, because a single point

difference may change the winner, thus inducing instability in the training.

As a matter of fact, the two most recent and successful RL approaches to

score maximization in the game of Go, that is, KataGo [7] and SAI [6] have

taken different routes. KataGo does include score estimation, but only as a

secondary target: the value to be maximized is a linear combination of winrate

and expectation of a nonlinear function of the score difference, not the score

difference itself. In SAI, the winrate is modeled as a two-parameters family of

sigmoids σα,β : while α can be seen as the final score difference, α and β are

learnt indirectly by training σα,β against the classical binary reward.

Still, humans do use score estimations instead of winrate estimations while

playing score-based games. Therefore, the question remains: if a DRL agent

can learn how to maximize its winrate, why should it not be possible to learn

how to win by maximizing the final score? The implications from a DRL

2.2. Score as Target 19

training process perspective are far from trivial.

2.2 Score as Target

This discussion aims to provide a sound and quantified direct evidence of the

limitations of training a DRL agent directly on the score difference. To this

aim we train an instance of LZ on the 9×9 board, using score as a target.

We name this instance LSZ. We show that the training is successful, but it

does converges prematurely to a player weaker than a corresponding AGZ-like

player.

In this section, we first introduce the open source engines LZ and SAI in

2.2.1. Then, we describe the changes we made to LZ to obtain LZS in 2.2.2,

as well as our training techniques. In Section 2.3, we show our results and we

run both a qualitative and a quantitative analysis. Finally, in Section 2.4 we

describe all implications of the aforementioned results.

2.2.1 Leela Zero and SAI

Free and open source, LZ [5] is a Go program with no human provided knowl-

edge, known as one of the most faithful reimplementations of the system de-

scribed in AlphaGo Zero [2]. For all intents and purposes, it is considered an

open-source AGZ. The agent plays using MCTS without Monte Carlo playouts

and a deep residual convolutional neural network stack.

Released on 25 October 2017, the neural network powering the agent of

LZ is trained by a distributed effort, which is coordinated at the LZ website.

Lacking the computational power required to train AGZ, members of the com-

munity provided computing resources by running the client, which generates

self-play games and submits them to the server.

The self-play games are used to train newer networks. Newer networks are

then matched one against the other in multiple games and promoted according

to a process known as gating. These games are known as matches. Through

gating, newer networks losing to the previous better ones are discarded, speed-

ing up the training process.

The training process of LZ ended on 15 February 2021. LZ is avail-

able at https://zero.sjeng.org/ and https://github.com/leela-zero/

20 2. AlphaGo Score Targeting through Reinforcement Learning

leela-zero.

SAI is a fork of LZ described thoroughly in [8, 9, 6, 10]. Unlike LZ, SAI

was trained also on the 9×9 board, and, for the purposes of this work, SAI

9×9 can be considered an AGZ-like software.

2.2.2 Leela Zero Score

The overall architecture of the open-source engine LZ was replicated in our

setting. The main difference is in the target. To implement a score instead of

a binary target during the training and inference phases, the following issues

were addressed:

• The board size: LZ has an hard-coded board size 19×19, while LZS was

implemented on a 9×9 board for efficiency purposes.

• The outcome: instead of binary flag, i.e. 0 or 1, the target became an

integer number, in the range s ∈ [−N2, N2], N being the Go board size.

• The winrate: the role of a probability between 0.0 and 1.0 in choosing

the best possible move according to the MCTS tree was taken by the

expected score, which is a number se ∈ [−N2, N2], where N is the Go

board size.

• The heuristics: during the training, LZ employs a set of heuristics during

self-plays to avoid useless sets of actions at the end of the match. For

example, there is no point for a player to keep playing if it wins by

passing. This heuristic doesn’t work anymore in our new setting: to

maximize score, the agent should keep playing so long it has a chance of

increasing its current score.

• To minimize the modifications to the existing MCTS code in the LZ

software, the outcome s and the expected score se were both normalised

to ŝ = s
N2 and ŝe =

se
N2 in [−1.0, 1.0].

Scaling down the board from size n ∈ N to size ρn with ρ < 1 yields several

benefits:

• Average number of legal moves at each position scales down by ρ2.

2.2. Score as Target 21

• Average length of games scales down by ρ2.

• The number of visits in the MCTS tree scales down by ρ4, which can be

inferred from the previous two.

• The number of layers in the residual convolutional neural network stack

scales by ρ.

• The fully connected layers at the end of the neural network stack are

smaller. This grants increased training and inference speed.

To summarize the performance benefits of scaling down the board dimen-

sion from 19×19 to 9×9, we can estimate a total speed improvement for self-

play games in the order of ρ9.

The heuristics of LZ were updated. In a state where passing causes a win

for the current player with score ŝ (where the score is evaluated by Tromp-

Taylor rules1, the UC tree is visited to check for better alternatives, i.e. if the

following condition is verified for at least one node:

ŝe > ŝ

where ŝe is the expected score computed by LZS network introduced pre-

viously, and ŝ is the current score. If this is not the case, the agent passes

like it did in LZ. On the other hand, if one or more than one better moves are

found, the best one is chosen according to ŝe.

2.2.3 Training

Our training was composed by multiple phases, inspired from the original

LZ training process, as well as general knowledge inferred from SAI training.

Specifically, the phases of each training cycle were as follows.

• Self-play. A set of 2000 self-plays per cycle, where the network plays Go

against itself using the modified LZ engine with the following parame-

ters: no playouts, a variable amount of visits v, increased randomness

while playing the first 15 moves, a set of 6 threads, a batch size of 5,

1https://senseis.xmp.net/?TrompTaylorRules

22 2. AlphaGo Score Targeting through Reinforcement Learning

noise network randomization and specific heuristics for passing during

the game.

• Training. The network is trained over a window of self-plays. Specifi-

cally, the most recent self-plays are downloaded and added to the pre-

viously downloaded ones, if available. Then, positions from all the self-

plays within a variable window w are extracted and used as data, in a

supervised learning fashion with a training, validation and test set.

• Gating. A set of 400 matches played between the new trained network

and the current best network using the modified LZ engine is played.

Parameters are set as follows: no playouts, v = 100, no randomness

in the moves, a set of 6 threads, a batch size of 5, no noise network

randomization and no heuristics for passing during the game.

• Promotion. Depending on the results of the gating step, the old best

network is maintained or replaced. Specifically, if at least 55% of the 400

matches are won by the candidate network, it is promoted to be the new

best network. It’s important to note that while we train the network

to maximize its score, through gating we are assessing its capabilities

in winning the game. In other words, the most desirable outcome is to

obtain a network good at winning through score maximization.

After the end of each cycle, a new cycle starts. When a network is promoted

to be the new best network, the current training generation number increases.

At some values of the generation number g, the hyperparameters v(g) and

w(g) are updated, where v(g) is the amount of visits in MCTS tree during

self-plays, and w(g) is the size of the training window, as follows:

v(g) =















































100 if g ≤ 15

150 if 15 < g ≤ 31

250 if 31 < g ≤ 47

400 if 47 < g ≤ 63

600 if 63 < g ≤ 79

850 otherwise

2.3. Results 23

w(g) =















































4 if g ≤ 15

8 if 15 < g ≤ 31

12 if 31 < g ≤ 47

16 if 47 < g ≤ 63

20 if 63 < g ≤ 79

24 otherwise

2.3 Results

In Figure 2.1 we show training results in terms of uncalibrated Elo rating.

Figure 2.1: Uncalibrated Elo ratings of various LZS networks during training,

expressed w.r.t. the amount of self-plays.

On the x-axis the amount of self-plays are shown. On the y-axis the

uncalibrated Elo is reported. Like in LZ [5], the blue circle represents matches

won by the new trained network, i.e. when a promotion happens, while pink

24 2. AlphaGo Score Targeting through Reinforcement Learning

triangles show when such matches fail to promote the last trained network.

The Elo estimate is uncalibrated, because it is based on setting to 0 the Elo

of the first network, which was chosen arbitrarily as a random network. A

calibrated estimate of the Elo rating is described in the next sections.

However, for the purposes of the training, the uncalibrated estimate was

sufficient, as it allowed to assess when the training process stalled: when the

new trained network was not able to beat the previous best network for an

empirically-chosen amount of cycles, we scaled up the network size. Starting

from a base network with 2 residual convolutional layers of 64 filters, from

now on referred to as 2× 64, we scaled to:

• 4× 128 at g = 1, after 2000 self-plays.

• 8× 160 at g = 25, after 150000 self-plays.

• 10× 192 at g = 43, after 720000 self-plays.

• 12× 256 at g = 50, after 908000 self-plays.

Similarly, we changed the learning rate lr of training at certain times during

the entire process, with the goal of reducing stalls. Such times are selected

empirically, depending on the size of the network and the current generation.

As a simple rule of thumb, we reduced the learning rate when we trained

bigger networks at reasonably high generation numbers and we saw very little

improvements from one set of 2000 self-plays to the next. Specifically, we

trained with lr = 0.005 for g < 44 and with lr = 0.0005 for g > 45.

Based on the expectation from the SAI 9×9 run, a stopping rule for the

training was decided a priori, that the run would have been stopped when no

promotion was obtained after 40 cycles, i.e., 80000 self-plays. The rule was

met after 1400000 self-plays.

To assess the strength of LZS, we picked the best network and run both a

qualitative and a quantitative evaluation.

2.3. Results 25

2.3.1 Qualitative Evaluation

Fifteen games were played between LS and Carlo Metta, a strong amateur

player2. Ten games were played with 400 visits for each move, five games were

played with 20000 visits for each move.

A thorough analysis of such games shows that training has been successful

in producing a consistent player, which, however, exhibits some unusual char-

acteristics when compared to other artificial agents. The match ended with

a score of 14-1 in favor of the human player: although LZS found itself in a

position of clear advantage several times, it was only able to win one game,

one of those with 20000 visits. LZS showed some peculiar and not always

desirable features. LZS certainly has a direct and aggressive style. It does not

seem to admit sacrificing few stones for a better final results, not to foresee

sacrifice on the opponent’s side. This is clearly in contrast with the flexibility

shown by other artificial agents.

Another striking situation occurred several times: when in balanced po-

sitions, LZS attempted to further increase the score difference, rather than

settling for a narrow victory, in such an aggressive and self-delusional way that

it resulted in an inevitable defeat. It may be argued that this phenomenon

was a direct effect of LZS training scheme.

2.3.2 Quantitative Evaluation

For a quantitative evaluation of the strength of LZS, we need a calibrated Elo

rating.

Elo ratings are computed with a maximum likelihood optimization al-

gorithm, similar to Rémi Coulom’s Bayes Elo [11]. To get a sensible an-

choring, we selected one out of four LZS promoted networks, and compared

their strength against a panel of 12 SAI networks of similar strength. All the

matches in this evaluation step were played with the following settings.

• LZS: v = 400, no randomness in the moves, a set of 6 threads, a batch

size of 5, no noise network randomization and no heuristics for passing

during the game.

2Player profile on the European Go Database https://www.europeangodatabase.eu/

EGD/Player_Card.php?&key=14713996.

26 2. AlphaGo Score Targeting through Reinforcement Learning

• SAI: v = 400, no randomness in the moves, a set of 6 threads, a batch

size of 5, no noise network randomization and no heuristics for passing

during the game, λ = 0 and µ = 0.

LZS and SAI played black at alternate times.

To select the panel of SAI networks, we first estimated the Elo of LZS. We

first considered the panel used in [6]. LZS lost all games against the second

weakest net of the panel, which had a Elo of 3500. We therefore chose a second,

weaker panel, namely, SAI2000, SAI2500, SAI3000, and SAI3500, where SAIx is

a SAI network of the principal run in [6] having Elo rate approximately x.

After 200 games between LZS and the preliminary panel, LZS had the

following winrates:

wr(N) =



























0.985 against SAI2000

0.925 against SAI2500

0.480 against SAI3000

0.155 against SAI3500

Based on this results, we finally chose as calibration panel a set of 32 SAI

networks, whose Elo ranged from 683 to 3501. The matches were organized

as follows: starting from the first, we chose the next LZS network in the

sample; then, we had the chosen LZS network play 20 games against a set of

SAI networks of appropriate strength. Some combinations were not required,

because the strength difference would make the results useless from a statistical

point of view; we saved the results and iterated to the next LZS network. See

Figure 2.2.

The total amount of matches was 207. The results of the matches were

fed into the Elo algorithm.

In Figure 2.3 we compare the LZS run with the first SAI run. SAI grew at a

steadier pace than LZS. This run of SAI was cut at around 200000 self-plays,

therefore the figure was cut at that level. In Figure 2.4 we compared LZS

with the second run of SAI, which converged after a comparable number of

self plays. This comparison showed that, during training, LZS had consistently

lower values of Elo. Moreover, this calibrated version of Figure 2.1 confirmed

that the last increase in the size of the network, at 900000 self-plays, had

2.4. Discussion 27

Figure 2.2: Match table between LZS networks and SAI networks, where

hashes, estimated Elo ratings and relative differences are displayed.

not produced any relevant improvement in the next 400000 self-plays, thus

confirming that LZS was converging prematurely at a lower level player.

2.4 Discussion

In this chapter we discussed a Go artificial player trained using score as tar-

get. The same pipeline was used as the pipeline of SAI and LZ, well known

AG-like open source software, whose networks were instead trained with the

traditional binary target. The training was successful, and produced a player

with valid play but particular style. After calibration, the training proved to

produce consistently weaker networks than the corresponding networks in the

SAI training, and converged prematurely to a lower Elo level. Our results

prove the folklore statement that using the score as target doesn’t work as

well as using win-rates, while still converging to a reasonable player with an

interesting, while suboptimal, playstyle. We think that such playstyle could

still be reasonably employed to train average level players with an opponent

28 2. AlphaGo Score Targeting through Reinforcement Learning

Figure 2.3: Calibrated Elo ratings of various LZS networks and associated

SAI 9×9 networks in the first run, expressed w.r.t. the amount of self-plays.

whose strategy adapt to the players’ needs.

2.4. Discussion 29

Figure 2.4: Calibrated Elo ratings of various LZS networks and associated

SAI 9×9 networks in the second run, expressed w.r.t. the amount of self-plays.

Chapter 3

Neural Poetry through Reinforcement

Learning

The second leg of our journey into the real world applications of RL is oriented

towards an artistic and creative task: poem generation and revision. Usually,

writers, poets and singers do not create their compositions in just one breath.

Text is revisited, adjusted, modified, rephrased, even multiple times, in or-

der to better convey meanings, emotions and feelings that the author wants

to express. Amongst the noble written arts, Poetry is probably the one that

needs to be elaborated the most, since the composition has to formally respect

predefined meter and rhyming schemes. Is it possible to add a revision pro-

cess to a poem generation task, in order to better mimic human approach to

writing? Moreover, is it possible to exploit RL to stimulate creativeness into

such revision process?

In this chapter, we discuss a framework to generate poems that are repeat-

edly revisited and corrected, as humans do, in order to improve their overall

quality. We frame the problem of revising poems in the context of RL and we

compare two PG algorithms over the task. Our model generates poems from

scratch and it learns to progressively adjust the generated text in order to

match a target criterion. We evaluate this approach in the case of matching

a rhyming scheme, without having any information on which words are re-

sponsible of creating rhymes and on how to coherently alter the poem words.

The proposed framework is also general and it can be applied to other text

generation problems through domain adaptation, for example by changing the

reward function.

32 3. Neural Poetry through Reinforcement Learning

3.1 Introduction

Developing machines that reproduce artistic behaviours and learn to be cre-

ative is a long-standing goal of the scientific community in the context of

Artificial Intelligence [12, 13]. Recently, several researches focused on the

case of the noble art of Poetry, motivated by success of Deep Learning ap-

proaches to Natural Language Processing (NLP) and, more specifically, to

Natural Language Generation [14, 15, 16, 17, 18, 19]. However, existing Ma-

chine Learning-based poem generators do not model the natural way poems

are created by humans, i.e., poets usually do not create their compositions

all in one breath. Usually a poet revisits, rephrases, adjusts a poem many

times, before reaching a text that perfectly conveys their intended meanings

and emotions. In particular, a typical feature of poems is that the composition

has also to formally respect predefined meter and rhyming schemes.

Early methods on Poetry Generation [20] addressed the problem with rule-

based techniques, whereas more recent approaches focused on learnable neural

language models. The first deep learning solutions tackled Chinese Poetry. In

[14], authors combined convolutional and recurrent networks to generate qua-

trains. Afterwards, both [16] and [15] proposed a sequence-to-sequence model

with attention mechanisms. In the context of English Poetry, transducers

were exploited to generate poetic text [17]. The generation structure (meter

and rhyme) is learned from characters by cascading a module considering the

context, with a weighted state transducer. Recently, in Deep-speare [18], the

authors generated English quatrains with a combination of three neural models

that share the same character-based embeddings. One network is a character-

aware language model predicting at word level, another neural model learns

the meter, and the last one identifies rhyming pairs. Generated quatrains are

finally selected after a post-processing step from the output of the three mod-

ules. In [19], the authors focused on a single Italian poet, Dante Alighieri,

by making use of a syllable-based language model, that was trained with a

multi-stage procedure on non-poetic works of the same author and on a large

Italian corpus.

With the aim of developing an artificial agent that learns to mimic this

behaviour, we design a framework to generate poems that are repeatedly re-

visited and corrected, in order to improve the overall quality of the poem.

3.1. Introduction 33

We frame this problem as a navigation task approached with RL, exploiting

Proximal Policy Optimization [21] that, to our best knowledge, is not com-

monly applied to Natural Language Generation, despite being an improved

instance of the more common Vanilla Policy Gradient. In the task of gener-

ating and progressively editing the draft of a poem until it matches a target

rhyming scheme, we show that Proximal Policy Optimization leads to better

results than Vanilla Policy Gradient. The agent is not informed about what

a rhyme is and how to implement the considered scheme, making the task

extremely challenging in a RL perspective. The agent generates a draft poem

and it corrects the draft one word at a time. It not only understands that

the ending words of each verse are the ones that are important with respect

to the rhyming scheme, but that also other words of the poem might need

to be adjusted to make the poem coherent with the rhyming words. Despite

the application to poetry generation, the proposed framework is general and

it can be applied to other text generation problems, provided an opportune

reward shaping.

RL has been recently used in several Natural Language Generation appli-

cations, such as Text Summarization [22, 23, 24], Machine Translation [25] and

Poem Generation [26, 27] as well. However, most of the proposed approaches

exploit RL as a mean to make common evaluation metrics differentiable, such

as BLEU and ROUGE scores [28]. Of course, these metrics can be computed

only in those tasks in which the target text (ground truth) is available. In

[26] the authors extended Generative Adversarial Networks (GANs) [29] to

the generation of sequences of symbols, through RL. The GAN discriminator

is used as a reward signal for a RL-based language generator, and, among a

variety of tasks, their framework was applied to Chinese quatrains generation.

In [27], a mutual RL scheme was used to improve the quality of the generated

Chinese quatrains. Another RL-based approach is proposed in [27], where two

networks simultaneously learn from each other using a mutual RL scheme, in

order to improve the quality of the generated poems. In both works, dif-

ferent generic rewards were designed exploiting the simplest policy-based RL

algorithm, i.e. Vanilla Policy Gradient. Surprisingly, Proximal Policy Opti-

mization is less commonly used in the scope of Natural Language Generation,

despite leading to a more robust and efficient RL algorithm [30].

34 3. Neural Poetry through Reinforcement Learning

Our generate-and-revise framework is related to retrieve-and-edit seq2seq

approaches [31, 32, 33, 34, 35], where text generation reduces to an adapta-

tion/paraphrasing of the retrieved template(s) related to the current input.

The refinement process can be optimized with standard seq2seq learning algo-

rithms because of the presence of revised targets. In our generate-and-revise

instead, we neither start from retrieved templates, nor we have reference revi-

sions. That is why we cast the problem as a navigation task and exploit RL

to learn a revision policy that adjusts draft poems in order to improve their

quality.

This chapter is organized as follows. The neural models are described in

Section 3.2, while the RL-based poem revision dynamics is detailed in Sec-

tion 3.3. Results are reported in Section 3.4 and, finally, we discuss them in

Section 3.5.

3.2 Generate and Revise Poems

Our framework is rooted on the idea that creating a poem is a multi-step

process. First, the draft of a new poem is generated. Then, an iterative

revision procedure is activated, in which the initial draft is progressively edited.

We model this problem by means of a generator, that creates the draft, and a

reviser, that edits the draft up to the final version of the poem. The reviser is

structured as an iterative procedure that, at each iteration, identifies a word

of the poem which does not suit well the context in which it is located, and

substitutes it with a better word. At each step the reviser has to decide

both which word to replace and with what. A straightforward approach to

implement this idea is to design a RL agent that jointly addresses both the

tasks. Thus, given an m-word poem with vocabulary size |V |, the agent has to

choose among a large number of actions, i.e. |V | ·m, due to usually large |V |

(in the order of tens of thousands in our experiments). Therefore the problem

quickly becomes extremely hard to tackle.

We keep the idea of exploiting a RL-based approach, but we decouple the

problem implementing the reviser with two learnable models, namely the de-

tector and the prompter, each of them responsible of one of the two aforemen-

tioned tasks, i.e., detecting a word to substitute (detector), and suggesting how

3.2. Generate and Revise Poems 35

to change a target word (prompter), respectively. The generator, the detector,

and the prompter are based on neural architectures, trained from scratch with

appropriate criteria, while the detector is fully developed by means of RL. The

whole scheme is sketched in Fig. 3.1. The structure of this module allows us to

reduce the action space of the RL procedure to (up to) N words in the poem,

making it independent on |V |. The prompter identifies the words in V that

are most compatible with the surrounding context. In early planning stages,

also an overall character-level process was considered, but it was discarded

because it hindered convergence to meaningful sentences.

Conditional
Poem Generator

Prompter

Detector

In fait I do not love thee with mine eyes,
for they in thee a thousand errors note;

but 'tis my heart that loves what they despise;
who in despite of view is pleased to dote;

In fait I do not love thee with mine heart,
for they in thee a thousand errors note;

but 'tis my heart that loves what they despise;
who in despite of view is pleased to dote;

draft

In fait I do not love thee with mine heart,
for they in thee a thousand errors note;

but 'tis my heart that loves what they despise;
who in despite of view is pleased to dote;

revision

Figure 3.1: Overall Generate and Revise scheme on an example poem. The

conditional poem generator (light blue module) produces a draft poem, which

is iteratively revised by the detector (pale yellow) - Prompter (light orange)

modules until satisfaction of certain criteria. At each step the detector iden-

tifies the word to replace, heart highlighted in red, while the prompter is

responsible for finding the substitute, eyes highlighted in green.

In the following, the generator (Section 3.2.1), the detector (Section 3.2.2)

and the prompter (Section 3.2.3) will be described in detail, whereas the RL-

dynamics of the detector are presented in Section 3.3.

3.2.1 Conditional Poem Generator

The poem generation procedure is an instance of Natural Language Generation

based on a learnable Language Model (LM). Before considering the specific

details of Poetry, we describe the LM used in this discussion. Let us consider

36 3. Neural Poetry through Reinforcement Learning

a sequence of tokens (w1, . . . , wn+m) taken from a text corpus in a target

language. For convenience in the description, let us divide the tokens into

two sequences x and y, where x = (x1, . . . , xn) and y = (y1, . . . , ym). The

former (x) is the context provided to the text generator from which to start

the production of new text. More generally, x is a source of information that

conditions the generation of y (x could also be empty). The goal of the LM

is to estimate the probability p(y), that is factorized as follows,

p(y) =
m
∏

i=1

p(yi|y<i,x), (3.1)

being y<i a compact notation to indicate the words in the left context of yi.

Notice that when the sequence x has size n = 0, we fall back to the traditional

LM formulation [36]. The text generation is the outcome of sampling the next

sequence y from (3.1). Machine Translation, Text Summarization, Text Con-

tinuation, Poem Generation, and in general any sequence-to-sequence problem

in NLP can be formulated as in (3.1). The way p(yi|y<i,x) will be related to

the input sequence x depends on how strongly x is informative with respect

to y. Problems in which the source sequence significantly biases the genera-

tion outcome are referred as non-open-ended text generation, in contrast to

open-ended text generation, where the source sequence loosely correlates with

the output y [37].

Poem Generation is an instance of open-ended text generation. When

starting to generate a novel poem from scratch, there is, of course, no source

input sequence. After having generated a few verses or when starting from

a few given verses, the next-verses generation can be conditioned using them

(i.e., x contains previously given verses, while y is about the verses to be

generated), but there is still a huge degree of freedom in the possible verses

that can be generated, due to the intrinsically creative nature of Poetry. There

might be several features to further constrain the LM with information that

does not come from the input text, and, in this discussion, we consider two

important features, that are the author a and the target rhyme scheme r. We

update (3.1) by introducing the information on a and r,

p(y) =
m
∏

i=1

p(yi|y<i,x, a, r). (3.2)

3.2. Generate and Revise Poems 37

that is the reference equation on which our poem generation is based.

We model the distribution in Equation 3.2 by means of a sequence-to-

sequence neural architecture with attention. Our LM is a variant of [38],

similar to the one proposed in [18], and it is based on an encoding-decoding

scheme. The encoder is responsible of creating a compact representation of x,

while the decoder yields a probability distribution over the words in V given

the outcome of the encoder, and the conditioning signals a and r leading to

p(yi|y<i,x, a, r).

Encoding. The encoder of x computes a contextual representation of each

word xj of the input sequence x (n words), by means of a bidirectional Long

Short Term Memory (bi-LSTM). The output of this module is the set Hx =

{h1, . . . ,hn}, being hj the contextualized representation of the j-th word. In

detail, at each time step j, the bi-LSTM is fed with the concatenation of the

word embedding wj ∈ R
d associated to xj , and uj ∈ R

r, a character-based

representation of xj . We indicate with
−→
h j ,

←−
h j the internal states of the

bi-LSTM processing the sequence of augmented word representations,
−→
h j =

−−−−→
LSTM encx([wj ,uj],

−→
h j−1),

←−
h j =

←−−−−
LSTM encx([wj ,uj],

←−
h j+1),

where
−−−−→
LSTM ,

←−−−−
LSTM are the functions computed by the LSTMs in the two

directions. The final representation of the j-th word of the input sequence is

hj = [
−→
h j ,
←−
h j]. Overall, the encoder outputs Hx = {h1, . . . ,hn}. The char-

based representation uj is obtained by processing the word characters with

another bi-LSTM. We augment wj with a char-based representation to better

encode sub-word information, that is crucial to capture rhyming schemes and

meter in the poems.

Decoding. The decoder is responsible of returning the distribution p(y|y<i,x, a, r)

at each time index i, and, when used to generate text, to sample a word from

p. We stack two recurrent layers. First an LSTM that computes at each time

step i a representation zi given the previous word yi−1 merged with author

(a) and rhyme scheme (r) information encoded in form of embeddings a and

r, obtaining:

zi = LSTMdec([wi−1,ui−1,a, r], zi−1),

38 3. Neural Poetry through Reinforcement Learning

where wi−1 is the word embedding of yi−1 and ui−1 is the character-aware

word representation shared with the encoder. Thanks to the inputs a and r,

the state zi includes author-specific and rhyme-scheme-specific information.

This allows the system to generate text that is oriented toward the given

author style and the target rhyme scheme. The second recurrent layer is a

Gated Recurrent Unit (GRU) cell [39] that progressively fuses zi with the

context data in Hx, in order to create a further vector qi ∈ R
d that compactly

includes all the conditioning signals of (3.2). First, an attention mechanism

[38] is applied over the encoding of the words of x, i.e, on their contextualized

representations collected in Hx, yielding an attention-based representation ci

of x,

ci = attn(zi, Hx).

Then, the concatenation of ci with the representation zi of the triple (y<i, a, r)

is processed by a GRU cell,

qi = GRU([ci, zi], zi−1),

Finally, the distribution p(y|y<i,x, a, r) is obtained through a linear projection

of qi with the transposed embedding matrix E′ ∈ R
d×|V |, and then applying

the softmax function. The model is trained to maximize p(y) on a text corpora

of poems (see Section 3.4).

Generation. Poems are generated sampling from p. As a matter of fact,

the sampling strategy plays a crucial role in the quality of the generated text,

and it has been recently shown to have a major impact in Natural Language

Generation [40]. We preferred nucleus (top-p) sampling, with p = 0.9, to

generate quatrains over multinomial and top-k sampling. We indicate with o

the sequence of words sampled from p that will consitute a draft poem. The

drafts poems generated by the model will be then revised by the joint work of

detector and prompter modules.

3.2.2 Detector

Once we have generated a draft poem using the model of Section 3.2.1, a

detection module learns to select the next word of the draft that needs to be

3.2. Generate and Revise Poems 39

revised. The detector is a neural model that yields a probability distribution

π(oi|o, a, r) over the N words of the poem. Of course, in order to detect which

words to replace, it is important to take into account the author and rhyme

information. In detail, the words of poem o are encoded by a network that

is analogous to the encoder of x in Section 3.2.1. The word representations,

collected in Ho, are processed by an attention mechanisms attndet, building a

compact embedding of the whole poem that is also function of the author and

of the rhyme scheme. Then, a Multi-Layer Perceptron (MLP) with softmax

activation in the output layer returns the probability over the N words,

π(oj |o, a, r) = MLPj(attndet([a, r], Ho)) (3.3)

being MLPj the j-th output unit. Multinomial sampling applied to π leads to

the selection of the word(s) that should be replaced. This module is trained

by RL, as we will describe in Section 3.3.

3.2.3 Prompter

The role of the prompter module is to provide valid candidates to replace

the word previously selected by the detector of Section 3.2.2. The prompter

module solves the problem of modeling language given the left-right contexts

of each word, that can be formulated following an approach similar to the

one exploited by the conditional LM of (3.2). Thus, given an author a and

a rhyme scheme r, we use a neural model to learn the following distribution

from data,

p(o) =

N
∏

i=1

p(oi|o<i, o>i, a, r), (3.4)

being o<i, o>i the words in left and right context of oi, respectively. Once p(o)

has been learnt, we can sample p(oi|o<i, o>i, a, r) to get one or more candidate

words for replacing the selected one.

The prompter network follows the context encoding schemes of [41] and

[42]. In particular, the words of poem o are encoded by a network that com-

putes representations of the left and right contexts around each target word,

discarding the target word itself. Differently from the encoding of o in Sec-

40 3. Neural Poetry through Reinforcement Learning

tion 3.2.2, here the final representation of the j-th word is then [
−→
h j−1,

←−
h j+1].

1

This representation is concatenated with the author embedding a and the

rhyme scheme embedding r, followed by a learnable linear layer with softmax

activation that projects the concatenated vector to the space of vocabulary

indices. Including a and r in the prompter module is crucial in order to allow

the network to learn how to revise a target word in function of the poet and

rhyme scheme. Candidate(s) for replacing the selected word are sampled from

p(oi|o<i, o>i, a, r), as discussed in the Poem Generator of Section 3.2.1. In this

case we used top-k sampling (k = 50) to have a large pool of candidates. The

prompter is trained to maximize p(o) on a text corpora of poems (Section 3.4).

3.3 Revision as a Navigation Task

Once the poem generator and the prompter modules have been trained, the

task of revising a generated poem consists in detecting which words to change

and letting the prompter replace them. If we assume to change one word at

a time, we can easily consider this task as a decision process in the space

of the dictionary words V . Each decision defines which word to change at

that a given step, and the prompter replaces it with a suitable candidate. The

sequence of decisions is the policy of an agent whose goal is to improve the text,

according to a given reward function. Text revision stops when a satisfying

score has been reached. This task may be cast as a navigation problem, where

the current state of the agent is identified by the sequence of the words in the

current text revision. This allows us to reformulate the problem as a RL task

where the navigation space is the environment [43], while the decisions are

identified by actions executed by the agent in the environment2.

As described in Chapter 1, specifically in Section 1.2.1, a RL problem can

be framed as a sequential decision-making problem in which, at each step t,

the agent observes a state St ∈ S from the environment, and then selects an

action At ∈ A. The environment yields a numerical reward Rt+1 ∈ R and

then it moves to the next state St+1. This interaction gives raise to a trajectory

1In our implementation, we used the same LSTMs when encoding data in the detector

and in the prompter module.
2For a comprehensive introduction to RL, see sections from 1.1 to 1.6 in [1].

3.3. Revision as a Navigation Task 41

of random variables. In our task, since words are elements of the vocabulary

V , we have that S is the space of the poems of length N with words from V

for the target author a and with rhyming scheme r, A is the set of indices of

the word positions in the poem plus the do-nothing action, while R ⊂ R. To

define a reward function we use the shortest path problem formulation. The

agent aims at reaching the final text revision in the least amount of steps.

Conventionally this means that the reward Rt is defined as a negative number

for each state not at the goal state position and a positive number or zero

when the goal state is reached. Formally, if ot is the poem revision at step t,

we have

At = Ât ∈
N+1
⋃

g=1

{g} (3.5)

St+1 = (ot+1, a, r) (3.6)

Rt+1 =

{

1 if St+1 = Sf

−1 otherwise
(3.7)

where Sf is the goal state in which the text is not revised anymore, i.e. when

the poem rhyme scheme matches the target rhyme scheme.

The natural connection between the modules presented in Section 3.2 and

the RL-based setting is easily established once we redefine (3.3) as the proba-

bility of an action in the state described by the triple (o, a, r), that perfectly

suits the definition in (3.6), yielding a policy function. Using DNNs to ap-

proximate the RL-related functions, as we do in the case of the probability

distribution over the action space π, is a pretty common approach in nowa-

days RL-based problems (see, e.g., [43]). In the following descriptions, we

compactly rewrite (3.3) adding the symbol θ to refer to the network weights

that are learned by means of the RL procedure, i.e., π(·|·; θ). Policy Gradient

methods are suitable for navigation tasks, as shown in [44], especially when

the states’ space becomes large [45]. In such spaces often off-policy algorithms

(like Q-Learning) are indeed observed to be unable to converge. In this dis-

cussion, we compare two on-policy RL algorithms: Vanilla Policy Gradient

(Section 3.3.1) and Proximal Policy Optimization (Section 3.3.2).

42 3. Neural Poetry through Reinforcement Learning

3.3.1 Vanilla Policy Gradient

Vanilla Policy Gradient (VPG) [46] is an on-policy RL algorithm whose aim is

to learn a policy without using q-values as a proxy. This is obtained increasing

the probabilities of actions that lead to higher return, and decreasing the

probabilities of actions that lead to lower return. Actions are usually sampled

from a multinomial distribution for discrete actions’ spaces and from a normal

distribution for continuous action spaces. VPG works by updating policy

parameters θ via stochastic gradient ascent on policy performance over a buffer

built from a certain number of trajectories,

θ ←− θ + α∇θJ(π(·|·; θ))

where J(π(·|·; θ)) denotes the expected finite-horizon undiscounted return of

the policy and ∇θ its gradient with respect to θ (α > 0). In order to compute

J(π(·|·; θ)), the algorithm requires to evaluate further actions for each state

s in the buffer. In this chapter, we use Generalized Advantage Estimation

(GAE) [47] to compute such actions, and the obtained rewards are saved and

normalized with respect to “when” they are collected (the so called rewards-

to-go). These are solutions reported in literature to be stable and to improve

overall training performance of the model.

3.3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [21] is another on-policy RL algorithm

which improves upon VPG. It is considered the state-of-the-art in policy opti-

mization methods and it is a modified version of Trust Region Policy Optimiza-

tion (TRPO) [48]. Both methods try to take the biggest possible improvement

step on a policy using the currently available data, without stepping “too far”

and making the performance collapse. This is done by maximizing a surro-

gate objective, subject to a constraint on policy update quantity, where such

constraint depends on the KL-divergence between the old policy and the new

policy after the update. Specifically, PPO uses a clipped objective to heuris-

tically constrain the KL-divergence,

max
θ

E[min(ρtĀt, clip(ρt, 1− ǫ, 1 + ǫ) · Āt),

3.4. Results 43

where ρt =
π(At|St;θt)

πθold
(At|St;θt−1)

is a policy ratio, clip(ρt, ·, ·) clips ρt in the interval

defined by the last two arguments, ǫ is an hyperparameter (we set ǫ = 0.2), Āt

is the estimated advantage function at time step t and At, St are respectively

the action and the state at time step t. In the implementation used in this

chapter, when parameters θ are updated over a buffer of trajectories, the

update process is early stopped if the constraint is not respected, thus avoiding

the new policy to step “too far” from the previous one.

3.4 Results

We collected poems in English language from the Project Gutenberg3 using

the GutenTag tool [49] to filter out non-poetic work and collections. We also

discarded non-English contents that occasionally appeared in the retrieved

documents. Poems are organized in stanzas, according to their XML-based

description. Each stanza was then divided into quatrains, if not already in

such format, and we assigned a rhyming scheme to each stanza, from a fixed

dictionary of rhyming schemes. Rhymes were automatically detected with

the Pronouncing library4 and a few additional heuristic rules to cover most

of the undetected rhymes. Long poems without any rhyming pattern were

discarded as well. We used the meta-information about the author to define

the authorship of the stanza, when available. We considered the most 768 fre-

quent authors, the rest was marked as unknown. Overall, we obtained 757, 891

quatrains, divided in three sets of the sizes 684, 100, 36, 006 and 37, 785, re-

spectively, used to train, validate and test the models. We limited the word

vocabulary to the most frequent 50, 000 words, assigning an embedding of size

300 for all the models in all the experiments. The maximum sequence length

of a quatrain has been set to 50, longer verses were truncated.

We define multiple experimental settings and tasks in order to evaluate

the quality of the each module proposed in this work, up to the entire system

that includes all the modules and the full pipeline of generation and iterative

revision.

3https://www.gutenberg.org/
4https://pypi.org/project/pronouncing/

44 3. Neural Poetry through Reinforcement Learning

3.4.1 Conditional Poem Generator

While the proposed generator of Section 3.2.1, follows an established neural

architecture, the innovative elements we introduce in this work are about the

poem-related conditional features, author and rhyme scheme, and their use

in Poetry with character-aware representations. We considered the task of

generating a quatrain y given the context sequence x that is the previous

quatrain, where the rhyme scheme is a symbol indicating the rhymes of an

eight-verse poem. We considered the 50 most frequent rhyme schemes of size

eight. The architecture hyper-parameters were commonly selected by choosing

the best configuration on the validation set for the vanilla (i.e., not conditioned

by author and rhyme) generator. The bi-LSTM state encoding the context

sequence x was set to 512, as the state of the decoder LSTMenct, and the

GRU cell as well. Author and rhyme embedding sizes were set to 128 and 256,

respectively.

We compared in terms of generation perplexity a model trained with or

without any of the newly introduced conditional features, reporting results in

Table 3.1. The conditional features allows the LM to be more accurate, that

is an important result considering the open-ended challenging nature of the

poem generation task.

Table 3.1: Perplexity measured on the validation (Val) and test (Test) sets

of the poem generator, trained with or without conditional features.

Val Test

Vanilla Generator 52.98 59.78

Conditional Generator 51.40 54.86

3.4.2 Prompter

A similar analysis was followed to evaluate the quality of the prompter model of

Section 3.2.3. In particular, we trained a prompter model on single quatrains,

enforcing it to learn how to predict a word given its context. We used a bi-

LSTM state of 1024 units. Again, the role of the new conditional features

is what we are mostly interested in and, observing results of Table 3.2, we

3.4. Results 45

can see that they improve the suggestion quality. This result is in line with

the case of Section 3.4.1, confirming the importance of further poem-related

information.

Table 3.2: Perplexity measured on the validation (Val) and test (Test) sets

of the prompter module, trained with or without conditional features.

Val Test

Vanilla Prompter 14.09 14.78

Conditional Prompter 12.90 13.40

3.4.3 Revision as a Navigation Task

In order to show the quality of the detector module and that approaching text

correction as shortest path problem is feasible, we created “corrupted” poems

from real poems in the dataset by replacing one or more words in random

positions with words sampled from the entire vocabulary V .5 The agent op-

erates in an environment where each episode starts with a corrupted poem,

and it has to learn to reconstruct the original not-corrupted poem, selecting

at each step which word to change. In this artificial setting we assume that,

once the agent picks which word to substitute, a perfect prompter (oracle) will

replace it with the ground truth, i.e. the word originally positioned there in

the real poem. This means that after each agent action, the selected position

will be either replaced with the original word, in case of a corrupted word, or

nothing will be changed, in case of a correct word. The navigation terminates

when the goal state is reached, that occurs after all the corrupted words are

removed from the poem.

The MLP predicting actions has a single hidden layer of size 512. We

performed different experiments over this poem reconstruction environment,

using a PPO-based agent. Each experiment differs in the number of poems

that the agent has to fix, and the number of words perturbed in the poem.

We considered {1, 10, 100} poems that, at the beginning of each episode, are

randomly “corrupted” by altering 1 or 3 (referred to as “multiple”) words in

5Frequent words are sampled as replacement more often than rare ones.

46 3. Neural Poetry through Reinforcement Learning

the original poem. Please note that even in the simplest case, the experiment

with one poem only and a single perturbed word, the number of generated

“corrupted” poems is huge, |V ||x|, where |x| is the poem length.

The PPO-agent is trained for 10 volleys in each experiment, with 1, 000/

20, 000/200, 000 episodes in the experiments with 1/10/100 poems, respec-

tively. We set the maximum episode length to 10 steps. Hence, the reward

varies between [−10, 1] where 1 corresponds to the case in which the agent

immediately identifies the “corrupted” word (when there is only 1 corrupted

word), and −10 indicates a full failure. Results are shown in Table 3.3. The

“Volley 0” column defines the average total reward at the end of the first volley,

while the “Volley 9” column defines such value at the end of the last volley.

Table 3.3: Results of the experiments with the PPO-based agent on poem

reconstruction task of Section 3.4.3. The averaged total rewards after the first

volley and the last volley are reported, respectively.

R Volley 0 R Volley 9

1 Poem -7.866 -0.425

1 Poem (multiple) -9.092 -3.126

10 Poems -7.793 0.293

100 Poems -8.110 -6.389

The reward value improves during the training volleys, while increasing

the number of poems makes the problem exponentially more complex. Due to

the dynamic perturbation of the poems on each volley, the policy learned by

the agent is not tied to a set of perturbed words, but it is general over the set

of poems the agent is trained on. However, independently from the amount of

poems, results confirm that the revision problem can be framed into a shortest

path problem and addressed by RL using PPO, in a varying amount of time.

3.4.4 Generate and Revise Poems

Now we consider the complete system in which all the modules are active as

in Fig. 3.1. We focused on the task of generating poems and progressively

revising them, in which the agent goal is to substitute words so that the poem

matches a target rhyme scheme. Episodes begin with poems generated by

3.4. Results 47

the conditional generator. This task is significantly more challenging than the

previously described ones, since there is no ground truth for generated poems,

and words replacements are provided by the prompter model described in

Section 3.2.3. Therefore, we let the model free to change any word in the

quatrain, without restricting the agent actions to words at the end of each

verse. Basically, the agent does not know that rhymes are related to the

ending words of some verses, while the only information it receives is the

reward (or penalty) signal that tells if the poem fulfills the target rhyming

scheme or not.

We ran several experiments comparing PPO with VPG, varying in each

experiment the number of poems to revise in the environment in {10, 100,

200, 500, 1, 000}. We set to the number of training steps per volley at 10, 000

for the experiment with 10 poems, and we increase it to 100, 000 in the other

experiments. Additionally, we considered another experiment, indicated as

dynamic, in the most difficult scenario, i.e., where the environment spawns

new, unseen, artificially generated quatrains at each episode. In such a case

we report results of PPO only, because using VPG always resulted in a failure.

An episode ends either when the target rhyme scheme is matched or after 30

steps, that corresponds to the maximum episode length. Therefore, the reward

of an episode ranges in the interval [−30, 1]. Differently from our previous

work [19], we do not carry out human evaluations, since rhyme matching

can be quantitatively measured through the reward. Indeed, the reward is a

direct way to assess the revised poem quality, because it is proportional to the

number of steps needed for adjusting the target rhyme scheme. In particular,

from Equation 3.7 we can observe that the number of revising steps in an

episode (i.e. where reaching the goal state Sf) is equivalent to |Rf |+ 2.

Results are presented in Table 3.4. We can see that, while the agent

improves the reward in all the experiments with PPO, learning with VPG is

not stable, and performs poorly. The superiority of PPO over VPG is also

illustrated in Fig. 3.2, where we can see the instability of VPG in contrast

to the steady progresses of PPO. Even if the task is very challenging, the

model is able to strongly improve the average R score, thus indicating that it

is actually moving the right steps in progressively fixing the rhymes. We also

report in Table 3.5 and in Table 3.6, two examples of draft revisions obtained

48 3. Neural Poetry through Reinforcement Learning

with the agent trained with PPO in the dynamic environment.

Table 3.4: VPG vs PPO: Reward on the experiment of Section 3.4.4 with 10,

100, 200, 500 and 1000 poems. PPO is also evaluated with an environment

that continuously generates new drafts (dynamic).

N poems R first Volley R last Volley

VPG
10

-18.752 -14.630

PPO -10.239 -1.186

VPG
100

-19.415 -19.264

PPO -15.598 -5.200

VPG
200

-20.950 -18.432

PPO -15.323 -3.757

VPG
500

-21.191 -19.623

PPO -15.043 -7.780

VPG
1,000

-26.150 -21.179

PPO -11.579 -9.733

PPO dynamic -14.796 -12.415

3.5 Discussion

In this chapter we discussed an innovative way of implementing the notion

of creativity in a machine. Considering the task of automatically generating

new poems, we proposed a model that implements the human-like behaviour

of writing a draft and revising it multiple times. We proposed to create drafts

that are conditioned to author and rhyme information, while the revision

process is built around an iterative procedure that can be described as a navi-

gation problem and solved with RL and PPO, that significantly outperformed

VPG. Multiple experiments confirmed that the proposed approach is feasi-

ble and that it allows the machine to learn how to revise text, even if it is

not explicitly instructed on which portion of text it should revise. The pro-

posed framework is also general enough to be eventually applied to other text

generation tasks.

3.5. Discussion 49

0 2 4 6 8
Training Volley

20.0

17.5

15.0

12.5

10.0

7.5

5.0

R

Total Reward R
vpg
ppo

Figure 3.2: Rewards yielded by using PPO and VPG with respect to the

number training volleys, in the experiment of Section 3.4.4 with 100 poems in

the environment.

50 3. Neural Poetry through Reinforcement Learning

Table 3.5: Two examples of generated poems with generate and revise ap-

proach given a target rhyme scheme, before the revision iterative steps.

Rhyme scheme Draft

AABB

the mist that made us sweat and ache

with toil, from doing good or ill,

the hour when we were led to play

the children of the people’s brood,

ABBB

and when, above, the winter’s snow

has risen in the wintry sky

and leaves their path to cloud’s decay,

and life is spent, and life is drear,

Table 3.6: Two examples of generated poems with generate and revise ap-

proach given a target rhyme scheme, after the revision iterative steps.

Rhyme scheme Revision

AABB

the mist that made us sweat and chill

with toil, from doing good or ill,

the hour when we were led to play

the children of the people’s way,

ABBB

and when, above, the winter’s snow

has risen in the wintry night away

and leaves their path to cloud’s decay,

and life is spent, and life is drear today

Chapter 4

Resource Slicing through Reinforcement

Learning

With the advent of 5G and the research into beyond 5G (B5G) networks, a

novel and very relevant research issue is how to manage the coexistence of

different types of traffic, each with very strict but completely different re-

quirements. This bring us to the third leg of our journey: what could be a

better real world application of RL than learning how to manage such complex

traffic?

In this chapter we propose a DRL algorithm to slice the available physical

layer resources between URLLC and eMBB traffic. Specifically, in our setting

the time-frequency resource grid is fully occupied by eMBB traffic and we train

the DRL agent to employ PPO, a state-of-the-art DRL algorithm, to dynam-

ically allocate the incoming URLLC traffic by puncturing eMBB codewords.

Assuming that each eMBB codeword can tolerate a certain limited amount of

puncturing beyond which is in outage, we show that the policy devised by the

DRL agent never violates the latency requirement of URLLC traffic and, at

the same time, manages to keep the number of eMBB codewords in outage at

minimum levels, when compared to other state-of-the-art schemes.

4.1 Introduction

Resource slicing of different kinds of traffic is a key enabler for 5G and B5G

networks, allowing the coexistence on a common infrastructure of different

services with different requirements such as eMBB and URLLC [50]. The

two kind of traffic have different quality-of-service (QoS): eMBB users require

high throughputs, while URLLC has strict low-latency and reliability con-

straints [51]. In particular, URLLC traffic is characterized by short packets

52 4. Resource Slicing through Reinforcement Learning

that need to be transmitted and decoded in less than 1 ms [52], so that con-

ventional channel-aware scheduling is generally not possible.

Addressing the problem of URLLC-eMBB scheduling, [51] compares the

performance of different techniques in the uplink of a 5G system and lays the

ground for the subsequent literature using either puncturing, orthogonal mul-

tiple access (OMA) and non-orthogonal multiple access (NOMA). Immediate

scheduling of URLLC packets in combination with hybrid automatic repeat

request (HARQ) is another approach investigated in [53]. In [54] eMBB code-

words are punctured to accomodate URLLC traffic and the throughput loss

for eMBB packets is evaluated under different models. In [55] the authors pro-

pose a resource allocation scheme for URLLC-eMBB traffic based on successive

convex approximation and semidefinite relaxation of the general optimization

problem.

Because of its ability of finding very good to optimal policies for systems

that dynamically change through time [1], Reinforcement Learning (RL) is a

natural choice to address the random dynamics of URLLC traffic. Usually,

RL is employed in its Deep (DRL) formulation, where a multi-layer NN is

employed to extract features from states hardly enumerable in the simpler

tabular approaches. Accordingly, in [56], and [57] the authors propose two

RL algorithms based on Q-learning to multiplex eMBB and URLLC traffic

employing OMA and NOMA, respectively.

In [58] and [59], DRL approaches based on PG algorithms are proposed

to choose the resources punctured by the URLLC transmission. The former

requires a-priori information to the number of resources to be punctured, the

latter relies on the instantaneous channel state information (CSI).

Most of the recent literature [51, 54, 56, 57, 58, 59] assumes that the

URLLC packets are transmitted as soon as they arrive. However, as long

as they satisfy their latency constraints, URLLC packets can tolerate a cer-

tain amount of delay and this (minimum) tolerable delay can be exploited

to give the scheduler some degree of freedom. In this chapter, we address

the slicing problem by allowing some slack for URLLC transmissions to mini-

mize their impact on eMBB traffic. We assume a system where all resources

are already allocated to eMBB traffic, so that every time there is a URLLC

transmission an eMBB packet needs to be punctured. The URLLC scheduler

4.2. Low-Latency Traffic on Narrow-Band System Model 53

is a DRL agent, which select the resources for the URLLC packets with the

goal of minimizing the outage of the eMBB traffic due to puncturing. To

enforce slice isolation, the control planes of the different slices are kept to a

minimum degree of interaction [54], and the URLLC the eMBB schedulers

are two independent entities. Accordingly, the only information the URLLC

scheduler needs to possess is the robustness of each eMBB codeword to punc-

turing. Moreover, because of the strict latency requirements, we assume that

the URLLC scheduler does not have instantaneous channel state information.

While our proposed codeword model resembles the threshold model described

in [54], it retains two important differences. First, we consider a more realistic

non-homogeneous situation where different puncturing policies can be adopted

at different times. Then, we consider a threshold per codeword rather than

per user.

This chapter is organized as follows. After discussing the system model

from a telecommunication perspective (Section 4.2), we discuss the proposed

DRL agent and our training approach (Section 4.3). We present our results

in Section 4.4, then we explore an expanded approach also considering the

reliability of URLLC packets over multiple frequencies (Section 4.5). Finally,

we discuss all results in Section 4.6

4.2 Low-Latency Traffic on Narrow-Band System Model

We consider a single cell scenario in which one base station (BS) serves a set

of downlink user equipments (UE) with different requirements. We denote as

U and E the number of URLLC and eMBB users, respectively. The set of

UEs belonging to the URLLC and eMBB slices are referred to as E and U ,

respectively. We consider a single coherence interval as time horizon, where

the channel can be considered constant. The time axis is divided into Σ equally

spaced time slots of fixed duration. To accommodate URLLC traffic, with its

strict latency requirements, slots are further divided into M minislots1. As

for the frequency domain, the system bandwidth is divided into F orthogonal

1In 3GPP, the formal term for a “slot” is eMBB Transmit Time Interval (TTI), and a

“minislot” is a URLLC TTI [54].

54 4. Resource Slicing through Reinforcement Learning

frequency resources (FR)2.

We consider two different schedulers, one for each type of traffic, which

operate separately and independently of each other. The eMBB scheduler is

responsible for assigning time and frequency resources to eMBB users: each

eMBB codeword can occupy any fraction of the total available number of

minislots and FRs. As customary, eMBB scheduling is operated at the slot

boundaries. At the same time, the URLLC agent operates on a per minislot

basis with the possibility of puncturing some of the resources already assigned

to eMBB users, if needed. In the following, we present a detailed description

of how we model the traffics, and their coexistence.

slots

mini slots

eMBB #1
eMBB #2

1 Σ

1 2 M 1 2 M

fr
eq
u
en
cy

1

2

F

3 3

a a b b

b b b bc c c c

c c d d

d d d d

Figure 4.1: Toy example of the resource allocation and codeword placement

for the eMBB users, F = 3, Σ = 2, M = 4. Resources are allocated at slot

boundaries, while codewords are a, b ∈ W1, c, d ∈ W2 and |a| = |b| = |c| =

|d| = 6.

4.2.1 The eMBB Scheduler

In this chapter, we do not explicitly address the eMBB scheduling problem,

but, rather, we assume that a proper radio resource allocations has been per-

formed somehow and we can focus on the coexistence of URLLC traffic on top

of eMBB. Nevertheless, we need to describe the main principles of the eMBB

scheduling policy, which is to maximize a rate-dependent utility function, not

considering any latency. Hence, radio resources are allocated to the set of

active users on a slot basis following the OMA paradigm. Moreover, since

2With “frequency resources” we refer to the abstract concept of bandwidth available in

an OFDM system and we may refer to resource blocks or subcarriers, indifferently.

4.2. Low-Latency Traffic on Narrow-Band System Model 55

there is enough time to exchange channel quality information (CQI) before

each scheduling decision, it is reasonable to assume perfect knowledge of CSI

at the BS. Therefore, eMBB resource allocation can be performed following

conventional methods such as the water-filling algorithm [60].

The scheduler has to further take into account that the eMBB packets

might share the radio resources with URLLC traffic and in such event they

should carry enough redundancy to be punctured without losing the entire

packet. We denote as W the codebook at the BS. The BS will then select a

subset We ⊂ W containing all the codewords of user e. A single codeword

intended for user e is denoted as w ∈ We. The length in symbols |w| of a

codeword is always a multiple of the minislot length, i.e., each codeword spans

an integer number of minislots. Finally, we denote with wt,f the codeword

transmitted on the radio resource f during minislot t and withWt =
⋃F

ν=1wt,ν

the set of all codewords transmitted during the minislot t. Figure 4.1 shows a

toy example of a possible resource allocation and codeword placement for two

eMBB users.

4.2.2 The URLLC agent

Generally speaking, the QoS requirements of an URLLC user u ∈ U in a

wireless network are specified as follows: a packet of size Nu bits must be

successfully delivered to the receiver within an end-to-end delay of no more

than Tmax
u seconds with a probability of at least 1 − ǫu [53]. Moreover, a

URLLC packet may randomly arrive at the BS at any moment. In this chapter

we will concentrate on the edge delay, i.e. the delay computed as the difference

between the time the scheduler receives the packet and the time the packet

is transmitted. This choice is justified by the fact that the backhaul delay is

generally negligible [61], while UL queuing delay and transmission delay can

be taken into account by reducing the value of the tolerable latency Tmax
u .

Without loss of generality, we define the tolerable latency in terms of the

maximum number lmax
u of minislots that can be waited before exceeding the

latency constraint.

To simplify the description of the problem, we will focus on URLLC packets

of fixed length corresponding to a single minislot. However, the considered

framework can be easily extended to the case where a packet occupies more

56 4. Resource Slicing through Reinforcement Learning

than one minislot. The packets are generated following memory-less packet

arrival distributions: Bernoulli with arrival probability pu and Poisson with

mean value λu. The packets are stored in a first-in first-out (FIFO) queue

Q of infinite length. The URLLC agent is responsible for taking the decision

whether the oldest packet in the queue should be transmitted or not in the

current minislot, and onto which frequency resource in the grid.

Owing to the strict latency constraint, the CSI of URLLC users cannot

be estimated. Hence, power adaptation during transmission is not possible

and ARQ re-transmission mechanisms can be hardly acceptable. Accordingly,

reliability can be expressed in terms of outage probability for a fixed pre-

defined transmit power. As in previous works in literature [54], we assume

that the URLLC transmit power is large enough so that the outage probability

remains under an acceptable threshold.

4.2.3 URLLC and eMBB Coexistence

Coexistence of eMBB and URLLC is achieved by superposition coding or

puncturing [50]-[54]. In this chapter we consider a puncturing strategy, where

the BS decides to use a certain resource for URLLC traffic regardless of any

eMBB user already occupying it. To avoid any interference between the two

types of traffic, the eMBB codeword is punctured, i.e., the transmit power of

the eMBB user on the specific resource is set to zero. To tolerate puncturing,

we assume that each eMBB codeword employs an inner erasure code with rate

1−Cw/|w| [51], that allows to correct up to Cw erased minislots. The eMBB

scheduler is in charge of determining the class Cw for each codeword. The

class assignment is performed on a codeword basis, i.e., the BS can assign

codewords with different Cw to the same user. The assignment of higher

Cw to different codewords encompasses the possibility of employing a more

robust transmission mechanisms to prevent outage even in the presence of

puncturing, as discussed in Section 4.2.1. Of course, the higher Cw the lower

the transmission rate. Note that the algorithm implemented by the eMBB

scheduler may be unknown by the URLLC traffic agent, as long as the latter

is informed of the codewords class by the former.

4.3. The DRL Agent 57

4.3 The DRL Agent

RL is usually employed to solve a MDP defined over a real world task. It is

common knowledge in literature that RL is especially effective when paired

with parametric function approximators for the policy π(a|s), specifically

multi-layer NNs (hence the name deep). That holds true especially for each

task where the state space is too complex to be represented in tabular form,

making it impossible for the algorithm to compute the estimated value of each

state in a reasonable time [1]. Since the simulation’s state observed by the

proposed URLLC agent at each time step t is of combinatorial complexity,

as shown in section 4.3.1, in this chapter we follow the DRL paradigm when

training the agent, according to literature best practices.

4.3.1 System Model as a MDP

The application of RL to our task requires to formulate the URLLC scheduling

problem as a MDP. Despite the task at hand being inherently not episodic,

for convenience of operation we truncate it in multiple episodes of length

T minislots, corresponding to the whole coherence interval of the channel. A

minislot t ∈ {1, . . . , T} represents a time step in the episode. At the beginning

of each episode, resource allocation and codeword placement for eMMB users

is performed and then, at each time step, new URLLC packets are generated

according to a certain distribution.

The DRL action consists in deciding whether the first URLLC packet in the

queue should be transmitted in the current minislot or not and on which FR.

The possible actions at time step t are collected in the set At = {0, 1, . . . , F},

where 0 means no transmission, while otherwise the action indicates the FR

index for transmitting the URLLC packet. If the URLLC queue is empty, the

only possible action is 0.

The state at each time step t is then represented by the set St = {S
(u)
t ,S

(e)
t },

where S
(u)
t and S

(e)
t collect the URLLC and eMBB information at step t, re-

spectively. In particular, the 2-dimensional state S
(u)
t is

S
(u)
t = {Qt,∆t} (4.1)

where Qt represents the length of the URLLC queue at step t, while ∆t =

lmax
u − loldt represents the difference between the tolerable latency and the

58 4. Resource Slicing through Reinforcement Learning

latency of the oldest packet in the queue at step t. The F -dimensional state

S
(e)
t collects for each of the F frequency channels the variable st(f), which

tracks if the codeword transmitted on channel f is in outage (st(f) = −1) or

not (st(f) ≥ 0). A non-negative st(f) stores the residual number of times that

the codeword can be punctured without being in outage. Let ρt(w) denote

the number of times the codeword w has been punctured from the beginning

of the episode, st(f) is computed as

st(f) = max
{

Cwt,f
− ρt(wt,f),−1

}

, (4.2)

remembering that wt,f is the codeword placed on resource f and minislot t.

Once a codeword is in outage, its state variable is set to -1 and does not change

anymore regardless of the times is further punctured.

4.3.2 Reward Function

In a RL problem choosing the reward is an empirical process: a good reward

function should capture the essence of the task at hand. In this case the ob-

jective is to minimize the number of eMBB codewords in outage while keeping

the latency of URLLC packets below the given threshold. With this goal in

mind, we introduce the eMMB penalty function et(w)

et(w) =

{

−1, Cw − ρt−1(w) ≥ 0 ∩ Cw − ρt(w) < 0,

0, otherwise,
(4.3)

which takes value −1 only if the chosen action causes the outage of the code-

word w. Furthermore, since ∆t < 0 signals the violation of the latency con-

straint, we introduce the following URLLC penalty function

Lt =

{

0, ∆t ≥ 0,

− αT
F+1 , ∆t < 0.

(4.4)

The heuristic value − αT
F+1 is empirically chosen so that the violation of the

latency constraint for an URLLC packet results in a larger negative contri-

bution than the outage penalty for eMBB traffic. In the worst case, every

punctured resource will lead to an outage event and the total maximum con-

tribution of the eMBB penalty is −T . However, T is a large value which can

4.3. The DRL Agent 59

lead to numerical instabilities within the learning process, and it is not highly

probable that an eMBB outage event occurs every step. Hence, we normalize

T by (F + 1)/α (α ≥ 1) which is a term that accounts for to the fact that

the larger is the number of frequency resources, the less probable are outage

events. The value of α is devised by means of trial and error, according to

best practices of reward engineering in RL [1]. Finally, the reward at time t

can be expressed by

Rt =
∑

w∈Wt

et(w) + Lt, (4.5)

Eventually, when ∆t < 0 the episode is considered finished.

4.3.3 Algorithm and Neural Network Architecture

Among the possible DRL techniques, we consider the PG algorithm PPO [21],

described in this thesis in Chapter 3, specifically in Section 3.3.2. PPO aims

at taking the biggest possible improvement step on a policy without ending

too far from the previous one, thus avoiding the risk of performance collapse.

While we know that many papers in literature focus on well known methods as

Deep Q-Learning (DQL) or VPG, both presents huge drawbacks w.r.t. PPO.

Specifically, DQL cannot scale to large action spaces required by complex

tasks as the one at hand, while VPG is extremely unstable during training.

PPO is considered state-of-the-art for PG methods in current RL literature,

by being an efficient approximation of TRPO [48], the latter being proved

to guarantee a monotonic improvement over the expected discounted reward

w.r.t. the training steps.

PPO is an actor-critic algorithm [21], where two different neural networks

are required. To this respect, we consider two completely separated subnet-

works, one for the value function (the critic, with output estimated value of

current state) and one for the policy function (the actor, with output the cur-

rent strategy). Both policy and value function subnetworks have three dense

layers with 128, 64, and 32 neurons, respectively. All of them operate a rec-

tified linear activation function (ReLU). Furthermore, the policy subnetwork

has a dense fourth layer with F + 1 neurons to choose the actions, while the

value subnetwork has a dense fourth layer with 1 neuron and no activation to

estimate the value. Finally, all layers are initialized using Xavier initialization.

60 4. Resource Slicing through Reinforcement Learning

4.4 Results

We consider a scenario, where the slot duration and the coherence time of

the channel are set to 1 and 10 ms, respectively. Each slot is further divided

in M = 14 minislots. The number of frequency resources is F = 12. The

length of an episode corresponds to the coherence time of the channel so that

the number of time slots for each episode is Σ = 10, for a total of T = 140

minislots. We consider a single URLLC user, i.e. U = 1, and the number

of eMBB users is E = 10. We further set the maximum delay constraint to

lmax
u = M/2 = 7 = 0.5 ms. We consider only codewords of class Cw ∈ {0, 1},

i.e., codewords that can be punctured zero or one times before being in outage.

Regarding PPO, we use an instance of PPO-Clip with a clip ratio equal

to 0.2, and an early stopping strategy if the mean KL-divergence of the new

policy from the old one grows beyond a given threshold, set as 1.5 · 10−2, as

described in [62]. To reduce the variance of the states’ values stored into the

various trajectories we feed the NN with, we use the generalized advantage

estimation approach with γGAE = 1 and λGAE = 0.97, as proposed in [47].

The value of α in (4.4) is 3.

To have a fair performance comparison, we consider four alternative URLLC

scheduling algorithms:

• Aggressive. The URLLC packet is transmitted immediately on a ran-

domly chosen frequency.

• Threshold Proportional (TP). The URLLC packet is transmitted imme-

diately on the frequency resource occupied by the codeword with the

highest puncturing threshold, given by (4.2). TP has almost optimal

performance when the URLLC is forced to transmit immediately upon

arrival, i.e., lmax
u = 1, and in case of low average URLLC load [54].

• TP-lazy. As long as ∆t > 0, the packet is transmitted only if
∑

w∈Wt
Cw−

ρt(w) ≥
∑

w∈Wt+1
Cw−ρt(w), i.e. if the present state is somehow better

(or equal) than the next one. If ∆t = 0, the transmission is forced in the

present minislot. In any case, the choice of the frequency is made ac-

cording to the TP scheme. This heuristic combines the advantage of the

TP transmission policy with the possibility of waiting before puncturing

eMBB resources.

4.4. Results 61

• TP-smart. This heuristic immediately transmits the URLLC packet. If

there is an eMBB codeword already in outage the scheduler transmits

on the resources occupied by that codeword, otherwise TP-smart acts as

TP. Note that this scheme results optimal, in terms of impact on eMBB

codewords, for immediate transmissions in this scenario.

Table 4.1: Total reward versus activation probability pu.

pu 0.1 0.2 0.3 0.4 0.5 mean

aggressive -4.60 -9.04 -14.01 -18.55 -23.34 -13.91

TP -1.31 -3.23 -6.71 -9.85 -15.78 -7.38

TP-lazy -1.18 -3.18 -5.72 -9.25 -14.63 -6.79

TP-smart -0.77 -1.64 -2.34 -3.28 -4.23 -2.43

PPO -0.48 -1.18 -1.955 -2.69 -3.77 -2.03

During the learning phase of the PPO agent, the parameters related to

eMMB resource allocation and URLLC traffic generation are randomized on

a per episode basis. While this is not mandatory to train a functioning agent,

it is crucial to help the agent to generalize. In other words, the agent is

trained to learn a generalized strategy that is not specific either for a particu-

lar eMMB allocation policy or a particular URLLC traffic load. While this is

not mandatory to train a functioning agent, it is crucial to help the agent to

learn a generalized strategy that is not specific either for a particular eMMB

allocation policy or a particular URLLC traffic load. Since the MDP formu-

lation considered in this chapter models a not episodic task, to compute the

expected discounted reward we set γ = 0.99. To further simulate a continuous

task, we initialize each episode with a random number of URLLC packets in

the queue. The number of packets generated in this way is always smaller

than lmax
u to avoid that the episode starts with ∆t < 0. After training the

agent with Bernoulli distribution of packets, we show the results obtained by

running the RL-based agent in inference mode, providing comparisons with

the considered heuristic schemes.

62 4. Resource Slicing through Reinforcement Learning

Table 4.2: Average number of URLLC packets not served before the end of

the episode.

pu 0.1 0.2 0.3 0.4 0.5

TP-lazy 0.597 1.222 1.790 2.416 3.015

PPO 0.030 0.068 0.081 0.136 0.210

0.10 0.20 0.30 0.40 0.50

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

pu

%
of

eM
B

B
co

d
ew

or
d

in
ou

ta
ge

aggressive
TP-smart
TP-lazy
TP
PPO

Figure 4.2: Percentage of eMBB codeword in outage versus activation prob-

ability pu, T = 1400.

4.4.1 Bernoulli Distribution

Here we discuss the results obtained for the Bernoulli distribution.

Table 4.1 shows the total episode reward
∑T

t=1Rt as a function of pu, for

T = 140. It is worth noting that the PPO agent trained as proposed in this

chapter, outperforms all the other schemes for every value of pu. In Table 4.2,

we show the average number of packets remaining in the URLLC queue at

the end of each episode for different pu. The results for aggressive, TP-smart

and TP are omitted since the URLLC packets are promptly transmitted upon

4.4. Results 63

arrival. At the opposite, with the TP-lazy scheme a non-negligible amount of

traffic remains unserved at the end of an episode. We can see that the PPO

agent is able to devise a new policy in-between the two. It is worth noting

that while TP, TP-lazy, aggressive and TP-smart are all designed to to never

violate the URLLC latency constraints for Bernoulli distribution, the PPO

agent learns this on its own.

[0, 1] [0.2, 0.8] [0.5, 0.5] [0.8, 0.2] [1, 0]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D

%
of

eM
B

B
co

d
ew

or
d

in
ou

ta
ge

aggressive
TP-smart
TP-lazy
TP
PPO

Figure 4.3: Percentage of eMBB codewords in outage versus the different

percentage of classes of codeword for probability of activation pu = 0.3.

The subdivision of the task into episodes may somehow distort the correct

evaluation of the algorithms’ performance. To simulate a longer time horizon is

of critical importance to the real word task. To address this issue, we repeated

our tests scaling up the length of each episode by one order of magnitude,

without retraining the agent.

Fig. 4.2 shows the percentage of eMMB codewords in outage at the end

of each episode for the various schemes, with T = 1400, while the class of

each codeword is again randomly chosen. Also in this case, the PPO agent

outperforms all the other schemes.

64 4. Resource Slicing through Reinforcement Learning

Finally, Fig. 4.3 shows the percentage of eMBB codewords in outage for

different compositions of eMBB codewords classes D = [Pr{C0},Pr{C1}] and

pu = 0.3. The PPO agent outperforms all the heuristic schemes, including

the one we considered optimal at one step. Among the other things, we can

see that PPO has good performance even when D = [1, 0], i.e. there are only

codewords without an inner erasure code.

0.10 0.20 0.30 0.40 0.50

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

λu

%
of

eM
B

B
co

d
ew

or
d

in
ou

ta
ge

aggressive
TP-smart
TP
PPO

Figure 4.4: Percentage of eMBB codeword in outage versus Poisson rate λu.

4.4.2 Poisson Distribution

In this section, we discuss the results obtained for the Poisson distribution,

collected for T = 140. To assess the generalization capabilities of PPO, we

use the same network trained on the environment with Bernoulli distribution.

In Fig. 4.4, we show the performance of the various schemes in terms of

eMBB codewords’ outages. Also in this case, the proposed PPO agent attains

best performance. It is worth noting that TP-lazy heuristic scheme is omitted

since it is not able to deal with the bursts of packets generated under the

4.5. Towards Reliability and Multi-Frequencies Communication 65

Poisson assumption, thus consistently violating URLLC latency requirements.

All other schemes, PPO included, never violate them.

4.5 Towards Reliability and Multi-Frequencies Com-

munication

The narrow-band system model is by construction limited by the amount of

frequencies the scheduler can transmit over concurrently. While having only

one frequency is really helpful to simplify the real world model to be easier

to approach for RL methods, it does exclude a very important requirement of

URLLC traffic: reliability.

In order to properly fulfill the reliability requirement, the agent must select

a number of resources able to support the communication rate given by the

number of bits to be transmitted. Assuming that N informative bits are

encoded and transmitted onto the set Fu ⊆ F , having cardinality |Fu| = Fu,

an ǫu-reliable transmission occurs if the probability of outage pu is lower or

equal ǫu. Having assumed a parallel channel environment, the probability of

outage can be expressed by [63]

pu(N,Fu,Γu) = Pr







∑

f∈Fu

log2 (1 + γu(f)) ≤
N

∆fTm







≤ ǫu (4.6)

where N
∆fTm

[bit/s/Hz] represents the spectral efficiency of the transmission

onto Fu frequencies. In relation (4.6), we highlighted the URLLC outage

probability dependence on N , Fu, and Γu. We remark that Γu is given by

the path loss of URLLC user, its receiver noise figure, and the available power

of the transmitter. To transmit the highest number of bits, the best solution

is employing all the available power for the transmission. Assuming a fixed

fraction of power is reserved for URLLC communication, the value of Γu is

user dependent and cannot be optimized further by the agent.

Having assumed i.i.d. instantaneous SNR realization with mean value Γu,

the maximum N depends on the cardinality of set Fu. Higher the cardinality

Fu, higher will be the maximum number of bits transmissible. Selected the

66 4. Resource Slicing through Reinforcement Learning

value of Fu, the maximum number of bits can be evaluate solving

N∗(Fu,Γu) = max {N | pu(N,Fu,Γu) ≤ ǫu} (4.7)

which provides a unique solution, due to the monotonicity of the outage prob-

ability [64, Proposition 1]. Therefore, the relation between Fu and N∗(Fu)

is an injective function: giving the former will give a precise information on

the latter. At every mini-slot, the URLLC agent is responsible for taking the

decision whether the oldest packet should be transmitted or not in the current

mini-slot, and onto which frequencies the transmission should be make.

The optimization problem (4.7) cannot be solved in a closed form, taking

into account that the analytic formulation of the outage probability in a par-

allel channel environment is not known; bounds exist, e.g. [65, 66], but they

are not easy to be addressed in an optimization problem, involving non-convex

special functions. However, it is easy to find the value of N∗(Fu,Γu) by means

of numerical simulations. Let us denote the estimated outage probability ob-

tained through Monte Carlo simulation as

p̂u(N,Fu,Γu) = lim
n→∞

1

n

n
∑

i=1

1







∆fTm

∑

f∈Fu

log (1 + γu(f)) ≤ N







(4.8)

where 1(·) is the indicator function. Keeping fixed the values of Fu and Γu, is it

possible to find N∗ using an iterative exhaustive search method: at iteration

t, we select a value of N (t); we estimate the outage probability as (4.8); if

p̂u(N
(t), Fu,Γu) ≤ ǫu, we select a new value of N (t+1) = N (t)+1 repeating the

process; else, if p̂u(N
(t), Fu,Γu) > ǫu, we set N∗(Fu,Γu) = N (t−1). Repeating

this procedure for all possible values of interest of Fu and Γu, we obtain a

lookup table comprehending all the optimal N∗(Fu,Γu).

Given the aforementioned lookup table, it is possible to define a greedy

algorithm to approach this kind of scenario, described in the following sub-

section. We remark that the DRL approach described in 4.5.2 is also able to

reduce the size of the entry in the lookup table.

4.5.1 Greedy Algorithm

The aim of this algorithm is to empty the queue Q as fast as possible, punc-

turing the minimum number of resources. Moreover, we also aim to minimize

4.5. Towards Reliability and Multi-Frequencies Communication 67

the impact on the eMBB scheduled codeword.

Defining as Q(t) the length of the queue in bits at mini-slot t, the number

of resources selected for the communication is given by

Fu =

{

min {Fu |N
∗(Fu,Γu) ≥ Q(t)} , if ∃N∗(Fu,Γu) ≥ Q(t),

F otherwise.
(4.9)

In other words, we selected the entry of the lookup table that guarantees that

the queue is emptied by the largest amount of bits.

To reduce the impact of the eMBB codeword, we select the frequencies

to be punctured taking into account the puncturing state of the codewords

and their duration at mini-slot t. We remark that every codeword already

in outage can be punctured without reducing the overall performance of the

network. Beside codewords in outage, every f ∈ F having protection is an

high priority frequency to be punctured. On the other hand, if two codewords

are not protected and not in outage, the priority is given to the resources

having lower remaining duration. This choice is made according to the system

behaviour: all codewords contain the same information; hence, causing outage

will impact in the same way the overall eMBB traffic, no matter the codeword

chosen. However, causing outage on a longer codeword will free more resources

to be punctured in the following mini-steps, giving space to avoiding further

outages in the future. It is worth remarking that the same procedure can be

applied when the codewords transport different number of data bits. In that

case, the duration could be weighted by taking into account the number of

informative bits contained in a codeword.

4.5.2 Multi-Frequencies DRL Agent

In a multi-frequencies setting, the DRL action consists in deciding how many

bits of URLLC packets in the queue should be transmitted in the current

mini-slot and over how many frequencies. Even if we are to transmit one

packet at a time as in the mono-frequency approach, transmitting it over

multiple frequencies causes the size of the action set to grow according to a

combinatorial rule. Specifically, the size of A is 2F , with F the amount of

frequencies and A the action set defined as follows

68 4. Resource Slicing through Reinforcement Learning

A =

F
⋃

f=1

{1f , 0f}

where 1f is the action of transmitting over f frequency and 0f is the action

of not transmitting over f frequency. It is evident that no transmission at time

step t is equal to

at = {00, 01, 02, . . . , 0F }

While transmitting over all frequencies at time step t is equal to

at = {10, 11, 12, . . . , 1F }

If the URLLC queue is empty, the only possible action is {00, 01, 02, . . . , 0F }.

Since we also need to define how many bits of the URLLC packets to transmit

at each time step t, it is necessary to rethink this formulation. Specifically, we

explored two possible solutions:

• Employ a continuous action space

• Employ a hierarchical approach

Note that we keep both the NN and the DRL algorithm used to train

it unchanged from the approach previously described. For the reward we

keep the same overall concept but we apply some minor changes, as follows.

The new eMMB penalty function now depends on We, i.e. the entire set of

codewords for user e. We can define it as et(We) is now defined as

et(We) =

{

−ôN , ô > 0,

0, otherwise,
(4.10)

where ô is the number of codewords w ∈ We in outage because of the action

at time step t. In this context ôN is the normalized amount of outages w.r.t.

the amount of unique codewords available in We at time step t

ôN =
ô

card(We(t))

4.5. Towards Reliability and Multi-Frequencies Communication 69

For what concerns the URLLC penalty function we define

Lt =

{

0, ∆t ≥ 0,

−10, ∆t < 0.
(4.11)

The heuristic value 10 is empirically chosen so that the violation of the latency

constraint for an URLLC packet results in a larger negative contribution than

the outage penalty for eMBB traffic without steering too much the agent

towards a completely aggressive policy. Like in the narrow-band setting, the

reward at time t can be expressed by

Rt =
∑

t∈T

et(We) + Lt, (4.12)

where we show the dependency of the eMBB penalty function from the entire

set of codewords of user e at time step t. Finally, we only terminate the episode

when t = T .

4.5.3 MDP with Continuous Action Space

If we employ a continuous action space, the DRL action is now defined as

A =

F
⋃

f=1

{nf}

where nf is the action of transmitting a certain amount n of information

over f frequency. If n = 0 no transmission occurs over that frequency. n

is a real number corresponding to fraction representing a certain amount of

bits. While the amount of bits is always an integer number, it is easier to

represent for the DRL agent using a real value. The value n can indeed be

easily converted to the amount of bits at any time, according to the size of

the URLLC packets and the size of the queue.

The state at each time step t is then represented by the set

St = {S
(u)
t ,S

(e)
t ,S

(c)
t ,S

(x)
t },

where S
(u)
t and S

(e)
t collect the URLLC and eMBB information at time

step t, respectively, while S
(c)
t and S

(x)
t collect the codewords encoding and

70 4. Resource Slicing through Reinforcement Learning

expiration information at time step t. In particular, the 2-dimensional state

S
(u)
t is

S
(u)
t = {Qt,∆t} (4.13)

where Qt represents the length of the URLLC queue at step t, while ∆t =

lmax
u − loldt represents the difference between the tolerable latency and the

latency of the oldest packet in the queue at step t. The F -dimensional state

S
(e)
t collects for each of the F frequency channels the variable st(f), which

tracks if the codeword transmitted on channel f is in outage (st(f) = −1) or

not (st(f) ≥ 0). A non-negative st(f) stores the residual number of times that

the codeword can be punctured without being in outage. Let ρt(w) denote

the number of times the codeword w has been punctured from the beginning

of the episode, st(f) is computed as

st(f) = max
{

Cwt,f
− ρt(wt,f),−1

}

, (4.14)

remembering that wt,f is the codeword placed on resource f and mini-slot

t. Once a codeword is in outage, its state variable is set to -1 and does not

change anymore regardless of the times is further punctured.

The F -dimensional state S
(c)
t represents each eMBB codeword on each

frequency using one-hot encoding. This allows the DRL agent to see how

the eMBB codewords are distributed over the frequencies. Finally, the F -

dimensional state S
(x)
t defines how many time steps are left until each code-

word expires over all frequencies.

4.5.4 Hierarchical MDPs

If we opt for an hierarchical approach, we need to divide the problem into two

tasks. The first task is to schedule over the frequencies, i.e. the agent choosing

over which frequencies to transmit. The second task is to schedule over the

URLLC packets in the queue, i.e. the agent choosing how much of the queue

to transmit in a certain time step. It is possible to define an heuristic which

determines how many packets of portions of packets to transmit depending

on how many frequencies are used. Because of that, the second agent task is

to decide how many frequencies to transmit over at each time step. Finally,

we have two different agents, each one with its own action space and state

4.5. Towards Reliability and Multi-Frequencies Communication 71

space. This subdivision allows us to keep both action spaces simpler than the

continuous one, i.e. they are discrete action spaces.

Frequencies Scheduler The frequencies scheduler is a MDP where the

agent schedules the URLLC packets over a definite set of frequencies F , i.e.

decide over which frequencies F̂ to schedule among the entire set of frequencies

F at a certain time step t. Specifically, F̂ ⊂ F and the cardinality of F̂ is

defined at the beginning of each episode. For this agent it is impossible to stay

idle at any time step tfs, and it exists in a virtual time-frame w.r.t. the time

steps of the general MDP. Specifically, its episode is as long as the amount of

frequencies it needs to schedule over, i.e. the cardinality of F̂ :

T fs = |F̂ |

where T fs is the length of the episode for the frequencies scheduler. The

action set of the frequencies scheduler is very similar to the action set presented

in in the narrow-band approach, specifically the action consists in deciding on

which frequency to transmit at each time step. The possible actions at time

step t are collected in the set Afs
t = {1, . . . , F}, where the number indicates

the frequency index for transmitting the URLLC packet.

The state at each time step tfs is then represented by the set

Sfs
(t,tfs)

= {S
(e)

tfs
,S

(x)
t }

where S
(e)

tfs
collects the eMBB information at time step tfs and S

(x)
t collect

the expiration information at time step t. Please note that the expiration

information remains the same for the entire episode, thus it only depends on

the general time step t, while eMBB information changes during the episode,

thus depending on virtual time step tfs Both S
(e)

tfs
and S

(x)
t are defined as in

the continuous action space approach described above.

Packets Scheduler The packets scheduler is a MDP where the agent sched-

ules how many frequencies to use at a certain time step t. Given the amount of

frequencies F , it is possible to deterministically compute the amount of pack-

ets to transmit at the associated time step. The episode and time-frame of

72 4. Resource Slicing through Reinforcement Learning

the packets scheduler coincide with the episode and time-frame of the general

MDP, and we can think of this MDP as the general MDP.

The possible actions of the packets scheduler at time step t are defined as:

Aps
t = {0, 1, . . . , F}

where 0 means to not transmit any URLLC packet, while 1, . . . , F means

to transmit over 1 or more, up to F , frequencies. Packets to transmit are then

computed accordingly. When this decision is made, the frequencies scheduler

acts for as many virtual time steps tfs as the value chosen by the packets

scheduler action. For example, if the action at = 3 then the URLLC packets

are to be transmitted over 3 frequencies. As a consequence, the frequencies

are chosen by the frequencies scheduler by acting for a total of 3 virtual time

steps tfs.

The state at each time step t is then represented by the set

Spst = {S
(u)
t ,S

(e)
t ,S

(x)
t ,S

(r)
t }

where S
(u)
t and S

(e)
t collect the URLLC and eMBB information at time

step t, respectively, while S
(x)
t collect the expiration information at time step

t. All the first three elements in the set Spst are defined as in the continuous

action space approach described above, while the S
(r)
t represent the maximum

number of bits transmissible for each number of channel selected or employing

all frequencies. The former state is a vector of size F and takes the name of

full rate, while the latter is a single number, taking the name of max rate.

4.5.5 Results

While interesting in theory, the continuous action space approach described

in 4.5.3 does not work well in practice. Multiple experiments show how hard

is for the DRL algorithm to converge to a reasonable solution, even if largely

suboptimal. Indeed, from our experiments it is evident that PPO, and PG

algorithms in general, are very unstable when the action space is continuous.

In literature, continuous action spaces are often used for navigation or

mechanical tasks where outputs are constrained within really small real values

and where even a minimal variation of one of the real values in the actions

4.5. Towards Reliability and Multi-Frequencies Communication 73

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

−8

−6

−4

−2

0

λu

A
ve

ra
ge

to
ta

l
re

w
ar

d

greedy
PPO max sup
PPO max no sup
PPO full sup
aggressive

Figure 4.5: Multi-frequencies setting: average total reward versus arrival

rate λu for regular training period

vector causes a relevant consequence for the environment. Often, such values

also change gradually. In our setup, the real values within the actions vector

vary a lot at each time step, for they represent the amount of bits in the

queue to transmit over each frequencies. Beside that, unstable normalization

is required to make sure the amount of bits transmitted never exceeds the

amount of bits in the queue. These two factors alone make the continuous

approach we presented in this chapter unable to solve the task.

In our experiments, we compare the performance by means of reward of

two heuristics, the aggressive heuristic inspired from the one described for

the narrow-band setting, and the greedy heuristic, described in 4.5.1, with

multiple variants trained by PPO algorithm. All DRL agents are trained for

74 4. Resource Slicing through Reinforcement Learning

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

−8

−6

−4

−2

0

λu

A
ve

ra
ge

to
ta

l
re

w
ar

d

greedy
PPO last
aggressive

Figure 4.6: Multi-frequencies setting: average total reward versus arrival

rate λ for really long training period

100 training volleys, 2000 episodes per volley, updating the model every 1000

training episodes.

We show in Figure 4.5 the average total reward obtained by various DRL

variants and the two heuristics w.r.t. the arrival rate of new URLLC packets.

Arrival rates are kept to low values for a dedicated URLLC set of frequencies

should be used for higher arrival rates. We can see that adding some supervi-

sions during training can help improve performance both with full rate state

and with max rate state. We can also see that such performance increase is

not that significative. Finally, we can see that all proposed variants overall

outperforms the heuristics: the aggressive by a large margin while the greedy

one by a smaller margin. In Figure 4.6, we compare the performance of a

max state DRL agent trained without supervision for a much higher amount

4.6. Discussion 75

of episodes. Specifically, we trained the agent for 150 training volleys, 10000

episodes per volley, updating the model every 5000 training episodes. We can

see from the plot that increasing training episodes is really effective in devis-

ing a much better policy overall. This is to be expected for tasks with high

variance of states and rewards w.r.t. actions like the one considered in this

chapter.

4.6 Discussion

In this chapter we discussed a DRL approach to train an agent acting as a

scheduler able to dynamically manage the coexistence of the URLLC traffic

on top of the eMBB traffic. The agent is trained using PPO, a state-of-the-art

DRL algorithm, and once trained it can decide where to execute punctur-

ing with average time complexity within the range of [0.3, 3.0] milliseconds,

depending on the underlying hardware. It also supports parallelization by

means of autonomous decisions over multiple simulations at once. The trained

RL agent overall outperforms all the other schemes on multiple performance

metrics, being capable of noteworthy generalization over the complementary

task of never violating URLLC latency requirements while minimizing eMBB

codewords’ outages. The discussed approach is highly scalable with respect

to the length of each simulation and the arrival packet distribution, without

retraining the agent. This is of critical importance since the real world task

we modeled is inherently not episodic and the URLLC packets’ arrival distri-

bution is not known a priori or it could be subject to changes. Beside that,

we studied how to scale our DRL approach to a multi-frequencies setting,

where reliability is of primary concern. Since we proved a continuous DRL

approach not able to converge, we propose a hierarchical DRL approach, con-

sisting of two agents: a frequencies scheduler and a packets scheduler. The

former is tasked to choose the amount of frequencies and the latter is tasked

to schedule each packet in the queue to a certain frequency, according to the

amount chosen by the frequencies scheduler. We compared the combined DRL

agent, trained with various hyperparameters, to an agressive heuristic and a

greedy heuristic. Finally, we proved our approach to be able to obtain better

performances overall w.r.t. the heuristics.

Chapter 5

Pseudo Random Number Generation

through Reinforcement Learning

The fourth and last leg of our journey brings us in the field of cryptography,

specifically to discuss a novel way to combine PRNGs and RL. PRNGs are

algorithms produced to generate long sequences of statistically uncorrelated

numbers, i.e. PRNs. These numbers approximate the properties of random

numbers and are widely employed in mid-level cryptography and in software

applications. Test suites are used to evaluate PRNGs quality by checking

statistical properties of the generated sequences. These sequences are com-

monly represented bit by bit. Machine learning techniques are often used to

break these generators, i.e. approximating a certain generator or a certain se-

quence using a NN. But what about using machine learning to generate PRNs

generators?

In this chapter we first propose a RL approach to the task of generating

PRNGs from scratch by learning a policy to solve an N -dimensional naviga-

tion problem. In this context, N is the length of the period of the sequence to

generate and the policy is iteratively improved using the average score of an

appropriate test suite run over that period. This approach lays the foundation

of our study on PRNG and relies on a feedforward NN operating a fully ob-

servable MDP. Then, we also propose a more advanced approach to the same

task, by learning a policy to solve a partially observable MDP, where the full

state is the period of the generated sequence and the observation at each time

step is the last sequence of bits appended to such state. We use a LSTM archi-

tecture to model the temporal relationship between observations at different

time steps, by tasking the LSTM memory with the extraction of significant

features of the hidden portion of the MDP’s states. We also show that mod-

eling a PRNG with a partially observable MDP and an LSTM architecture

largely improves the results of the fully observable feedforward approach.

78 5. Pseudo Random Number Generation through Reinforcement Learning

5.1 Introduction

Generating random numbers is an important task in cryptography [67], and

more generally in computer science. Random numbers are used in several

applications, whenever producing an unpredictable result is desirable: for in-

stance games, gambling, encryption algorithms, statistical sampling, computer

simulation and modeling, and many others.

An algorithm generating a sequence of numbers approximating properties

of random numbers is a PRNG. A sequence generated by a PRNG is “pseudo-

random” in the sense that it is generated by a deterministic function: the

function can be extremely complex, but the same input will give the same

sequence. The input of a PRNG is called seed, and to improve the random-

ness the seed itself can be drawn from a probability distribution. Of course,

assuming that drawing from the probability distribution is implemented with

an algorithm, everything is still deterministic at a lower level, and the se-

quence will repeat after a fixed, unknown, number of digits, called period of

the PRNG.

While true random numbers sequences are more fit to certain applications

where true randomness is necessary - for instance, high-end cryptography -

they can be very expensive to generate. In most applications, a pseudo-random

number sequence is good enough.

The quality of a PRNG is measured by the randomness of the generated

sequences. The randomness of a specific sequence can be estimated by running

some kind of statistical test suite. In this chapter the National Institute of

Standards and Technology (NIST) statistical test suite for random and pseudo-

random number generators [68] is used to validate the PRNG.

In literature, NNs have been used for predicting the output of an existing

generator, that is, to break the key of a cryptography system. There have

also been limited attempts at generating PRNGs using NNs by exploiting

their structure and internal dynamics. For example, the authors of [69] use

recurrent NNs dynamics to generate pseudo-random numbers. In [70], the

authors use the dynamics of a feedforward NN with random orthogonal weight

matrices to generate pseudo-random numbers. Neuronal plasticity is used in

[71] instead. In [72] a generative adversarial network approach to the task is

presented, exploiting an input source of randomness, like an existing PRNG

5.2. Pseudo Random Number Generation 79

or a true random number generator.

A PRNG usually generates the sequence incrementally, that is, it starts

from the seed at time t = 0 to generate the first number of the sequence at

time t = 1, then the second at t = 2, and so on. Thus, it is naturally modeled

by a deterministic MDP, where state space, action space and rewards can

be chosen in several ways. In this chapter we discuss a novel approach to a

DRL pipeline that can be used on this MDP to train a PRNG agent. This

DRL approach works without data nor external inputs and without employing

any structural dynamics, requiring only a feedfoward NN to operate. This is a

probabilistic approach that generates pseudo-random numbers with a “variable

period”, because the learned policy will generally be stochastic. This is also a

defining feature of this RL approach.

Finally, we observe how this approach has an action set with size growing

linearly with the length of the sequence. This is a severe limiting factor,

because when the action set is above a certain size it becomes very difficult,

if not impossible, for an agent to explore the action space in a reasonable

time. We then overcome the above limitation by proposing a different MDP

formulation, using a partially observable state. By observing only the last part

of the sequence, and using the hidden state of a LSTM NN to extract important

features of the full state, we significantly improve the results obtained with

the first feedforward approach.

This chapter is organized as follows. We describe the feedforward ap-

proach and the associated fully observable MDP in Section 5.2.1, while the

recurrent approach and its associated partially observable MDP are shown

in Section 5.2.2. In Section 5.2.3 we detail the reward function used for the

MDP, which is shared by the two approaches. In Section 5.2.4 we describe

the recurrent NN architecture used to model the environment state and the

algorithm employed to train it. Finally, in Section 5.3 we present the results

of our experiments, which are then discussed in Section 5.4.

5.2 Pseudo Random Number Generation

The main idea is quite natural: since a PRNG builds the random sequence

incrementally, we model it as an agent in a suitable MDP, and use DRL to train

80 5. Pseudo Random Number Generation through Reinforcement Learning

the agent. Several “hyperparameters” of this DRL pipeline must be chosen: a

good notion of states and actions, a reward such that its maximization gives

sequences as close as possible to true random sequences, and a DRL algorithm

to train the agent.

5.2.1 Binary Formulation and fully observable MDP

While easier said than done, the problem of generating PRNs seems at first

glance suitable for RL. There is however one caveat: the naive approach that

comes to mind, that is, using as state the last generated number, is inherently

not Markovian: whatever reward we use to measure the randomness of the

sequence, it must depends on the whole sequence that was generated before.

On the other hand, using as state the whole sequence, and increasing the

length of the sequence by appending a new number is calling for the curse of

dimensionality[73]!

We address this issue by a completely different approach. We keep the

sequence length fixed, say N . At each time step the agent can now fully

observe the state of the environment, that is, the entire sequence codified in

binary form, for a total length of B bits. This state is Markovian by definition.

The goal of this decision task is to perturb the sequence without changing its

length, and this can be obtained by setting a certain fixed binary value at

some position in the sequence. Actions will then be given by setting the value

of various bits at certain positions in the sequence. They will be described

more in detail below.

Finally, we model the task as finite-horizon episodic, by fixing a termina-

tion time T . Thus, the state ST is the output sequence of the PRNG, i.e. the

sequence of B PRNs, represented in their binary form. A fixed length output

however violates one requirement of PRNGs, that is, a PRNG has to be able

to generate a (possibly) infinite amount of numbers. To solve this problem, we

can think of the generated sequence as the period of the PRNG. By concate-

nating multiple output of the same PRNG it is possible to obtain a (possibly)

infinite amount of numbers. Please note that this will produce PRNs with

“variable period”, because the learned policy will generally be stochastic, as

we will show in the next section. This is a feature of this RL approach.

As usual, we start generating PRNs from a number known as the seed.

5.2. Pseudo Random Number Generation 81

According to our definition of state, we set all B bits of the sequence corre-

sponding to the starting state equal to the seed value, e.g. 0. This is in general

an B-dimensional navigation task.

Formally, we can model our task as a fully observable MDP in the following

way, given the bit length of the sequence B. The state space is given by all

possible bit sequences of length B:

S := {(b1, b2, . . . , bB) : bn ∈ {0, 1}}.

Action 1n is the action of setting the nth bit to 1, and 0n is the action of

setting the nth bit to 0. The action space is then:

A =

B
⋃

n=1

{1n, 0n}

This finite MDP formulation has |S| = 2B and |A| = 2B, and is called Binary

Formulation (BF). This is the formulation used in the feedforward solution

and our first proposed approach.

5.2.2 Recurrent formulation and partially observable MDP

The main problem with BF is the fact that the size 2B of the action set grows

linearly with the increasing length B of the sequence. Above a certain size, it

is no longer possible to learn a policy with high average score. If the size is

big enough, no policy can be learned at all because it is almost impossible for

an agent to explore an action space so huge in a reasonable time. Consider

that for PRNGs a sequence of 1000 bits is quite short, while for a RL problem

2000 actions are way too much.

We overcome this limitation of BF by hiding a portion of the full pseudo-

random sequence, letting the agent see and act only on the last N bits. This

removes the correlation between the final length of the sequence and the num-

ber of actions, at the cost of introducing a temporal dependency among states,

breaking Markovianity and making the resulting MDP partially observable.

This new problem is solved by approximating the hidden portion of the state

with the hidden state of a recurrent NN with memory, see Section 5.2.4 for

details. We call this new approach Recurrent Formulation (RF), and it is the

second approach we discuss.

82 5. Pseudo Random Number Generation through Reinforcement Learning

Let N ∈ N be the number of bits at the end of the full sequence that

we want to expose, or, in other words, let the observations space be the set

O := {0, 1}N . We want the agent to be able to change freely the last N bits,

that is, the action space A coincides with O. We also fix a predetermined

temporal horizon T for episodes. This means that the size of the action space

is |A| = 2N for a generated sequence of T ·N bits. Both |A| and length of ST

depend on N , but they do not depend on each other. Increasing the length of

the generated sequence can then be done by increasing the horizon T , leaving

constant the action space size.

For example, with N = 3, action and observation sets are:

O = A = {[000]; [001]; [010]; [100]; [011]; [101]; [110]; [111]}

Continuing the example, assume at t = 0 we start from a random initial state

S0 = O0 = [001], and that A0 = [111]. Now the full state is S1 = [001111],

but only the last 3 bits O1 = [111] are observed by the agent. If the agent

now chooses A1 = [101], the full state becomes S2 = [001111101], and so on.

If we set the episodes length to 100, at the end of the episode the full state is

a 300 bits sequence.

Clearly, this formulation can work only if the policy approximator π(·|·; θ)

can preserve some information from the time series given by the past obser-

vations. Recurrent NNs can model memory, and for this reason are one of

the possible approaches to process time series and, more in general, temporal

relationships among data. This is very useful in RL environments where, from

the point of the view of the agent, the Markov property does not hold, as it is

typically the case in many partially observable environments. This approach

was suggested in [74], see [75, 76] for examples of use cases far different from

ours.

State-of-the-art recurrent NNs for this kind of problems are the Gated

Recurrent Unit (GRU) ones, and the LSTM ones. Typically, GRU performs

better than LSTM, but for this particular formulation we have experienced

good performance with LSTM. Thus, we use LSTM layers to approximate the

policy network, see 5.2.4 for details on the NN architecture.

5.2. Pseudo Random Number Generation 83

5.2.3 Reward Function through NIST Test Suite

The NIST statistical test suite for random and pseudo-random number gen-

erators is the most popular application to test the randomness of sequences

of bits. It has been published as a result of a comprehensive theoretical and

experimental analysis and may be considered as the state-of-the-art in ran-

domness testing for cryptographic and not cryptographic applications. The

test suite has become a standard stage in assessing the outcome of PRNGs

shortly after its publication.

The NIST test suite is based on statistical hypothesis testing and contains

a set of statistical tests specially designed to assess different pseudo-random

number sequences properties. Each test computes a test statistic value, func-

tion of the input sequence. This value is then used to calculate a P-value that

summarizes the strength of the evidence for the sequence to be random. For

more details, see [68].

If St is the sequence produced by the agent at time t, the NIST test suite

can be used to compute the average P-value of all eligible tests run on St. Some

tests return multiple statistic values: in that case, their average is taken. If a

test is failed its value in the average is set to zero. Some tests are not eligible

on certain too short sequences, and in this case they are not considered for

the average. This average avgNIST(St) is used at the end T of each episode as

a reward function for the MDP:

Rt =

{

avgNIST(St) if t = T

0 otherwise

This reward strategy is shared by BF and RF. Note that, since P-values are

probabilities, rewards belong to [0, 1], and that NIST test suite accuracy grows

with the tested sequence length.

The NIST test battery is run with a framework called NistRng1. This

framework allows us to easily run a customizable battery of statistical set over

a certain sequence. The framework also computes which tests are acceptable

over certain sequences, i.e. due to their length. Acceptable tests for a certain

sequence are called eligible tests. Each test returns a value and a flag stating

1Available on PyPi and also on GitHub: https://github.com/InsaneMonster/NistRng.

84 5. Pseudo Random Number Generation through Reinforcement Learning

if the test was successfully exceeded or not by the sequence. If a test is not

eligible with respect to a certain sequence it cannot be run and it is skipped.

5.2.4 Algorithm and Neural Network Architecture

In this discussion we use the PG algorithm PPO, described in [21] and con-

sidered state-of-the-art in PG methods. We already introduced PPO in this

thesis, in Chapter 3, specifically in Section 3.3.2, and we also employed it with

positive results in Chapter 4. PPO tries to take the biggest possible improve-

ment step on a policy using the data it currently has, without stepping too

far and making the performance collapse.

The PPO used in this chapter is an instance of PPO-Clip as described

by OpenAI at [62], with only partially shared value and policy heads. More

details on the NN architecture in Section 5.2.4. We use 0.2 as clip ratio, and

early stopping: if the mean KL-divergence of the new policy from the old

grows beyond a threshold, training is stopped for the policy, while it continues

for the value function. We used a threshold of 1.5 ·K, with K = 1e−2.

To reduce the variance, we used Generalized Advantage Estimation as in

[47] to estimate the advantage, with γ = 1 and λ = 0.95. Saved rewards Rt

were normalized with respect to when they were collected (called rewards-to-go

in [62]).

PPO is an actor-critic algorithm. This means that it requires a NN for

the policy (the actor) and another NN for the value function (the critic).

Moreover, since RF is a partially observable MDP formulation, we need a

way to maintain as much information as possible from previous observations,

without exponentially increasing the size of the state space. We solve this

problem with LSTM layers [77].

The NN used for RF starts with two LSTM layers, with bias = 1 for

the forget gate. After the LSTM layers, the network splits in two different

subnetworks, one for the policy and one for the value function. The policy

subnetwork has three dense layers with 256, 128 and 64 neurons respectively,

stacked. All of them have ReLU activation. After this, a dense layer with

2N neurons provides preferences for the actions, which are turned into prob-

abilities by a softmax activation. This is the policy head. The value function

subnetwork starts exactly as the policy one (but with different weights): three

5.3. Results 85

dense layers with 256, 128 and 64 neurons respectively, stacked, all with ReLU

activation. At the end, a dense layer with 1 neuron and no activation for the

state value. This is the value head. All layers have Xavier initialization.

BF uses two different NNs for the policy and the value function. The policy

network has three dense layers with 256, 512 and 256 neurons respectively,

stacked. All of them have ReLU activation. After this, the policy head is

the same as in RF: a dense layer with 2N neurons and softmax activation.

The same for the value function network: three dense layers with 256, 512

and 256 neurons respectively, stacked, with ReLU activation. After this, the

value function head is the same as in RF: a dense layer with 1 neuron and no

activation. All layers have Xavier initialization.

5.3 Results

Our experiments consists on multiple sets of training processes of various BF

and RF agents. The goal of these experiments is to measure the performance

of the new RF agents and compare it with the results achieved by BF agents.

We consider 3 different agents, all trained by PPO-Clip described in Sec-

tion 5.2.4 with an actor-critic NN described in Section 5.2.4.

The agent based on the formulation RF is called πRF , and similarly we

denote by πBF the agent based on BF, that we use as a baseline. We introduce

also a third agent, a variation of πBF denoted by π̂BF and called “wanderer”:

this agent is forced to move as much as possible within the environment by

masking out all actions that would keep the agent in the same state. In other

words, at time-step t the agent π̂BF is forbidden from setting a certain bit to

the same value it has at the previous time step t− 1.

In the experiments, we optimize a PPO-Clip loss with GAE advantage

estimation. Two separated policy loss and value loss are estimated by Adam

with mini-batch samples of 32 experiences drawn randomly from a buffer. The

buffer is filled by 500 episodes for πBF and π̂BF , and by 1000 episodes for πRF .

Once the buffer is full, a training epoch is performed: thus, for instance, an

agent πBF building sequences of length B = 200 by episodes of length T = 100

will start training when the buffer is filled with 500 ·100 = 50, 000 experiences,

and the epoch will end after [50, 000/32] = 1562 training steps. Learning rates

86 5. Pseudo Random Number Generation through Reinforcement Learning

(a) πBF with B = 80 (b) π̂BF with B = 80

Figure 5.1: Experiment on BF with B = 80. The learning curve is different

and the average total reward is better with π̂BF . Volleys are composed of 1000

episodes each and the fixed length of each trajectory is T = 40 steps.

are 3e−4 for the policy and 1e−3 for the value. At the end of the epoch, the

buffer is emptied, and the RL pipeline goes on by experiencing new episodes.

We present experimental results in the form of plots. The performance

metric used is the average total reward across sets of epochs called volleys. In

this chapter, a volley is made from two epochs, that is, the plots represent a

moving average over a window of two epochs.

Figures 5.1a, 5.1b, 5.2a, 5.2b and 5.3a, 5.3b describe three experiments

with πBF and π̂BF over sequences of different lengths: B = 80 bits, B = 200

bits and B = 400 bits respectively. Length of episodes is T = 40, T = 100

and T = 200 respectively.

For very short sequences of 80 bits, π̂BF has better performance at the end

yet very similar performance at beginning of training. Making the sequence

longer, B = 200 bits, allows the wanderer agent to perform much better than

the baseline: starting from slightly different performance at the beginning,

π̂BF has a much higher average total reward at the end of the training process.

This trend is confirmed with sequences of B = 400 bits.

Figures 5.4, 5.5 and 5.6 describe three experiments with πRF . In this case

the length of the trajectory T directly influences the length of the sequence

5.3. Results 87

(a) πBF with B = 200 (b) π̂BF with B = 200

Figure 5.2: Experiment on BF with B = 200. Despite the similar learning

curve, there is a huge difference in the achieved average total reward per

episode between π̂BF and πBF at the end of the training process. Volleys

are composed of 1000 episodes each and the fixed length of each trajectory is

T = 100 steps.

(a) πBF with B = 400 (b) π̂BF with B = 400

Figure 5.3: Experiment on BF with B = 400. The difference in the achieved

average total reward per episode between π̂BF and πBF is similar to the case

with B = 200, while the learning curve is different. Volleys are composed of

1000 episodes each and the fixed length of each trajectory is T = 200 steps.

88 5. Pseudo Random Number Generation through Reinforcement Learning

Figure 5.4: Average total rewards during training of πRF with N = 2 and

T = 100. Volleys are composed by 2000 episodes each.

generated by πRF . We keep T = 100 constant across πRF experiments. This

value is chosen experimentally as giving best performance while keeping infer-

ence time acceptable. To obtain sequences comparable with the ones generated

by BF agents, we choose to append N = 2, N = 5 and N = 10 bits respec-

tively, resulting in final sequences of length 2 · 100 = 200 bits, 5 · 100 = 500

bits and 10 · 100 = 1000 bits respectively. The seed S0 of the PRNG is drawn

from a standard multivariate normal distribution of dimension N = 2, N = 5

and N = 10 respectively.

For N = 2, training is not successful. We do not have a clear explanation

for this fact. A possible reason is that we are trying to represent the non

observable portion of the state with a very low-dimensional input. However,

this is not completely true, because in theory the inputs from every time-step

is preserved in the hidden state of the LSTM. This issue could be related to the

difficulties that recurrent NNs have shown with gradient descent optimizers,

see [78].

For N = 5, that is, sequences of 500 bits, πRF vastly outperforms πBF and,

albeit by a narrower margin, π̂BF with sequences of 200 bits. Thus, we have

better performance with 150% additional bits in the sequence. For N = 10,

5.3. Results 89

Figure 5.5: average total rewards during training of πRF with N = 5 and

T = 100 steps. Volleys are composed by 2000 episodes each.

Figure 5.6: average total rewards during training of πRF with N = 10 and

T = 100 steps. Volleys are composed by 2000 episodes each.

that is, sequences of 1000 bits, πRF vastly outperforms πBF with B = 400.

The wanderer agent in this case performs similarly, but still πRF produces

sequences that are 150% longer than the ones produced by π̂BF .

90 5. Pseudo Random Number Generation through Reinforcement Learning

(a) NIST score 0.4 (b) NIST score 0.43 (c) NIST score 0.53

Figure 5.7: A graphical representation of 3 sequences of 1000 bits generated

by the same trained πRF with their NIST score. Images are obtained by

stacking the 1000 bits in 40 rows and 25 columns, then ones are converted to

10× 10 white squares and zeros to 10× 10 black squares. The resulting image

is smoothed.

We now want to test the hypothesis that, in order to generate PRNGs

by DRL, modeling the MDP as in RF is much better than modeling it as in

BF. To this aim, we compare the average total rewards per episode of random

agents operating in RF and in the baseline BF.

We call these agents ρRF and ρBF respectively.

This comparison is performed to exclude the possibility that PPO is per-

forming better with RF, but maybe different algorithms would perform better

with BF. Using a random agent means removing the algorithm from the equa-

tion.

Figures 5.8a, 5.8b, 5.9a, 5.9b, and 5.10a, 5.10b describe three comparisons

between the random agents producing short, medium and long sequences re-

spectively. As before, short means 80 bits in BF and 200 bits in RF, medium

means 200 bits in BF and 500 bits in RF, long means 400 bits in BF and 1000

bits in RF. In each comparison, the average total rewards of ρRF is higher

than ρBF . From these results, we can assess that RF is a better formulation

than BF for the PRNG task.

5.4. Discussion 91

Finally, figures 5.7a, 5.7b and 5.7c represent graphically three sequences of

1000 bits generated by the same agent πRF after training, with NIST scores

0.4, 0.43 and 0.53 respectively. The 1000 bits are stacked on 40 rows and 25

columns, then ones are converted to 10×10 white squares and zeros to 10×10

black squares, and the resulting image is smoothed.

5.4 Discussion

In this chapter we discussed multiple ways to automatically generate PRNGs,

a task of interest and a currently open field of research. Both our proposed

approaches use RL to build a PRNG from scratch and, to the best of our

knowledge, this is a novel approach. While they are not currently able to

directly compete in a production environment with deterministic approaches

used in literature, both approaches present promising results, which we think

can be used to lay down a new research path combining RL and PRNGs. Both

proposed approaches present the following interesting features:

• They require no input data, so that the generated PRNG is always a

novel algorithm, and the trained agent explores solutions possibly un-

known to a human-generated or a supervised-learning-generated algo-

rithm. In other words, the generated PRNG is not an imitation of some

other algorithm and the generated sequence is not an imitation of a

pre-existing PRNs or TRNs sequence.

• Each time a training process is run, the resulting PRNGs are likely to

be different from each other. This is an inherent property of RL as a

whole: the policy learned is one of the very many stochastic optimal

policies. Moreover, one can change the model hyperparameters and/or

the training algorithm to increase diversity between generated PRNGs.

• For a single starting state, multiple solutions can be obtained after one

training process since RL policies can be stochastic. Indeed, given a

certain starting state, the same agent will usually follow different tra-

jectories, leading to different output sequences. In short, we obtain a

non-deterministic PRNG given a single seed. This is a novel property

which is not present in current state-of-the-art PRNGs.

92 5. Pseudo Random Number Generation through Reinforcement Learning

• Given that NNs are black-box approximators, the policy of the RL agent

is black-box. Since the PRNG is the algorithm given by that policy, it

is also black-box. This grants the nice property of having no human in-

sights in the inner functioning of the PRNG, thus providing (potentially)

increased security from a cryptographic standpoint.

The first proposed approach (BF), models a fully observable MDP. The

main limitation of this approach is the dimensionality B of the state, i.e.

the period of the PRNG. Our experiments show that, at least on average

hardware, is very complex to successfully train an agent on longer sequences,

thus obtaining a PRNG with longer period.

This limitation is partially overcome by the second approach (RF) we dis-

cussed, which uses a partially observable MDP to model the task. Experiments

show that RF agents trained with PPO obtains at the same time a higher av-

erage NIST score and longer sequences, thus improving BF in two different

ways. We use a PPO instance with a hidden state of an LSTM to encode

significant features of the non observed portion of the sequence: as far as we

know, this is also an original idea for PRNG. Moreover, experiments with a

random agent show that RF is a better MDP modeling when compared with

BF, that is, when RF is compared with BF, obtains a higher average NIST

score with longer sequences. All this means that RF scales better to PRNG

with longer periods.

However, while RF is a serious improvement over BF, the action space size

grows as 2N , where N is the bit-length of the appended sequence. Since DRL

does not scale well to discrete and large action sets, see for instance [79], this

is a limitation for RF. In our experiments, we have found that N > 10 is not

feasible for RF. Moreover, the vanishing gradient is an obstacle to increasing

the episodes length T with recurrent NNs, as shown in [78]. In our experiments

we have been unable to train RF with T = 200, so we consider T = 100

an upper bound for RF with PPO and the LSTM architecture described in

Section 5.2.4. Since the PRNG period is T · N , we can say that RF with all

the hyperparameters described in this chapter does not scale well over 1000

bits.

Another problem of this approach is the sparse reward, which in general

makes difficult for a RL agent to be trained, whatever the setting.

5.4. Discussion 93

(a) ρBF with B = 80, episodes length T = 40.(b) ρRF with N = 2, episodes length T = 100.

Figure 5.8: Average total rewards of a random agent on BF and RF for short

sequences

(a) ρBF with B = 200, episodes length T =

100.

(b) ρRF with N = 5, episodes length T = 100.

Figure 5.9: Average total rewards of a random agent on BF and RF for

medium sequences.

94 5. Pseudo Random Number Generation through Reinforcement Learning

(a) ρBF with B = 400, episodes length T =

200.

(b) ρRF with N = 10, episodes length T =

100.

Figure 5.10: Average total rewards of a random agent on BF and RF for

long sequences.

Chapter 6

Conclusions and Future Works

We have arrived to the end of our journey into the application of RL to real

world tasks. We discussed various problems and we studied multiple ways to

solve them. We saw that each task presented its own challenges, often very

difficult to overcome if not by means of a specific modeling.

The often abused general notion that RL is just a collection of compu-

tationally expensive methods to solve all kind of tasks, seldom happens to

be true. Indeed, even when using state-of-the-art methods and algorithms,

RL requires the task to be modeled with specific MPDs in order to be solved

within reasonable time and with reasonable performance. This is even more

true when the underlying hardware is not top tier. While there is for sure a

great variation from task to task, we found some common issues that need to

be addressed before to apply any state-of-the-art algorithm or method.

The first common problem is the definition of a meaningful state space for

the MDP. Without repeating the thorough introduction of Section 1.2.1, the

state space defines what is and what is not a possible state for the environ-

ment the RL agent is acting upon. In all the problems we discussed, the state

space was defined by one or more vectors, hence being defined as continuous

state space. In the context of DRL, DNNs are really powerful at discover-

ing on their own the features of such complex data. However, just like with

common supervised techniques, junk data and uncorrelated data do make the

process slower and decreases the performance of the resulting approximator.

Moreover, while it is a good practice to always normalize inputs to NNs, nor-

malization could reduce the range of meaningfully different states, especially

in certain contexts. For example, when in Chapter 3 we discussed how to

navigate in the state space of a text in order to revise a poem, we actually had

to move the DRL agent in the space of the embeddings of the text. This was

necessary because using as agent inputs the normalized id values of each word

96 6. Conclusions and Future Works

would make very different words appear to be similar from the point of view

of the algorithm. This is especially true for large dictionaries like our own,

where words can have really high integer ids. A similar problem is the one we

faced in Chapter 5, when at first we used as state space for the DRL PRNG

the entire sequence of pseudo-random bits. For large sequences, the problem

was unsolvable because it was impossible for the DNN to extract meaning-

ful features from the sequence. This effect was also increased by the fact

the sequence was incrementally more uncorrelated because of the task itself,

making the problem unapproachable by DRL techniques. It’s worth noting

that there are some real world tasks where full observability of the MDPs is

impossible, for example due to noisy sensors or incomplete information about

the environment state. In these settings, RL could be applied only with ro-

bust algorithms able to deal with partial observability, as the definition of a

proper state, action space and reward function for an RL agent, as described

throughout this thesis, may not be enough to guarantee optimal performance

or even convergence.

The second common problem is the definition of a meaningful action space

for the MDP. As explained in Section 1.2.1, the action space defines what can

be done by the RL agent on the environment at each time step. It is also

possible to mask or clip part of this state at certain time steps, to prevent

impossible actions only when specific conditions are met. As a general rule,

we found action spaces defined through a vector, i.e. continuous action spaces

to be very hard to work with. This is especially true when the elements within

that vector are supposed to assume only certain values, like 0 or 1. In Chap-

ter 4, for example, we discussed the very bad performances of the continuous

action space approach to the complex task of allocating URLLC packets over

multiple eMBB frequencies at once. Like the other works presented in this

thesis, we always employed discrete action spaces, enumerating all actions.

While modeling MDP with discrete action spaces proves to be very effective

in stabilizing the algorithms performance, it also presents a lot of challenges if

the resulting action space is of combinatorial complexity: no state-of-the-art

algorithm can find an optimal policy if the amount of actions to be explored is

too large! In the case of the resource slicing task over multiple frequencies at

once, since the continuous approach was not an option due to its terrible per-

6.1. Summary of Contributions 97

formances, we decomposed the problem into two different MDPs, both with

discrete action spaces, thus reducing their size to reasonable levels.

Finally, a third common problem is to be found in the definition of the

reward function. This is a problem well known in literature, and it is usually

defined as reward engineering. Without explaining again what the reward

function is, since it is well detailed in Section 1.2.1, we think that using rewards

as distributed as some toy tasks well known in literature is usually the best

way to go. Indeed some of these tasks, like finding the shortest path in a

two dimensional grid or keeping the agent at a certain state, are effective way

to define broader reward functions groups. For example, the tasks discussed

both in Chapter 3 and Chapter 5 have specific reward functions whose broader

properties follow that of a shortest path problem. On the other hand, the

problem discussed in Chapter 4 is faced through a reward function whose

distribution closely match that of an agent with the simple goal of keeping its

current state.

More in general, we believe that most real world tasks can be solved

through RL if they can be defined as MDPs with appropriate states and ac-

tions space for N -dimensional navigation tasks, where the reward function is

shaped to train the agent into one of two possible policies: finding another goal

position in the least possible amount of steps or keeping a certain goal position

for the highest possible amount of steps. In this context, N is the size of the

state, which we assume continuous for most, if not all, the modeled tasks. We

strongly suggest, instead, to use discrete action spaces or to resort to a divide

et impera strategy, as in Chapter 4, for action spaces of combinatorial size.

In the following, a brief summary of the key contributions of the thesis will

precede some intuitions on relevant avenue for further work.

6.1 Summary of Contributions

• In Chapter 2 we discussed a Go artificial player trained using score as

target. The same pipeline was used as the pipeline of SAI and LZ,

well known AG-like open source software, whose networks were instead

trained with the traditional binary target. The training was success-

ful, and produced a player with valid play but particular style. After

98 6. Conclusions and Future Works

calibration, the training proved to produce consistently weaker networks

than the corresponding networks in the SAI training, and converged pre-

maturely to a lower Elo level. Our results prove the folklore statement

that using the score as target doesn’t work as well as using win-rates,

while still converging to a reasonable player with an interesting, while

suboptimal, playstyle.

• In Chapter 3 we discussed an innovative way of implementing the notion

of creativity in a machine. Considering the task of automatically gener-

ating new poems, we proposed a model that implements the human-like

behaviour of writing a draft and revising it multiple times. These drafts

are conditioned to author and rhyme information, while the revision pro-

cess is built around an iterative procedure that can be described as a

navigation problem and solved with RL. Multiple experiments confirmed

that the proposed approach is feasible and that it allows the machine to

learn how to revise text from scratch, even if it is not explicitly instructed

on which portion of text it should revise.

• In Chapter 4 we discussed a DRL approach to train an agent acting as

a scheduler able to dynamically manage the coexistence of the URLLC

traffic on top of the eMBB traffic. The trained RL agent overall out-

performs all the other schemes on multiple performance metrics, being

capable of noteworthy generalization over the complementary task of

never violating URLLC latency requirements while minimizing eMBB

codewords’ outages. The discussed approach is highly scalable with re-

spect to the length of each simulation and the arrival packet distribution,

without retraining the agent. This is of critical importance since the real

world task we modeled is inherently not episodic and the URLLC pack-

ets’ arrival distribution is not known a priori or it could be subject to

changes. Furthermore, we discussed an extended approach to scale the

DRL agent to reliable traffic over multiple frequencies. We tried to solve

the task both through a continuous action space approach and a hierar-

chical approach, finding out the first was unable to solve the task, while

the second one outperformed all considered heuristics.

• Finally, in Chapter 5 we discussed multiple ways to automatically gen-

6.2. Issues and avenues of research 99

erate PRNGs. Both our proposed approaches are novel and use RL to

build a PRNG from scratch. The first one uses a feedforward DRL ap-

proach over the entire period of the generator, while the second one uses

a recurrent approach to extract the features of the already processed bits

of the sequence, thus reducing the action space size to reasonable levels

for longer periods. Both approaches present promising results, and they

both disclose some interesting features. For example, they requires no

input data, so that the generated PRNG is always a novel algorithm

and the trained agent explores solutions possibly unknown to a human-

generated or a supervised-learning-generated algorithm. Moreover, each

time a training process is run the resulting PRNGs are likely to be dif-

ferent from each other and even for a single starting seed state multiple

policies can be obtained. Finally, given that NNs are black-box approx-

imators, the policy of the RL agent is black-box. Since the PRNG is

the algorithm given by that policy, it is also black-box. This grants

the nice property of having no human insights in the inner function-

ing of the PRNG, thus providing (potentially) increased security from a

cryptographic standpoint.

6.2 Issues and avenues of research

In the following we analyze the open issues on most contribution’s topics and

we discuss what we think are the possible avenues of research.

Neural Poetry In Chapter 3 we proved that a human-like approach to

poems generation is possible through the appropriate framework. We ex-

ploited RL to inject the notion of creativity into the machine, by letting the

RL agent explore the state space of the embeddings of the text. The policy of

the detector agent was iteratively refined by training with the state-of-the-art

algorithm PPO. Finally, we suggested that the proposed approach is general

enough to scale to other text related tasks. However, we think there is an

issue in applying our approach to different related tasks. This issue is to find

a good reward for the algorithm. We employed rhyme schemes since they can

easily be computed and a discrete reward can be assigned depending on the

100 6. Conclusions and Future Works

amount of matching words at the end of each line. Many other tasks, like for

example producing a prose text, are really hard to quantify for they involve a

qualitative and often subjective analysis. We think that focusing on research-

ing new ways to quantify various qualities of texts could open wide paths to

follow to really apply what’s introduced in this contribution to a broader set

of problems.

Resource Slicing In Chapter 4 we proposed a DRL approach to train

an agent acting as a scheduler able to dynamically manage the coexistence

of the URLLC traffic on top of the eMBB traffic. We proved our approach

to be both scalable to multiple frequencies and able to outperform all other

heuristics on multiple performance metrics. We think that the natural next

step is to use real traffic data instead of simulated. Beside that, we always

limited the study to single user, and we think it could be interesting to apply

the discussed approaches to multi-user settings.

Psuedo Random Number Generation In Chapter 5 we proposed a

novel approach to the task of generating PRNGs from scratch. We also dis-

cussed a recurrent approach to make the action space size of the MPD inde-

pendent on the length of the generated PRNs sequence. We compared the

two approaches and with appropriate experiments we proved that the prob-

lem is feasible in both cases. We also show that the recurrent approach vastly

outperforms the other. We think, however, that the path is very open for

further research and advancements. To the best of our knowledge, employing

RL in this field to solve this task is a completely novel approach, making it

evident that our promising result are very far from finding a solution employ-

able in practice. We hope our work will inspire future research which combines

PRNGs and RL. Finally, in the following we identify a set of interesting issues

and possible improvements::

• Reward function sparsity: by giving rewards only at the end of each

episode, the amount of steps of each episode cannot be that high. More-

over, RL algorithms rarely work well with very sparse reward functions.

This poses a significant limitation to the length of the generated pe-

riod. In our opinion, finding a less sparse reward function could lead to

6.2. Issues and avenues of research 101

significative performance improvements.

• Architectural limitations: even with a less sparse reward function, there

is only so much a recurrent NN can remember. The upper bound given

by the episodes length could be overcome, or at least mitigated, by other

architectures capable of maintaining a memory for a time longer than

recurrent neural networks, for example attention models.

• Period stacking: an approach similar to the recurrent one could be used

to intelligently stack generated periods. For example, one could train

a policy to stack sequences generated by one or multiple PRNGs, even

with different sequence lengths. This would generate PRNGs with very

long periods without a sensible drop in quality. This approach could

use a mixture of state-of-the-art PRNGs, DRL generators like the ones

proposed, and so on. A challenge of this approach is how to measure

the change in the NIST score when appending a random sequence to

another.

• Starting seeds: multiple seeds are the one of the core features of PRNGs.

To allow for a significant amount of seeds to be concurrently supported,

the variance they introduce during learning has to be reduced some-

how. We believe that processing somehow the vector representation (for

example with convolutional filters) could be a promising path to follow.

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of Go

without human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Master-

ing the game of Go with deep neural networks and tree search,” Nature, vol.

529, no. 7587, p. 484, 2016.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-

tot, L. Sifre, D. Kumaran, T. Graepel et al., “A general reinforcement learning

algorithm that masters chess, shogi, and Go through self-play,” Science, vol.

362, no. 6419, pp. 1140–1144, 2018.

[5] Gian-Carlo Pascutto and contributors, “Leela Zero,” 2018, http://zero.

sjeng.org/home [Online; accessed 17-August-2018]. [Online]. Available: http:

//zero.sjeng.org/home

[6] F. Morandin, G. Amato, M. Fantozzi, R. Gini, C. Metta, and M. Parton, “SAI:

A sensible artificial intelligence that plays with handicap and targets high scores

in 9×9 go,” in ECAI 2020 - 24th European Conference on Artificial Intelligence,

29 August-8 September 2020, Santiago de Compostela, Spain, August 29 -

September 8, 2020 - Including 10th Conference on Prestigious Applications of

Artificial Intelligence (PAIS 2020), ser. Frontiers in Artificial Intelligence and

Applications, G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro,

A. Bugarín, and J. Lang, Eds., vol. 325. IOS Press, 2020, pp. 403–410.

[Online]. Available: https://doi.org/10.3233/FAIA200119

104 BIBLIOGRAPHY

[7] D. J. Wu, “Accelerating Self-Play Learning in Go,” arXiv:1902.10565, 2019.

[8] F. Morandin, G. Amato, R. Gini, C. Metta, M. Parton, and G. Pascutto, “SAI a

Sensible Artificial Intelligence that plays Go,” in International Joint Conference

on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019, 2019,

pp. 1–8. [Online]. Available: https://doi.org/10.1109/IJCNN.2019.8852266

[9] A. authors, “SAI, a Sensible Artificial Intelligence that plays Go,” Preprint avail-

able in the supplemental material. A reduced version of this preprint is to be

published in the proceedings of a conference on neural networks, 2018.

[10] Gianluca Amato and contributors, “SAI: a fork of Leela Zero with variable

komi,” https://github.com/sai-dev/sai [Online; accessed 10-Nov-2019]. [Online].

Available: https://github.com/sai-dev/sai

[11] R. Coulom, “Bayesian Elo rating,” 2010, http://www.remi-coulom.fr/

Bayesian-Elo/ [Online; accessed 10-Nov-2019]. [Online]. Available: https:

//www.remi-coulom.fr/Bayesian-Elo/

[12] M. A. Boden, “Chapter 9 - creativity,” in Artificial Intelligence, ser. Handbook

of Perception and Cognition, M. A. Boden, Ed. San Diego: Academic

Press, 1996, pp. 267 – 291. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/B978012161964050011X

[13] S. Colton, G. A. Wiggins et al., “Computational creativity: The final frontier?”

in European Conference on Artificial Intelligence (ECAI), vol. 12. Montpelier,

2012, pp. 21–26.

[14] X. Zhang and M. Lapata, “Chinese poetry generation with recurrent neural net-

works,” in Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2014, pp. 670–680.

[15] Q. Wang, T. Luo, D. Wang, and C. Xing, “Chinese song iambics generation with

neural attention-based model,” in Proceedings of the Twenty-Fifth International

Joint Conference on Artificial Intelligence. AAAI Press, 2016, pp. 2943–2949.

[16] X. Yi, R. Li, and M. Sun, “Generating chinese classical poems with rnn encoder-

decoder,” in Chinese Computational Linguistics and Natural Language Process-

ing Based on Naturally Annotated Big Data. Springer, 2017, pp. 211–223.

[17] J. Hopkins and D. Kiela, “Automatically generating rhythmic verse with neural

networks,” in Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics, vol. 1, 2017, pp. 168–178.

BIBLIOGRAPHY 105

[18] J. H. Lau, T. Cohn, T. Baldwin, J. Brooke, and A. Hammond, “Deep-speare: A

joint neural model of poetic language, meter and rhyme,” in Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics, vol. 1,

2018, pp. 1948–1958.

[19] A. Zugarini, S. Melacci, and M. Maggini, “Neural poetry: Learning to generate

poems using syllables,” in International Conference on Artificial Neural Net-

works. Springer, 2019, pp. 313–325.

[20] S. Colton, J. Goodwin, and T. Veale, “Full-face poetry generation.” in Interna-

tional Conference on Computational Creativity (ICCC), 2012, pp. 95–102.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[22] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive

summarization,” arXiv preprint arXiv:1705.04304, 2017.

[23] Y.-C. Chen and M. Bansal, “Fast abstractive summarization with reinforce-

selected sentence rewriting,” in Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, vol. 1, 2018, pp. 675–686.

[24] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for extractive

summarization with reinforcement learning,” in Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, vol. 1, 2018, pp. 1747–1759.

[25] L. Bentivogli, M. Negri, M. Turchi et al., “Machine translation for machines:

the sentiment classification use case,” in Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp.

1368–1374.

[26] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adver-

sarial nets with policy gradient,” in Thirty-First AAAI Conference on Artificial

Intelligence, 2017.

[27] X. Yi, M. Sun, R. Li, and W. Li, “Automatic poetry generation with mutual

reinforcement learning,” in Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, 2018, pp. 3143–3153.

[28] A. Belz and E. Reiter, “Comparing automatic and human evaluation of nlg

systems,” in 11th Conference of the European Chapter of the Association for

Computational Linguistics, 2006.

106 BIBLIOGRAPHY

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672–2680.

[30] Y.-L. Tuan, J. Zhang, Y. Li, and H.-y. Lee, “Proximal policy optimization and

its dynamic version for sequence generation,” arXiv preprint arXiv:1808.07982,

2018.

[31] K. Guu, T. B. Hashimoto, Y. Oren, and P. Liang, “Generating sentences by edit-

ing prototypes,” Transactions of the Association for Computational Linguistics,

vol. 6, pp. 437–450, 2018.

[32] Z. Cao, W. Li, S. Li, and F. Wei, “Retrieve, rerank and rewrite: Soft template

based neural summarization,” in Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, vol. 1, 2018, pp. 152–161.

[33] Y. Li, X. Liang, Z. Hu, and E. P. Xing, “Hybrid retrieval-generation reinforced

agent for medical image report generation,” in Advances in neural information

processing systems, 2018, pp. 1530–1540.

[34] J. Weston, E. Dinan, and A. H. Miller, “Retrieve and refine: Improved sequence

generation models for dialogue,” arXiv preprint arXiv:1808.04776, 2018.

[35] N. Hossain, M. Ghazvininejad, and L. Zettlemoyer, “Simple and effective

retrieve-edit-rerank text generation,” in Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, 2020, pp. 2532–2538.

[36] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic

language model,” Journal of machine learning research, vol. 3, no. Feb, pp.

1137–1155, 2003.

[37] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of

neural text degeneration,” arXiv preprint arXiv:1904.09751, 2019.

[38] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[39] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated re-

current neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555,

2014.

[40] A. See, A. Pappu, R. Saxena, A. Yerukola, and C. D. Manning, “Do massively

pretrained language models make better storytellers?” in Proceedings of the 23rd

Conference on Computational Natural Language Learning (CoNLL), 2019, pp.

843–861.

BIBLIOGRAPHY 107

[41] O. Melamud, J. Goldberger, and I. Dagan, “context2vec: Learning generic con-

text embedding with bidirectional lstm,” in Proceedings of The 20th SIGNLL

Conference on Computational Natural Language Learning, 2016, pp. 51–61.

[42] G. Marra, A. Zugarini, S. Melacci, and M. Maggini, “An unsupervised character-

aware neural approach to word and context representation learning,” in Interna-

tional Conference on Artificial Neural Networks. Springer, 2018, pp. 126–136.

[43] V. M. Babu, U. V. Krishna, and S. Shahensha, “An autonomous path finding

robot using q-learning,” in 2016 10th International Conference on Intelligent

Systems and Control (ISCO). IEEE, 2016, pp. 1–6.

[44] M. Knudson and K. Tumer, “Policy search and policy gradient methods for

autonomous navigation,” in and Learning Agents Workshop at AAMAS 2010,

2010.

[45] L. Pasqualini and M. Parton, “Pseudo random number generation: a reinforce-

ment learning approach,” Procedia Computer Science, vol. 170, pp. 1122–1127,

2020.

[46] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Advances

in neural information processing systems, 2000, pp. 1057–1063.

[47] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional

continuous control using generalized advantage estimation,” arXiv preprint

arXiv:1506.02438, 2015.

[48] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region

policy optimization,” in International conference on machine learning, 2015, pp.

1889–1897.

[49] J. Brooke, A. Hammond, and G. Hirst, “Gutentag: an nlp-driven tool for digi-

tal humanities research in the project gutenberg corpus,” in Proceedings of the

Fourth Workshop on Computational Linguistics for Literature, 2015, pp. 42–47.

[50] S. E. Elayoubi, S. B. Jemaa, Z. Altman, and A. Galindo-Serrano, “5G RAN

slicing for verticals: Enablers and challenges,” IEEE Commun. Mag., vol. 57,

no. 1, pp. 28–34, 2019.

[51] P. Popovski, K. Trillingsgaard, O. Simeone, and G. Durisi, “5G Wireless Network

Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View,”

IEEE Access, vol. 6, pp. 55 765–55 779, 2018.

108 BIBLIOGRAPHY

[52] C. She, C. Yang, and T. Q. S. Quek, “Radio Resource Management for Ultra-

Reliable and Low-Latency Communications,” IEEE Commun. Mag., vol. 55,

no. 6, pp. 72–78, 2017.

[53] A. Anand and G. de Veciana, “Resource Allocation and HARQ Optimization

for URLLC Traffic in 5G Wireless Networks,” IEEE J. Sel. Areas Commun.,

vol. 36, no. 11, pp. 2411–2421, 2018.

[54] A. Anand, G. de Veciana, and S. Shakkottai, “Joint Scheduling of URLLC and

eMBB Traffic in 5G Wireless Networks,” IEEE/ACM Trans. Netw., vol. 28,

no. 2, pp. 477–490, 2020.

[55] J. Tang, B. Shim, and T. Q. S. Quek, “Service Multiplexing and Revenue Max-

imization in Sliced C-RAN Incorporated With URLLC and Multicast eMBB,”

IEEE J. Sel. Areas Commun., vol. 37, no. 4, pp. 881–895, 2019.

[56] M. Elsayed and M. Erol-Kantarci, “AI-Enabled Radio Resource Allocation in 5G

for URLLC and eMBB Users,” in 2019 IEEE 2nd 5G World Forum (5GWF),

2019, pp. 590–595.

[57] Y. Li, C. Hu, J. Wang, and M. Xu, “Optimization of URLLC and eMBB Mul-

tiplexing via Deep Reinforcement Learning,” in 2019 IEEE/CIC International

Conference on Communications Workshops in China (ICCC Workshops), 2019,

pp. 245–250.

[58] Y. Huang, S. Li, C. Li, Y. T. Hou, and W. Lou, “A Deep-Reinforcement-

Learning-Based Approach to Dynamic eMBB/URLLC Multiplexing in 5G NR,”

IEEE Internet Things J., vol. 7, no. 7, pp. 6439–6456, 2020.

[59] M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi, and C. S.

Hong, “Intelligent resource slicing for eMBB and URLLC coexistence in 5G and

beyond: A deep reinforcement learning based approach,” IEEE Trans. Wireless

Commun., pp. 1–1, 2021.

[60] P. He, L. Zhao, S. Zhou, and Z. Niu, “Water-Filling: A Geometric Approach

and its Application to Solve Generalized Radio Resource Allocation Problems,”

IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3637–3647, 2013.

[61] G. M. S. Rahman, M. Peng, K. Zhang, and S. Chen, “Radio Resource Allocation

for Achieving Ultra-Low Latency in Fog Radio Access Networks,” IEEE Access,

vol. 6, pp. 17 442–17 454, 2018.

[62] OpenAI, “Proximal Policy Optimization,” OpenAI web site, 2018, https://

spinningup.openai.com/en/latest/algorithms/ppo.html.

BIBLIOGRAPHY 109

[63] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. USA:

Cambridge University Press, 2005.

[64] F. Saggese, M. Moretti, and P. Popovski, “Power minimization of downlink spec-

trum slicing for embb and urllc users,” 2021, Online: https://arxiv.org/abs/

2110.14544.

[65] B. Bai, W. Chen, K. B. Letaief, and Z. Cao, “Outage exponent: A unified per-

formance metric for parallel fading channels,” IEEE Trans. Inf. Theory, vol. 59,

no. 3, pp. 1657–1677, 2013.

[66] J. P. Coon, D. E. Simmons, and M. D. Renzo, “Approximating the outage prob-

ability of parallel fading channels,” IEEE Commun. Lett., vol. 19, no. 12, pp.

2190–2193, 2015.

[67] A. M. Gergely and B. Crainicu, “A succinct survey on (pseudo)-random number

generators from a cryptographic perspective,” in 2017 5th International Sympo-

sium on Digital Forensic and Security (ISDFS), 2017, pp. 1–6.

[68] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B.

Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al., “Sp 800-22 rev.

1a. a statistical test suite for random and pseudorandom number generators for

cryptographic applications,” 2010.

[69] V. Desai, R. Patil, and D. Rao, “Using layer recurrent neural network to generate

pseudo random number sequences,” International Journal of Computer Science

Issues, vol. 9, no. 2, pp. 324–334, 2012.

[70] J. M. Hughes, “Pseudo-random number generation using binary recurrent neural

networks,” Ph.D. dissertation, 2007.

[71] H. Abdi, “A neural network primer,” Journal of Biological Systems, vol. 2, no. 03,

pp. 247–281, 1994.

[72] M. De Bernardi, M. Khouzani, and P. Malacaria, “Pseudo-random number gen-

eration using generative adversarial networks,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer, 2018, pp.

191–200.

[73] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37,

1966.

[74] S. Duell, S. Udluft, and V. Sterzing, “Solving partially observable reinforcement

learning problems with recurrent neural networks,” in Neural Networks: Tricks

of the Trade. Springer, 2012, pp. 709–733.

110 BIBLIOGRAPHY

[75] L. Wang, W. Zhang, X. He, and H. Zha, “Supervised Reinforcement Learning

with Recurrent Neural Network for Dynamic Treatment Recommendation,”

in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, ser. KDD ’18. New York, NY, USA:

Association for Computing Machinery, 2018, p. 2447–2456. [Online]. Available:

https://doi.org/10.1145/3219819.3219961

[76] S. Chakraborty, “Capturing Financial markets to apply Deep Reinforcement

Learning,” arXiv:1907.04373, 2019. [Online]. Available: https://ideas.repec.

org/p/arx/papers/1907.04373.html

[77] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[78] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with

gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,

pp. 157–166, 1994.

[79] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor, “Learn

what not to learn: Action elimination with deep reinforcement learning,” in

Advances in Neural Information Processing Systems, 2018, pp. 3562–3573.

	Abstract
	Introduction
	Motivations
	General concepts
	Reinforcement Learning (RL)
	Framework

	Research questions and contributions
	Thesis structure
	List of Publications

	AlphaGo Score Targeting through Reinforcement Learning
	Introduction
	Score as Target
	Leela Zero and SAI
	Leela Zero Score
	Training

	Results
	Qualitative Evaluation
	Quantitative Evaluation

	Discussion

	Neural Poetry through Reinforcement Learning
	Introduction
	Generate and Revise Poems
	Conditional Poem Generator
	Detector
	Prompter

	Revision as a Navigation Task
	Vanilla Policy Gradient
	Proximal Policy Optimization

	Results
	Conditional Poem Generator
	Prompter
	Revision as a Navigation Task
	Generate and Revise Poems

	Discussion

	Resource Slicing through Reinforcement Learning
	Introduction
	Low-Latency Traffic on Narrow-Band System Model
	The eMBB Scheduler
	The URLLC agent
	URLLC and eMBB Coexistence

	The DRL Agent
	System Model as a MDP
	Reward Function
	Algorithm and Neural Network Architecture

	Results
	Bernoulli Distribution
	Poisson Distribution

	Towards Reliability and Multi-Frequencies Communication
	Greedy Algorithm
	Multi-Frequencies DRL Agent
	MDP with Continuous Action Space
	Hierarchical MDPs
	Results

	Discussion

	Pseudo Random Number Generation through Reinforcement Learning
	Introduction
	Pseudo Random Number Generation
	Binary Formulation and fully observable MDP
	Recurrent formulation and partially observable MDP
	Reward Function through NIST Test Suite
	Algorithm and Neural Network Architecture

	Results
	Discussion

	Conclusions and Future Works
	Summary of Contributions
	Issues and avenues of research

	Bibliography

		2022-03-07T15:42:02+0000
	PASQUALINI LUCA

