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E D I T O R I A L

Predictive models in clinical practice: 
useful tools to be used with caution
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Diagnostic and prognostic predictive models, 
aimed at calculating the probability of oc-

currence of a certain event (disease or its evolu-
tion), are frequent in biomedical literature1 and 
in clinical guidelines for formal risk assessment. 
So, the necessity of their systematic reviews led 
to the formation of the Cochrane Collaboration 
Prognosis Reviews Methods Group,2 which de-
veloped and validated search strategies for iden-
tifying prediction model studies.3

Then, a Checklist for Critical Appraisal and 
Data Extraction for Systematic Reviews of Pre-
diction Modelling Studies (CHARMS)1 has been 
designed, followed by the Transparent Reporting 
of a Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD) guidelines.4, 5

A search for “predictive” or “prognosis” or “risk 
factors” or “diagnosis” in the title of the original 
articles published on Minerva Anestesiologica 
from 2013 to 2017 returned 38 papers on building 
and eight papers about the validation of a predic-
tive model. Furthermore, a review on the design, 
statistics, interpretation, and validation of the pre-
dictive models for postoperative pulmonary com-
plications has been recently published6 with an 
editorial7 emphasizing their clinical impact.

Indeed, the actual question is: how much can 
these predictive models be considered as useful 

tools for the clinical practice? For an overview 
of the statistical methodology the readers are re-
ferred to a Tutorial in Biostatistics by Harrell et 
al.8 and to four British Medical Journal papers 
mainly tackling the general methodology of 
these studies.9-12

First of all, predictive models must come from 
properly planned ad-hoc studies (prospective 
“multivariable” cohort observational studies, be-
ing randomized trials affected by the presence 
of the treatment although not statistically sig-
nificant). Then, patients have to be consecutively 
selected according to well defined inclusion/ex-
clusion criteria for having a sample with the best 
possible representativeness of the target popula-
tion, which must also be as wide as possible by 
including broad clinical scenarios. Furthermore, 
the recorded variables must be able to best char-
acterize the phenomenon of interest and have to 
be used the best validated methods of measure-
ment for which the properties of accuracy, pre-
cision, repeatability and reproducibility have to 
be fulfilled. Finally, “hard” (i.e., objective) vari-
ables should be preferred to “soft” (i.e., subjec-
tive) variables.

The requirement of an adequate sample size 
is a particularly relevant aspect taking into ac-
count that problems arising from data-dependent 
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selection, goodness of fitting, validation, etc. can 
be exacerbated by small sample sizes. The fre-
quently used criterion of at least ten events per 
variable (EPV) to be included into the predictive 
model has indeed to be considered as a very low-
est threshold and, actually, not satisfactory.

Harrell et al.13 concluded that for regression 
modelling the EPV should be at least ten times 
the number of potential prognostic variables that 
could be included in the model. Peduzzi et al.14 
showed that an EPV equal to 10 has to be consid-
ered a minimum. Finally, Feinstein15 suggested 
that an EPV of 20 is safer. It must to be pointed 
out that most published studies do not meet the 
above criteria.

Many statistical procedures can be used to 
build a predictive model: from the traditional re-
gression models (multiple linear, logistic, Cox’s 
proportional hazard regression) to the recent 
methods of regression trees (CART), neural net-
works, machine learning techniques that, how-
ever, seem to not bring any consistent advantage.

It is not possible to consider here the pros and 
the cons of these statistical methods: each of 
them has its strengths and weaknesses, but, gen-
erally, all can be useful and usable if the predic-
tion obtained is accurate for groups of patients 
or for individual patient. Indeed, according to 
Burstein,16 “Usefulness is determined by how 
well a model works in practice, not by how many 
zeros there are in the associated P values.”

It has to be pointed out that predictive models 
have to pass two steps. Firstly, the internal valid-
ity is assessed on the same dataset used to de-
velop the model by obtaining the “apparent per-
formance,” which obviously tends to be overes-
timated, and consequently biased. Secondly, and 
more relevant, the external validity has to be as-
sessed on different validation samples. To these 
aims, a number of predictive performance mea-
sures and statistics have to be evaluated graphi-
cally and/or by formal statistical tests: goodness 
of fitting, calibration (“how well the predicted 
risks compare to the observed outcomes”), dis-
crimination (“how well the model differentiates 
between those with and without the outcome”), 
classification measures (notably, sensitivity and 
specificity), and reclassification measures (such 
as net reclassification improvement).

In this issue of Minerva Anestesiologica, Ra-
nucci et al.17 present a retrospective analysis of 
hemodynamic data to assess discrimination and 
calibration properties of the Hypotension Prob-
ability Indicator (HPI) for prediction of hypoten-
sive events in 23 patients undergoing vascular 
and cardiac surgery. Cardiovascular patients are 
quite often expose to intraoperative hemody-
namic derangements (e.g., cardiac arrhythmias, 
impaired myocardial contractility, changes in 
preload and afterload due to blood loss or sys-
temic inflammatory reaction), which occur with 
arterial hypotension and potential postoperative 
complications.

HPI is obtained by a machine-learning ap-
proach and its development and external valida-
tion has been recently published by Hatib et al.18 
These authors declared that HPI has a very sat-
isfactorily performance, but they did not explain 
the statistical details for calculating the coeffi-
cients (unknown for patent reasons) of the vari-
ables. On the contrary, Ranucci et al.17 in the val-
idation part of their paper reported that the HPI 
algorithm had a poor calibration performance not 
even satisfying the first step of the goodness of 
fitting assessment of a prediction model.

A fundamental point is that without an exter-
nal validation, a predictive model should be used 
very cautiously in clinical practice and, particu-
larly, in different institutions. So validation stud-
ies are mandatory and, even if sample size rules 
are not well established, they have to be carried 
out with a minimum of 100 events and ideally 
200 (or more) events,19 or a minimum of 100 
events and 100 non-events and 20 participants 
per predictor in the case of continuous outcomes.

More challenging than the usual statistical 
methods are the frequentistic and Bayesian pro-
cedures aimed to build a prognostic model from 
repeatedly measured independent variables as 
predictors and a fixed outcome.20 Of course, re-
peated measurements would provide more infor-
mation about the variable’s trajectory over the 
time than just a single measurement. However, 
among other things, it has to be taken into ac-
count the correlation among the measures and 
the fixing of a time lag between the measure-
ments and the event of interest.

Sophisticated statistical techniques together 
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ries. We agree with that statement. Indeed, the 
question about HPI is still open and requires fur-
ther validation studies.
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with the involvement of a professional statisti-
cian are also required for jointly considering, as 
in Ranucci et al.17 paper, repeated measures of 
a predictor and the possible occurrence of mul-
tiple events per subject (hypotensive episode) in 
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