Travel burden and clinical presentation of retinoblastoma: analysis of 1024 patients from 43 African countries and 518 patients from 40 European countries

ABSTRACT

Background The travel distance from home to a treatment centre, which may impact the stage at diagnosis, has not been investigated for retinoblastoma, the most common childhood eye cancer. We aimed to investigate the travel burden and its impact on clinical presentation in a large sample of patients with retinoblastoma from Africa and Europe.

Methods A cross-sectional analysis including 518 treatment-naïve patients with retinoblastoma residing in 40 European countries and 1024 treatment-naïve patients with retinoblastoma residing in 43 African countries.

Results Capture rate was 42.2% of expected patients from Africa and 108.8% from Europe. African patients were older (95% CI −12.4 to −5.4, p<0.001), had fewer cases of familial retinoblastoma (95% CI 2.0 to 5.3, p<0.001) and presented with more advanced disease (95% CI 6.0 to 9.8, p<0.001); 43.4% and 15.4% of Africans had extraocular retinoblastoma and distant metastasis at the time of diagnosis, respectively, compared to 2.9% and 1.0% of the Europeans. To reach a retinoblastoma centre, most cases were referred. Such a policy of centralised tertiary centres may result in reduced access and a high travel burden on patients, which can lead to poorer quality of life, advanced disease at diagnosis, late treatment and worse prognosis.4 5 Indeed, in the field of retinoblastoma, Europe serves as a potential model for under-resourced regions of the world. In Africa, where birth rate is higher, resulting in higher retinoblastoma prevalence, these improvements in survival have not been observed. Reports on retinoblastoma from Africa are scarce, and anecdotal evidence suggests that survival rates are as low as 50%,14 15 and in some regions of sub-Saharan Africa are even less than 30%.16

We have recently reported the stage at presentation of more than 4000 newly diagnosed patients with retinoblastoma from over 150 countries analysed by national-income level.17 The aim of the present study is to use the data from all countries in Africa and Europe to (1) investigate and compare the travel burden experienced by patients, (2) compare the stage at the time of diagnosis and (3) investigate risk factors for advanced disease at the time of diagnosis. Such information is important to better understand the current gaps in retinoblastoma service provision and to inform policymakers at national and international levels.

INTRODUCTION

Rare cancers, defined as having an incidence of less than six cases per 100 000 population per year,1 pose a particular burden on patients and professionals alike because of the need for specialist care, frequent lack of standardised treatments and lack of funding for research.2 3 It is not uncommon to have only one or two specialised referral centres in a country for a given type of rare cancer, to which most cases are referred. Such a policy of centralised tertiary centres may result in reduced access and a high travel burden on patients, which can lead to poorer quality of life, advanced disease at diagnosis, late treatment and worse prognosis.4 5

Retinoblastoma is a rare, potentially deadly, childhood cancer. Its incidence is believed to be constant across populations, ranging from 1:16 000 to 18 000 live births.6 In most countries, only few specialised retinoblastoma centres exist. In Europe, for example, there is a single centre in France, two in the UK and three in Russia, all in Moscow. Travel burden associated with retinoblastoma, to the best of our knowledge, has not been explored. This information, which also reflects on the accessibility to tertiary centres and their catchment area, is important for healthcare planning.

Prognosis of patients with retinoblastoma has improved significantly over the past 50 years to reach over 90% 5-year survival in Europe.7–9 These improvements are attributed to several factors, including the implementation of national strategies associated with retinoblastoma referral pathways, and the introduction of novel and improved treatment modalities, several of which were developed in European specialised referral centres.10–13 Indeed, in the field of retinoblastoma, Europe serves as a potential model for under-resourced regions of the world. In Africa, where birth rate is higher, resulting in higher retinoblastoma prevalence, these improvements in survival have not been observed. Reports on retinoblastoma from Africa are scarce, and anecdotal evidence suggests that survival rates are as low as 50%,14 15 and in some regions of sub-Saharan Africa are even less than 30%.16

METHODS

The study methodology, data collection and quality assurance process have been described in detail previously.17 Briefly, the data were collected through a 1-year cross-sectional analysis of treatment-naïve patients with retinoblastoma who presented to retinoblastoma referral centres across the world from 1 January 2017 to 31 December 2017. Data on country of residence, sex and laterality of retinoblastoma were considered essential minimum criteria for inclusion. In the present analysis, patients that resided in African and European countries were included. The study was approved by the Institutional Review Board of the Retinoblastoma International Study Group.
Board of the London School of Hygiene & Tropical Medicine (reference number 14574) in accordance with the tenets of the Declaration of Helsinki. Participating centres, according to local institutional and national guidelines, applied to and received ethics clearance in their countries.

Data collected from medical charts included patient country of residence, initial clinical sign leading to referral, distance travelled from home to retinoblastoma centre, sex, family history of retinoblastoma, age at the time of diagnosis at retinoblastoma centre, tumour laterality, and stage according to the eighth edition of the American Joint Committee on Cancer (AJCC) clinical Tumor, Node, Metastasis, Hereditary (cTNM18) and the International Retinoblastoma Staging System.19 For travel distance calculation, a Google-based map was used and the orthodromic distance (ie, ‘as the crow flies’) between home and the retinoblastoma centre was measured. In case both were in the same city or site, the distance was considered to be zero, unless mentioned otherwise by the retinoblastoma centre that submitted the data. Data on national-income level, crude birth rate, country surface area and population size were retrieved from the United Nations World Population Prospects.20

Statistical analysis

Analyses were performed using R software21 and IBM SPSS statistics v25.0 (IBM Corp, Chicago, IL, USA). The predicted number of new patients with retinoblastoma per country was calculated as follows: country population×crude birth rate/1000/17 000.22 The predicted number does not take into account deviations from the average percentage with familial retinoblastoma, in which the risk of the offspring is ~1/2 rather than 1/17 000. The predicted number per continent was the sum for all countries in that continent. Fisher’s exact test and Student’s t-test was used to compare categorical and continuous variables between groups. A one-way analysis of variance was used to test differences in the age at the time of diagnosis between the continents and the Kruskal-Wallis test to test for differences in travel distance between the continents. Binominal logistic regression was used to model the effect of income level, continent, travel distance from home to retinoblastoma centre, age at diagnosis, family history of retinoblastoma and tumour laterality on the likelihood of children having advanced disease at presentation (cT4). A value of p<0.05 was considered significant, and data throughout the manuscript are presented as mean (SD) with 95% CI.

RESULTS

The analytic sample included 1542 newly diagnosed patients with retinoblastoma. Of these, 518 (33.6%) resided in 40 European countries and 1024 (66.4%) in 43 African countries. Using an average incidence figure of 1/17 000 live births,6 the observed capture rates were 42.2% and 108.8% of expected with retinoblastoma and distant metastasis, respectively, compared to 31.1% of the European patients (OR 0.8, 95% CI 0.6 to 1.0, p=0.07). A positive family history was reported for 2.8% vs 8.4% of the African and European patients, respectively (OR 3.2, 95% CI 2.0 to 5.3, p<0.001).

Presentation to retinoblastoma centre

Age at the time of diagnosis

For the entire sample, the mean age at the time of diagnosis at a retinoblastoma centre was 27.9 months (95% CI 26.7 to 29.0); 22.0 months (SD 27.6; 95% CI 19.7 to 24.4) for European patients compared to 30.9 months (SD 21.0; 28.7 to 32.8) for those from Africa (diff = (−8.9), 95% CI −12.4 to −5.4, p<0.001).

Bilateral and familial retinoblastoma

Overall, 28.1% of the patients presented with bilateral disease, and 4.5% had a family history of retinoblastoma. Of the African patients, 26.7% had bilateral disease at the time of diagnosis compared to 31.1% of the European patients (OR 0.8, 95% CI 0.6 to 1.0, p=0.07). A positive family history was reported for 2.8% vs 8.4% of the African and European patients, respectively (OR 3.2, 95% CI 2.0 to 5.3, p<0.001).

**Referral to a retinoblastoma centre for screening in case of positive family history of retinoblastoma was uncommon in Africa as compared to Europe: 3/26 (11.5%) of the familial cases in Africa vs 31/42 (73.8%) in Europe (OR 20, 95% CI 5.3 to 100.0, p<0.001). All three screened African patients were staged cT1 at the time of diagnosis. Of the African familial cases, 57.7% had advanced intraocular (cT3) or extracocular retinoblastoma (cT4) at the time of diagnosis. In comparison, of the European familial cases, 64.3%, 31.0% and 4.8% were staged cT1, cT2 and cT3, respectively.

Tumour staging

Overall, the most common cTNM stages were cT3 (44.7%), N0 (74.3%) and M0 (89.6%). Significantly more patients from African countries as compared to European countries had at the time of diagnosis advanced retinoblastoma (ie, >cT2; OR 7.7, 95% CI 6.0 to 9.8, p<0.001), extracocular retinoblastoma (OR 25.7, 95% CI 15.1 to 43.6, p<0.001), lymph node involvement (OR 65.2, 95% CI 9.0 to 469.7, p<0.001) and metastasis (OR 18.7, 95% CI 7.6 to 45.8, p<0.001). Overall, 43.4% and 15.4% of the African patients had at the time of diagnosis extracocular retinoblastoma and distant metastasis, respectively, compared to 2.9% and 1.0% of the European patients, respectively.
Risk factors for advanced disease at the time of diagnosis
Lower-national-income level, African continent, older age at presentation, familial retinoblastoma and bilateral retinoblastoma (p ≤ 0.010), but not distance from home to retinoblastoma centre (p = 0.19), were found to be significant factors for the prediction of cT4 category (ie, extraocular disease). On logistic regression, national-income level, continent and age at presentation were found to be independent, significant predictors for cT4 category (table 2). On further analysis by continent, no predictors were found for the European subgroup, whereas for the African subgroup, older age and lower-income level (p<0.001) were found to be significant predictors of cT4 category (online supplemental table 2 in the appendix).

DISCUSSION
Our findings confirm a large disparity in the presentation patterns of retinoblastoma between patients from African and European countries. Patients from Africa were significantly older, nearly half of them had extraocular spread at the time of diagnosis, and nearly one-fifth had distant metastasis. Of the European patients, less than 3% had extraocular tumour spread and only 1% had metastatic spread at the time of diagnosis. Patients from lower-income level countries, those from the African continent and older patients at the time of diagnosis were at increased risk to have advanced retinoblastoma. Interestingly, distance patients travelled in order to reach a retinoblastoma referral centre did not play a role in this risk. These results are in contrast to previous analyses of other...
forms of cancer, including breast, colon, lung and skin melanoma, as well as rare cancers such as Merkel cell carcinoma, in which high travel burden correlated with advanced-disease stage. Noteworthy, all of the above-referenced studies were single-centre rather than multicentre multinational studies, as the present one.

Analysis of the travel burden, however, in conjunction with data on the number of retinoblastoma centres in African and European countries, and demographic data, including country population and surface area, suggests a more complex picture. Patients from African countries travelled less than half the distance compared to European patients in order to reach a specialised retinoblastoma treatment centre. Assuming that nearly all retinoblastoma centres in the participating African countries were contacted and recruited, our findings suggest that these centres serve mainly patients that reside in close vicinity.

Taking into account the low capture rate in Africa, underlying causes for the findings of this study are multifactorial; they include poor awareness by carers and health workers, lack of knowledge about clinical presentation by health workers, travel distance and cost to reach a specialised retinoblastoma treatment centre, and probably the absence of specialised retinoblastoma treatment centres in some parts of Africa.

It is well documented that poor awareness of retinoblastoma both by the public and health workers can lead to delays in diagnosis. Delayed retinoblastoma diagnosis, in turn, leads to poor outcome. Poor awareness and health education is likely to be the main factor for those cases that reside in proximity to a treatment centre, yet presented late. Initiatives are addressing this need by creating twinning programmes that link centres from higher- and lower-resource countries, as well as interventions such as public awareness campaigns, and health worker education. There is a pressing need, to promote this action at national and global level. In a rare curable cancer such as retinoblastoma, with a finite number of patients worldwide, such action is feasible.

Barriers to healthcare in Africa have been reported in relation to several medical fields, including oncology, ophthalmology and paediatrics. Most barriers, whether financial, structural (ie, accessibility), lack of transport, poor roads, were also found relevant in the context of retinoblastoma in Africa. Possible solutions should be inclusive and account for all factors; most are not in the scope of the present study. Number and distribution, however, of retinoblastoma centres in a country is a matter that warrants further discussion. The need for and number of retinoblastoma centres derive first and foremost from the number of new retinoblastoma cases in a country. There should be enough centres with an appropriate distribution to serve all patients within a country. On the other hand, there should not be too many, as expert centres need to remain ‘vivis’ an ability that relates directly to the number of cases managed, as was shown in other rare malignancies. In this sense, European and African countries face different challenges. In Europe, with a low birth rate and therefore low prevalence of retinoblastoma, the need for a treatment centre in countries with 1–2 new cases per year is questionable. In Africa, with a high birth rate and increasing population, the situation is more complex. New retinoblastoma centres will be needed where there is a large population (10 million population and 20–30 new retinoblastoma cases/year) with no available centre. The number and distribution of retinoblastoma treatment centres need to be tailored to the country’s requirements.

Familial retinoblastoma was significantly more common in European than in African countries. A possible explanation is the high survival rate of hereditary cases in Europe due to early diagnosis and efficient treatments. This possibly could
Familial retinoblastoma is more common in Europe than in Africa, most probably due to death related to late disease presentation, and screening of patients at risk of developing retinoblastoma is more common in Europe. Comprehensive counselling of families and patients with germline disease (ie, bilateral retinoblastoma and/or positive family history) may be found useful in order to detect the disease at early stage to increase survival rates in this highly curable malignancy.

Figure 2 Retinoblastoma centre catchment area in Africa and Europe. The red circles represent the mean patient travel distance and green circles, the travel distance SD. Patients in European countries travelled in average significantly longer distances (421.8 km±814.6) compared to patients from African countries (185.7 km±201.0) in order to reach a retinoblastoma centre (p<0.001). Superimposing the red and green circles on the map, retinoblastoma centres in European countries cover the whole continent, whereas in Africa, large parts in many African countries remain uncovered.

explain the high capture rate of retinoblastoma in Europe too, higher than the predicted annual number. Further studies are warranted to better understand the trends in retinoblastoma incidence in Europe. Three-quarters of the European familial cases were screened for retinoblastoma (ie, examined before clinical signs were evident) and most were diagnosed with early disease stage. In Africa, screening rate was as low as 11.5% of the familial cases, lower than previously reported (ie, bilateral retinoblastoma and/or positive family history) may be found useful in order to detect the disease at early stage to increase survival rates in this highly curable malignancy.

future counselling regarding the need for screening of their offspring, especially the ~30% that presented with bilateral disease whose children have a nearly 50% chance of developing retinoblastoma. Interestingly, the rates of bilateral cases were similar between Africa and Europe. Most of them are known to result from sporadic germline mutations. The proportion of cases with familial retinoblastoma who presented with bilateral disease was also similar. Given the risk factor analysis, which showed that lower-income level and African continent were independently associated with advanced disease, it is possible that other, unrecorded variables are responsible for disease progression before diagnosis is made in Africa, as well as for tendency to present with bilateral retinoblastoma. Further studies should explore these possibilities.

Our study has limitations. First, the orthodromic distance was used as a surrogate for the travel burden, whereas other related factors that may play a role were not taken into account, especially travel costs, time costs, loss of parental income, availability and mode of transportation, road conditions, availability of transport and the actual distance travelled from home to a specialised referral retinoblastoma centre. Second, our study was cross-sectional by design and some of the data were collected in a retrospective manner (centres that were recruited after January 2017) with the inherent limitations of such a design. Nevertheless, we were able to collect data from an unprecedented number of retinoblastoma centres and countries, and to perform a quality assurance process to make sure that the data are accurate. Third, our sample was a convenience sample, and although repeated attempts were made to reach every retinoblastoma treatment centre in Africa and Europe, it is possible that some were missed. Notably, centres in Namibia (n=1), Sierra Leone (n=1) and Somalia (n=1) that were contacted did not join in the study; hence, no information on these centres was available. In addition, only 1 out of 2 centres in Kenya, and 1 out of 2 in Algeria, joined in the study, and similarly, no information was available on those centres that did not join in.

In summary, our findings show that in European countries, travel distance from home to retinoblastoma centre is not a barrier to early disease diagnosis. European patients travel on average more than 400 km and >60% present at stage cT2 or earlier. In Africa, the picture is more complex—patients travel on average less than 200 km, yet >80% present at stage cT3 or worse, suggesting that factors other than geographic distance to retinoblastoma centre play a role in late disease diagnosis. Poor awareness and education by both caregivers and health workers, other barriers to access, and possibly, number and distribution of specialist retinoblastoma treatment centres in those African countries in which the population is underserved, are key factors that warrant intervention on national and international levels. Familial retinoblastoma is more common in Europe than in Africa, most probably due to death related to late disease presentation, and screening of patients at risk of developing retinoblastoma is more common in Europe. Comprehensive counselling of families and patients with germline disease (ie, bilateral retinoblastoma and/or positive family history)
Table 2: Predictors of advanced retinoblastoma disease at presentation (cT4): univariate and multivariate analyses

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>B</th>
<th>SE</th>
<th>Corrected p-value</th>
<th>OR</th>
<th>95% CI for OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univariate analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income level</td>
<td>Low versus lower-middle</td>
<td>1.04</td>
<td>0.14</td>
<td><0.001</td>
<td>2.82</td>
<td>2.13–3.74</td>
</tr>
<tr>
<td></td>
<td>Low versus upper-middle</td>
<td>1.25</td>
<td>0.15</td>
<td><0.001</td>
<td>3.50</td>
<td>2.60–4.70</td>
</tr>
<tr>
<td></td>
<td>Low versus high</td>
<td>1.89</td>
<td>0.34</td>
<td><0.001</td>
<td>6.64</td>
<td>3.44–12.82</td>
</tr>
<tr>
<td></td>
<td>Lower-middle versus upper-middle</td>
<td>1.47</td>
<td>0.31</td>
<td><0.001</td>
<td>4.33</td>
<td>2.38–7.90</td>
</tr>
<tr>
<td></td>
<td>Lower-middle versus high</td>
<td>2.32</td>
<td>0.50</td>
<td><0.001</td>
<td>10.19</td>
<td>3.80–27.35</td>
</tr>
<tr>
<td></td>
<td>Upper-middle versus high</td>
<td>3.18</td>
<td>1.04</td>
<td><0.001</td>
<td>23.96</td>
<td>3.11–184.62</td>
</tr>
<tr>
<td>Continental</td>
<td>Africa versus Europe</td>
<td>0.84</td>
<td>0.10</td>
<td><0.001</td>
<td>2.32</td>
<td>1.90–2.82</td>
</tr>
<tr>
<td>Familial retinoblastoma</td>
<td>Yes versus no</td>
<td>1.51</td>
<td>0.52</td>
<td><0.001</td>
<td>4.54</td>
<td>1.64–12.57</td>
</tr>
<tr>
<td>Bilaterality</td>
<td>Yes versus no</td>
<td>0.38</td>
<td>0.15</td>
<td>0.010</td>
<td>1.46</td>
<td>1.10–1.94</td>
</tr>
<tr>
<td>Distance from home to Rb centre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate analysis</td>
<td>(binomial logistic regression)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income level</td>
<td>Lower-middle</td>
<td>0.90</td>
<td>0.15</td>
<td><0.001</td>
<td>2.45</td>
<td>1.83–3.30</td>
</tr>
<tr>
<td></td>
<td>Upper-middle</td>
<td>1.48</td>
<td>0.34</td>
<td><0.001</td>
<td>4.38</td>
<td>2.26–8.47</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>3.08</td>
<td>1.18</td>
<td><0.001</td>
<td>21.74</td>
<td>2.14–220.82</td>
</tr>
<tr>
<td>Continental</td>
<td>Europe</td>
<td>2.34</td>
<td>0.62</td>
<td><0.001</td>
<td>10.37</td>
<td>3.07–35.01</td>
</tr>
<tr>
<td>Age at diagnosis</td>
<td>≥24 months</td>
<td>−1.33</td>
<td>0.16</td>
<td><0.001</td>
<td>0.27</td>
<td>0.19–0.37</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td>1.07</td>
<td>0.16</td>
<td><0.001</td>
<td>1.33</td>
<td>1.04–2.39</td>
</tr>
</tbody>
</table>

*+Test for numerical variables.
†Median age=24.2 months (categorical variable).

