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—— Abstract

Railway dispatchers reschedule trains in real-time in order to limit the propagation of disturbances
and to regulate traffic in their respective dispatching areas by minimizing the deviation from
the off-line timetable. However, the decisions taken in one area may influence the quality and
even the feasibility of train schedules in the other areas. Regional control centers coordinate
the dispatchers’ work for multiple areas in order to regulate traffic at the global level and to
avoid situations of global infeasibility. Differently from the dispatcher problem, the coordination
activity of regional control centers is still underinvestigated, even if this activity is a key factor
for effective traffic management.

This paper studies the problem of coordinating several dispatchers with the objective of driv-
ing their behavior towards globally optimal solutions. With our model, a coordinator may impose
constraints at the border of each dispatching area. Each dispatcher must then schedule trains in
its area by producing a locally feasible solution compliant with the border constraints imposed
by the coordinator. The problem faced by the coordinator is therefore a bilevel programming
problem in which the variables controlled by the coordinator are the border constraints. We
demonstrate that the coordinator problem can be solved to optimality with a branch and bound
procedure. The coordination algorithm has been tested on a large real railway network in the
Netherlands with busy traffic conditions. Our experimental results show that a proven optimal
solution is frequently found for various network divisions within computation times compatible
with real-time operations.
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A Bilevel Rescheduling Framework for Optimal Inter-Area Train Coordination

1 Introduction

This paper deals with a multi-area train scheduling problem faced by traffic controllers at
regional railway control centers. Typically, the real-time traffic control at the national level
is organized into a set of regional traffic control centers each coordinating several dispatchers.
For instance, the Dutch network is subdivided into a national center in Utrecht, four regional
centers (Amsterdam, Eindhoven, Rotterdam and Zwolle) and more than sixty dispatching
areas.

The real-time traffic management of each regional area is hierarchically organized into two
decision levels. At the lower level, dispatchers control local areas with knowledge of the traffic
flow limited to their respective areas. When train operations are perturbed, each dispatcher
regulates traffic by minimizing the deviation from the off-line scheduled timetable and by
computing a locally feasible schedule in his/her dispatching area. However, the decisions
taken locally may influence the quality and even the feasibility of the train schedules of
other areas. At the higher level, the coordinator is responsible for the traffic management
over a railway network of k areas with a global overview of the traffic flow and controls the
rescheduling decisions taken by the k dispatchers (see Figure 1). The coordinator goals are to
ensure the global feasibility of train schedules (i.e., the union of all locally feasible schedules
must be feasible) and to pursue the overall quality of the local solutions at the regional level.
To reach these goals, the coordinator may impose constraints to the local solutions provided
by the dispatchers.

Regiona coordinator

Local
delaog?)jn i decisions
of areal /Trajn schedule\ of areak

congtraints
Dispatcher of Dispatcher of
aeal | ... areak

Figure 1 Interaction between coordinator and dispatchers.

Due to the complexity of the overall train rescheduling problem, decision support systems
(DSSs) are needed to help dispatchers and coordinators to manage railway traffic under this
two-level hierarchy. As far as the dispatcher problem is concerned, many DSSs are described
in the literature, based on exact and heuristic solution procedures. Recent surveys on models
and algorithms for the dispatcher problem can be found in Ahuja et al. (2005), D’Ariano
(2010) and Lusby et al. (2011). Most of the approaches are based on a macroscopic view
of the network, in which a line between two stations is aggregated into a single resource.
However, the recent trend is to increase the level of detail in the optimization models in order
to ensure that a feasible model solution can also be implemented in practice. In the recent
literature on microscopic models, the train scheduling problem is formulated as a job shop
scheduling problem with additional constraints (see e.g. D’Ariano et al., 2007 and Mannino
and Mascis, 2009).

Differently from the dispatcher problem, the coordinator problem at the regional control
centers has not received much attention in the literature on multi-area train scheduling,
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although poor coordination between areas may result in poor overall performance, with a
risk of inter-area deadlocks. The few papers existing on the coordinator problem mainly
focus on certifying the global feasibility of the local solutions or detecting global infeasibility
and suggesting possible coordination actions for recovery (Mazzarello and Ottaviani (2007),
Strotmann (2007) and Corman et al. (2011)). A number of important open problems remain
for both academic researchers and practitioners, such as the optimization of coordinator
performance and the definition of general methods to find globally feasible schedules when
infeasibility is detected.

A stream of research on methodologies for railway traffic regulation and coordination
of local areas started with the European project COMBINE 2 (Pacciarelli, 2003). Train
movements in the local dispatching areas are modeled by an alternative graph formulation
(Mascis and Pacciarelli, 2002), while a higher level of control considers aggregate information
about the local solvers. The implementation of these methodologies are reported in Mazzarello
and Ottaviani (2007) for two test cases of the Dutch railway network, and a practical pilot is
also described for one of the two test cases.

In Strotmann (2007), a two-level approach for rescheduling trains between multiple areas
is considered. At the lower level local solutions are computed in each area by greedy heuristic
scheduling procedures while, at the higher level, a coordinator is used to check whether
neighboring areas have consistent solutions. The coordination procedure imposes train
ordering constraints at the borders between areas with an iterative approach until a feasible
schedule to the global problem is found or the procedure fails in finding a globally feasible
schedule.

The coordinator problem has been recently addressed by Corman et al. (2011) on a
complex and busy Dutch railway network divided into two dispatching areas. A coordination
framework is proposed to support distributed scheduling, that combines microscopic modeling

of train movements at the local level with an aggregate view of the situation at the global level.

An exact algorithm by D’Ariano et al. (2007) is used at local level to solve the dispatcher
problem in each area, while heuristic procedures are proposed to solve the coordinator
problem.

So far, to the best of our knowledge no paper addresses the problem of assessing the
performance of the coordinator. This lack of research motivates the current paper. This
work is based on the above-described framework and develops a new coordination procedure
to compute optimal solutions to the coordinator problem or at least to assess the quality of
the feasible solutions found.

With the coordination procedure developed in this paper, the coordinator exchanges
information with each dispatcher. We formally define the border between two or more
dispatching areas as a set of block sections, called border block sections, which are shared
between neighboring areas. The order of the trains traversing a border block section must
therefore be the same in the areas sharing it and in case of conflict between the dispatchers
the coordinator may impose a common order or time windows of passing times for some
trains that must be respected by all dispatchers. Each dispatcher computes a locally feasible
detailed schedule satisfying a given set of constraints at the area border, such as a partial
order of trains passing the border or a time window for the entry/exit event of each train
into/out of the area. The local solution is computed by solving a train scheduling problem
with minimization of train delays. An alternative graph formulation (Mascis and Pacciarelli,
2002) models the dispatcher problem. The blocking time theory is used to compute arc
weights (see, e.g., Hansen and Pachl (2008)) so that train movements are modeled at a
microscopic level of detail compliant with the safety system and the operating rules. The
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exact algorithm of D’Ariano et al. (2007) is then adopted to solve the alternative graph of
each dispatching area.

After the computation of local solutions, each dispatcher sends back to the coordinator
aggregate information on the solution found, including lower and upper bounds and a set of
time lags between every pair of entry/exit events at the area border.

The coordinator builds a border graph whose nodes are the entry/exit events at each
border block section plus two dummy nodes 0 and n that are needed to compute the objective
function. Two properties are proved: (i) The first property allows to prove global feasibility
of the union of locally feasible schedules; (ii) The second property allows to prove global
optimality of the union of locally feasible schedules, for a given set of coordination constraints.

Properties (i) and (ii) of the coordinator problem enable the development of a branch
and bound procedure through which the coordinator can guide the search towards a globally
optimal solution. The idea is to define a list of alternative sets of coordination constraints
whose union covers all coordination actions, each associated with a coordinator graph used to
model implications of the constraints set and to compute a lower bound on the optimum. If
for a set of constraints the lower bound is equal to or greater than the current upper bound,
the set is removed from the list. Otherwise, a branch is performed by producing two new sets
of constraints and adding them to the list. The procedure is guaranteed to converge to the
global optimum if the solutions provided by the dispatchers at each step are locally optimal.
Otherwise, an optimality gap is always associated with the current best global solution.

The coordination framework is tested on a large and busy region of the Dutch network
spanning ten dispatching areas. Experimental results show that a near-optimal global solution
is found within the tight time windows required for real-time traffic control. The branch and
bound algorithm for the coordinator problem is also compared with the heuristic proposed by
Corman et al. (2011) and with the centralized approach described in D’Ariano et al. (2007).

2 Mathematical formulation

Following the two-level hierarchy of Vicente and Calamai (1994), in our formulation the
coordinator is the leader of a bilevel program and the dispatchers are the followers. This
hierarchy is adopted also in railway practice, as described in Section 1. We next describe the
models adopted for the problems faced by dispatchers and coordinators. Both problems are
formulated with alternative graphs (Mascis and Pacciarelli, 2002).

The alternative graph is a triple G = (N, F, A), where N = {0,1,...,n} is a set of nodes,
F is a set of directed arcs (fized) and A is a set of pairs of directed arcs (alternative). The
nodes are associated with events, such as the start or completion of the schedule (nodes 0/n)
or the start of an operation (nodes 1,...,n — 1). Each arc (¢, j) is either fixed or alternative
and has an associated weight w;;. The set A contains pairs of alternative arcs, which model
the sequencing decisions of the problem. If ((k,7), (h,7)) € A, arc (k,j) is the alternative
to arc (h,i). We call t; the start time associated with event i. A selection S is a set of
alternative arcs, at most one arc from each alternative pair. A selection, in which exactly one
arc is chosen from each pair in A, is a feasible schedule (or a solution) if the graph (N, F'US)
has no cycles with positive weight (Mascis and Pacciarelli, 2002).

Given a solution S, [°(i, j) denotes the weight of a longest path from i to j in (N, FUS).
A feasible timing ¢; for operation 4 is then ; = [(0,). Note that o is a constant equal to 0.
A feasible schedule is an optimal solution if 1°(0,n) is minimum over all the feasible schedules.
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The general alternative graph formulation can be viewed as the following disjunctive program:

mint, — to
s.t.
t; —t; > wyj (i,j) € F

(=t > wiy) V (b — tn > wns) (5, ), (b)) € A

In the alternative graph formulation of the dispatcher problem (dispatcher graph), each
operation represents the event that a train enters a block section or a platform. Variable ;,
fori=1,...,n— 1, is used to model the start time of operation i, i.e., the entrance time
of the train to the associated block section or platform. A train route corresponds to a
job, i.e., a sequence of operations. Fixed constraints in F must be satisfied by any feasible
timing for each train on its specific route. For each operation 4, let o(i) be the operation
which follows i on the route of the associated train. In a solution, the precedence relation
to(i) = ti + Wig(;) must hold, where w;,(;) > 0 is the minimum running time for operation
i. Fixed constraints are also used to model time windows of <earliest, latest> entrance
times for the trains running in the dispatching area. The earliest entrance time (release) is
represented by a fixed arc from node 0 to the first node of the corresponding job, while the
latest entrance time (deadline) is a fixed arc from the first node of the job to node 0 with
negative weight. Additional fixed constraints can also model train delays and other railway
constraints, as shown in D’Ariano et al. (2007), D’Ariano (2010), D’Ariano et al. (2008),
Corman et al. (2009) and Corman et al. (2010).

Alternative pairs in A model the train sequencing decisions. For each pair ¢ and j of
operations associated with the entrance of two trains to the same block section, we define
k= o(i), h = 0(j) and introduce the disjunction (t; — 5@y > Woiy;) V (ti — to(j) = We(s)i),
where wg(;); > 0 and wy(j); > 0 are minimum setup times. With this constraint, the follower
train can enter the block section only after that the feeder train enters the next block section
plus the setup time. The choice of one of the two arcs corresponds to choosing the train
sequence on the associated block section.

A train schedule in the dispatcher graph specifies a value for the start time of each
operation. The schedule is feasible (deadlock-free and conflict-free) if it satisfies all constraints
belonging to the set F' and exactly one constraint for each alternative pair belonging to
the set A. The objective function is the minimization of the maximum consecutive delay
of all trains at a set of relevant points, i.e., the scheduled stops and the exit points of the
dispatching area. This objective function corresponds to the quantity ¢, — to by associating
suitable weights with the arcs ending at node n, as in D’Ariano et al. (2008).

2.1 Global feasibility

Let us consider a region divided into k dispatching areas, let G* = (N®, F* A”) be the
alternative graph associated to dispatching area x = 1,...,k, let S* be a locally feasible
schedule for area x and let S = UI;:1 S% be the union of the k selections.

In principle, the feasibility of the global solution S can be checked by building a global
alternative graph G = (U, N* U, F® U, A") of the whole region and then selecting the arcs
for each dispatching area according to the dispatcher decisions. If there are no positive weight
cycles in G(S) the local solutions are globally feasible. However, a drawback of G is its size
that increases linearly with the number of block sections and quadratically with the number
of trains in the network.

In order to reduce the amount of data managed by the coordinator, let us define a set of
border nodes Np composed of the dummy nodes 0 and n and of all the nodes associated with
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the entrance of a train into a border block section and to the entrance in the subsequent
block section (which corresponds to the exit of the train from a border block section), for all
the k dispatching areas. Given a locally feasible selection S¥, its graph compression of G(S%)
is obtained by contracting all the nodes in N* \ Np and then deleting all the redundant
arcs. By construction, there is an arc (¢, ) in the graph compression if and only if there is a
directed path from i to j in G*(S*), and (i, j) is weighted with 15 (i, ).

A border graph BG(S) is defined as follows. The set of nodes is composed of the set
of border nodes Np. The set of arcs is obtained by the graph compression of G*(S%) for
each dispatching area x = 1,...,k, i.e., there is an arc (4, j) with weight w;; in BG(S) if the
weight of the longest path from ¢ to j in G"(S*) is w;; < oo, for some = = 1,..., k. Clearly,
redundant arcs in BG(S) can be deleted. The following property holds.

» Theorem 2.1 (Feasibility property). Consider a global area composed of k local areas.
Given a locally feasible schedule S* for each dispatching area, S = UI;::1 S7 is a globally
feasible selection if and only if the border graph BG(S) has no positive weight cycles.

» Corollary 2.2 (Global objective function). Consider a global area composed of k local
areas and a locally feasible schedule S* for each dispatching area = = 1,...,k. If the
associated border graph contains no positive weight cycles, the weight of the longest path
from 0 to n in the border graph is the maximum consecutive delay of the corresponding
globally feasible schedule S = Uﬁzl ST,

2.2 Global optimality

The coordinator problem consists of defining the set of border constraints ¢ to impose on k

dispatchers © = 1,...,k at the border of their areas in such a way that the k locally feasible

schedules S*(y) are globally feasible and the maximum consecutive delay over all trains and

the whole network is minimized. Specifically, ¢ includes constraints of two types:

(i) time windows of <earliest, latest> entrance/exit times of a train into and output of a
border block section, which must be satisfied by the dispatching solutions provided by all
the areas sharing the border block section;

(i) a sequencing between two trains passing a border block section, which must be satisfied

in all the areas sharing the border block section.
Note that each dispatcher can schedule trains in its dispatching area independently from
the others and is only constrained to compute a solution S*(yp) compliant with the border
constraints ¢. We assume that each dispatcher pursues the minimization of maximum
consecutive delay in its dispatching area. Moreover, the coordinator may require the
following information from the dispatcher of area x:

(a) a lower bound LB, (¢) on the local objective function of area z for a given set of border
constraints ¢,

(b) a lower bound on the weight of a longest path between any pair of border nodes in area
z in any locally feasible solution for a given ¢,

(¢) the objective function value UB,(S*) of a locally feasible solution S® of area x for a
given ¢ or, alternatively, the information that a locally feasible solution does not exist or
cannot be found within the available computation time,

(d) the graph compression of a locally feasible solution S*(p) for area = and given ¢, i.e.,
the weights of a longest path for each pair of border nodes in area .

Information (a) and (b) can be used to define a lower bound on the global optimum for a
given ¢. In fact, the global objective function is the maximum consecutive delay at a set of
points in the network that includes those of any dispatching area. Thus, LB, () is also a
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lower bound for the global objective function. An additional lower bound can be computed
by the coordinator by building an alternative graph, called the coordinator graph G€ (). In
GC(p) the set of nodes is Np, the set of fixed arcs F'¢ is obtained with information (b) and
the set of pairs of alternative arcs A® is given by all the alternative pairs defining precedences
between each pair of trains at each border block section. Constraints of type (i) in ¢ define
a partial selection of A, while constraints of type (i) define release dates and deadlines
constraints for the border nodes.

The weight 7(p) of a longest path from 0 to n in G(¢) is also a lower bound on
the global objective function. This can be computed in a fast way by means of existing
graph search algorithms. For example, the algorithm of Floyd and Warshall requires a
computing time O(Np*). We call GLB(p) the global lower bound computed as GLB(yp) =
max{m(¢), LB1(¢),...,LBr(¢)}.

Information (d) can be used to define an upper bound on the global optimum. In fact,
from Corollary 2.2 the maximum consecutive delay GUB(S) of a globally feasible schedule
S = UI;:I S%(yp) is the weight of a longest path on the border graph built with information
(d). The following result holds.

» Proposition 2.3 (Optimality property). A globally feasible schedule S = Uizl S% () is
an optimal solution for a given set of coordination constraints ¢ if GUB(S) = GLB(p).

Proposition 2.3 suggests a branch and bound strategy to find the global optimum to the
coordinator problem. Figure 2 describes the interactions between coordinator and dispatchers
at each node of the branch and bound tree. The procedure is illustrated in Section 3.

Border Arcs Selected

GUB(S)

Dispatchers

Coordinator

Border Coordinator
Graph Graph

Dispatcher

Graphs
Lower Bounds on the
Longest Paths

Local LBs and UBs

Graph Compression

Figure 2 Exchange of relevant data from the coordinator to the dispatchers and vice versa.

Each dispatching area is controlled by a dispatching algorithm. If no local solution is
found for an area, a local infeasibility is returned. In this case, the human dispatcher is
asked to take some dispatching actions that the dispatching algorithm is not allowed to
take, like rerouting some trains or even cancelling a scheduled service. At a global level,
the dispatching areas are checked by the coordinator using the border graph and controlled
using the coordinator graph. If no global solution is found by the coordination algorithm, a
global infeasibility is found. In this other case of infeasibility, the human regional coordinator
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is asked to recover the situation. This is achieved by imposing further constraints to the
coordinator and/or dispatcher graphs.

3 Branch and bound algorithm

This section describes the branch and bound algorithm to solve the coordinator problem and
describes its main components. This algorithm is based on the data exchange architecture of
Figure 2. At the root node, the dispatchers exchange information (b) of Section 2.2 with the
coordinator, that is used to implicate possible arcs in other areas and to set lower bounds
on the longest paths between border nodes, which are represented as weighted arcs in the
coordinator graph. This exchange of information continues until no value can be increased
and terminates with a coordinator graph G¢()) that is used in the subsequent computation.

A starting global upper bound GUB is computed with the starting heuristic described in
Corman et al. (2011). The branch and bound procedure starts from the root node ¢ = 0.
At the generic step of the procedure, the branch and bound nodes contain information ¢ on
the border constraints and are organized in an active node list L. Each element is labeled as:

« if the dispatchers find feasible local schedules with conflicting border decisions;
[ if the dispatchers find feasible local schedules without conflicting border decisions;
v if at least one dispatcher does not find a locally feasible solution within the time limit.

Labels are used to guide the order of node exploration during the search. Priority is given
to nodes labeled «, then § and finally . The intuition behind this choice is that good global
upper bounds can be found by first exploring the conflicting border decisions. Nodes labeled
« are explored with the FIFO (First In First Out) criterion, whereas the 8 and 7 nodes are
visited with a LIFO (Last In First Out) criterion.

Let (€ (i, §) be the longest path from i to j in the coordinator graph. When a current active
node @ is removed from list L, the coordinator applies the following constraint propagation
rules to G (i) in order to enlarge the selection ¢ as much as possible without branching:

If ((i,7), (h, k)) is an unselected pair of alternative arcs in G(¢), representing a border

decision between areas x and y, and 19(0, h) + wpi + 1€ (k,n) > GUB, then arc (h, k) is

forbidden, and arc (i, j) is implied by ¢;

If ((4,7), (h, k)) is an unselected pair in G (), representing some border decision, and

1€(k,h) + wpg > 0, then arc (h, k) is forbidden, and arc (i, ) is implied by ¢.

In case it is possible to improve the current best upper bound GUB starting from ¢,
i.e., if GY(¢) does not contain positive cycles and 7(y) <GUB, the dispatchers are asked
to solve their local problems. The dispatchers data (selected border arcs in S?, local lower
bounds LB, (¢) and upper bounds UB,(S%), longest path weights) are then sent back to
the coordinator which builds the border graph BG(S). In order to compute LB, (), the
single machine Jackson preemptive schedule described in D’Ariano et al. (2007) is used
unless the dispatcher = is able to solve the local problem to optimality, in which case
LB, (p) =UB,(S*). If the maximum local lower bound max,{LB,(¢)} computed by the
dispatchers is greater than m(¢) the value of the global lower bound GLB(y) is updated.

If BG(S) does not contain positive cycles a globally feasible schedule exists and GUB
is possibly updated. If GUB> GLB(y), then ¢ may still improve GUB and a branch is
performed. The branch is performed differently for the root node with respect to the other
nodes of list L.

For all nodes in L but the root a binary branching strategy is performed as follows:
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1. If ¢ is labeled a, branch on an unselected alternative pair ((4,7), (h, k)) € A that was
selected in a conflicting way by the local dispatchers. Two new nodes (¢ U {(i,5)}) and
(o U{(h,k)}) are generated and stored in L.

2. If ¢ is labeled B or =, branch on the time windows. Choose a time window < [,u >
such that (u — ) is minimum over all the time windows in ¢ and generate two nodes by
dividing the time window into two parts of equal size (i.e., <, |[(u+1)/2] > in the first
node and < [(u+1)/2],u > for the second node). The values [, v for all time windows
are integers expressed in minutes, i.e., we consider a minimum size for the time windows
equal to 60 seconds.

The branching strategy is different at the root node only if the starting heuristic finds
a globally feasible schedule and the root node is of type a. Let us call (a1,a1),..., (ap,ap)
the p pairs of alternative arcs of the coordinator graph that are selected in a conflicting
way by the local dispatchers at the root node. Without loss of generality, let us assume
that in the starting feasible schedule the first arc of each pair is selected. The procedure
stores p + 1 nodes, labeled «, in L with the following constraints. For i = 1,...,p, the i-th
node is described by the constraints {aq,...a;—1,a;}. The (p + 1)-th node is described by
the constraints {ai,...,a,}. In this way the procedure skips the intermediate nodes with
constraints {ay,...,a;} with ¢ < p. The branch and bound procedure stops when L = {)
(proven optimum) or a time limit of computation is reached (open instance).

4  Description of the test cases

The dispatcher and coordinator procedures have been tested on a large part of the railway
network in the South-East of the Netherlands. The network spans ten dispatching areas of

the Dutch railway network and includes more than 1200 block sections and station platforms.

There are four major stations with complex interlocking systems and dense traffic (Utrecht
Central, Arnhem, Den Bosch and Nijmegen), plus another 40 minor stations. The maximum
distance between borders of the network is approximately 300 km. We consider the timetable
used during operations in 2008, that is an hourly timetable cycle and schedules for local and
intercity services, plus international services from/to Germany. The hourly traffic in this
regional network is around 25% of the all rail traffic in the Netherlands.

Table 1 summarizes the dispatcher and coordinator graphs for the three network divisions

and for the centralized approach. For each delay case, we analyze 30-minute traffic predictions.

Column 1 reports the number of areas for each network division. Columns 2-5 give the

average number of trains, nodes, fixed arcs and alternative pairs of the dispatcher graphs.

Similar information is given for the coordinator graph in Columns 6-9. In the case of 1 area
the dispatcher solves the global alternative graph and there is no coordination graph.

Table 1 Alternative graphs for various network divisions.

Network Dispatcher Graph Coordinator Graph
Division  Trains |N| |F| |A] Trains |Np| \FC| |AC\
1 area 99 3081 3508 3019 - - - -
3 areas 40 1055 1477 1026 21 44 124 30
5 areas 29 656 751 634 43 98 291 73
7 areas 23 477 547 456 48 118 347 86

Stochastic entrance perturbations are considered in order to study delay propagation
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in the overall network. For each time network division of Table 1, we generate 40 delay
instances with an average entrance delay of around 280 seconds, and a maximum entrance
delay of around 1650 seconds. In total, 40% of the trains in the hourly timetable are delayed
at their network entrance by more than 5 minutes.

5 Computational results

This subsection reports the performance of the branch and bound algorithm for the coordinator
problem for the four network divisions and for the 40 instances of 30-minute traffic prediction
of the previous section. In the case of 1 area we use the centralized approach described in
D’Ariano et al. (2007). For each instance, a globally feasible solution is always computed in
a few seconds.

The solution procedures have been implemented in C++ using a Linux Operating System
and a high performance computing cluster composed of 8 nodes, each node having 2 Dual
Core, 64 bit, AMD Opteron CPUs running at 1800 Mhz and 8 GB RAM. The nodes are
connected via a Gigabit Ethernet network. A Message Passing Interface (MPI) architecture
(Message Passing Interface Forum, 1994) is adopted in order to achieve efficient inter-process
communication and concurrent parallel execution.

Figure 3 shows the percentage of instances for which an optimal solution has been found
by the algorithms. The 5 and 7 area problem specifications obtain 95% proven optimal
solutions after 30 seconds of computation.
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Figure 3 Percentage of optimal solutions found for different network divisions.

Regarding the solution quality, Figure 4 shows the optimality gap (UB — LB)/LB (in
percentage) of the solutions for the four network divisions. In the cases with 5 and 7 areas,
an average optimality gap smaller than 2% is achieved in the first 20 seconds of computation.

A trade-off is found between the relative complexity of the dispatcher and coordinator
problems. As the number of dispatching areas increases, the dispatcher problem is reduced
in size for each area, and is therefore easier. At the same time, the complexity of the
coordinator problem increases. After 20 seconds of computation, the approach with 5 local
areas outperforms the other approaches with smaller or larger numbers of areas. In the other
cases there is a larger optimality gap, mostly due to the larger instances to be solved by the
dispatchers, which result in larger local upper bounds and smaller local lower bounds. In
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Figure 4 Optimality gap for the different network divisions.

fact, a key element of the branch and bound algorithm for the coordinator problem is that

GLB(p) can be set to UB,(S*) if the dispatcher problem of area x is solved to optimality.

When this occurs frequently, many nodes can be pruned from L thus reducing the optimality
gap.

6 Conclusions

This paper presents a novel approach to solve the problem of coordinating the task of
multiple dispatchers in presence of disturbances. The problem is formulated as a bilevel
program with the objective of minimizing delay propagation. An aggregate coordinator
graph is adopted to model coordination constraints while detailed dispatcher graphs model
the problem in each dispatching area. Mathematical properties of the proposed formulations
allow the development of a branch and bound algorithm to solve the problem. From our
computational results we find that distributed approaches are able to deliver better solutions
than a centralized approach. Good solutions are produced in a short amount of computation
time, compatible with real-time management.

A number of questions remain that require further investigation. We observed that the
network division is important to generate feasible and optimal solutions. However, further
research is needed to establish a relation between the size and shape of dispatching areas
and the effectiveness of the coordinator algorithm. We also observed that the lower bounds
can be improved significantly when some dispatcher problems are solved to optimality. This
observation suggests a new solution approach for huge instances, in which the size of a
dispatching area is artificially reduced only with the aim of obtaining larger lower bounds.
We believe that this idea has potential but we did not explore it, yet. There is also a need for
more effective starting heuristics, capable of finding feasible schedules with a large number of
areas, and effective coordination policies to drive local dispatchers towards global feasibility.
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