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MATERIALS AND METHODS 

RESULTS 

Figure 3. Field survey of SD: profile of SD (A), sampling of bulk density of SD (B), Ktests by means of 

constant (C) and falling head (D) permeameter, configuration of Ktests: steps of increasing borehole depth 

(E) and single borehole depth (F). 
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 engineering-geology profile of SD (Fig. 3A, depth of SD and horizons), 

estimation of texture and structure;  

 sampling for lab analysis: bulk density (Fig. 3B), grain size, Atterberg li-

mits and specific gravity of solids;  

 two or more boreholes have been realized close to the SD profile in order 

to perform hydraulic conductivity tests (Ktests). 
 

A total of 84 measurements sites and 350 Ktests have been performed by 

means of constant (USBR 7300-89 - Fig. 3C) and/or falling head permea-

meter (Hvorslev,  1951 - Fig. 3D). Ktests have been performed at increa-

sing depth by successive steps (Fig. 3E) in order to evaluate variation of K 

along depth, then a test has been conducted for the entire depth of the bo-

rehole (Fig. 3F).  

 

INTRODUCTION 
 

Hydraulic conductivity (K) is a relevant engineering geology property of de-

posits (Slope Deposits – SD, Fig. 1) that cover the geological bedrock. This 

parameter is useful for many applications fields such as: simulations of both 

infiltration and runoff processes, hillslope stability numerical analysis, hydro-

logical studies, etc. Objective of this work is to asses the spatial variability of 

K in vadose zone: along SD depth and in the geographic neighbourhood of 

the test site, for SD characterized by different grain size composition and dif-

ferent geological bedrock. Then a comparison between different methodolo-

gies of measurement of K have been performed, at last a statistical compari-

son between meas-

ured and estimated 

values of K has 

been done in order 

to assess the reli-

ability of different 

equations to pre-

dict K. 

Figure 1. Slope 

deposits and geolo-

g i c  b e d r o c k 

(Arenaceous-silty 

flysch Unit). 

Figure 2. Bedrock lithological units (Disperati et al. 2013, 2018) of the study areas 

(2A and 2B). CH, FH and CH/FH represent hydraulic conductivity field tests where 

constant head, falling head and both methods respectively have been performed. 
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Field survey has been car-

ried out in North-

Western Tuscany (Italy) 

in study areas (Fig. 2A 

and 2B). For each test 

site, the following data 

were collected: 

 
 

Figure 5. (A) Median of grain size frac-

tion of Gsamples by clusters; (B) distri-

bution of SD by clusters and related fre-

quency; (C) box-plot of K and frequency 

of Ktests by clusters: dots represent out-

liers; only plots for cluster with Ktests ≥ 

6 are reported (for clusters 1 and 8 only 

K min and max are shown).  

Figure 4. Folk diagram of samples; BLU 

refer to Fig. 2 with “STUa” and 

“STUb” representing Arenaceous-silty 

flysch Unit (STU) of Fig. 2A and 2B re-

spectively. 

1) K-means clustering of grain size data 
and related hydraulic conductivity  

 

For different bedrock lithological units (BLU), 67 samples 

(Gsamples) allowed us to obtain grain size information (Fig. 4 - 

Folk, 1960). 

Using K-means clustering (MacQueen, 1967), particle size distribu-

tion curves have been classified into 8 clusters by using gravel, sand, 

silt and d10 (grain diameter at 10% passing) as input variables. Fig. 

5A shows median of gravel, sand, silt and clay fractions of each clu-

ster.  

Distribution of BLU of SD of each cluster is reported in Fig. 5B.  

Among the 350 Ktests we selected for analysis a subset of Ktests ful-

filling the following conditions: 
a) lowest distances from SD profile; 

b) K measuring depth performed close to Gsamples depth.  

Box plots of K for the subset is shown in Fig. 5C for each cluster. 

Figure 6. Comparison between K obtained by means of constant (K CH) and falling 

head (K FH) permeameter within same boreholes. GMER and GSDER follow Tietje 

and Hennings (1996). Red line represents perfect match. 

2) Constant vs. Falling Head Permeameter 
 

31 Ktests (for 19 test sites) have been performed by means of both constant and falling head permeameter in or-

der to compare results. Fig. 6 shows scatter plot of K values by different BLU. Statistical comparison is calculated 

in terms of Geometric Mean Error Ratio (GMER) and Geometric Standard Deviation of Error Ratio (GSDER, 

Tietje and Hennings, 1996): 

 
 

 Km and Kp are measured and predicted hydraulic conducti-
vity. In this case Km and Kp corresponds to K values obtai-
ned by falling and constant head permeameter respectively.  

 n is number of data. 
 
Values of GMER and GSDER indicate an overstimation of 
K obtained by constant head permeameter of about a factor 
2 in respect to ones obtained by falling head permeameter. 
 

 

Figure 7. Box plots of K for 

test sites. Dots are outliers; 

only plots for sites with ≥ 6  

measurementes are repor-

ted. 

3) Neighborhood variability of K 
 

For each test site, Ktests have been performed within boreholes close to the SD profile in order to analyze local 

variability of K. Ktests have been also realized at different depths to detect variations.  

Fig. 7 shows box-plots of K for each test site for three BLU: CFU (Fig. 7A), SHU (Fig. 7B) and  STUa (Fig. 7C). 

The Modified Interquatile Ranges 

(MIR) has been calculated, in order 

to better identify the variability of K 

for each test site, as follows: 
 

 MIR = (ln Q3—ln Q1) *10 
 

where Q1 and Q3 represent first and 

third quartile respectively (Fig. 8). 

4) Comparison bewteen literature and calibrated PTFs 
 

Seven pedotransfer functions (PTFs, Brakensiek et al., 1984; Vereecken et al., 1990; Wosten et al., 1999; Boadu, 2000; Minansy et al., 2000; Li et al. 2007; We-

ynants et al., 2009) that establish an empirical relationship among K and other soil properties such as particle size distribuion, porosity, bulk density, organic 

matter, etc. have been applied to evaluate the reliability of PTFs to predict K (Figs. 8A to 15A). 

Then PTFs have been calibrated by using an automatic calibration algorithm, SCE-UA (Shuffled Complex Evolution method University of Arizona, Duan et 

al., 1993; Abdelbaki, 2015) in order to optimize the performance of PTFs. This algorithm changes and adjusts the coefficients of original PTFs, not the form of 

the equation, in order to get best matching bewteen predicted and measured K by calculating for each set of coefficients the objective function:  
 
 

 

Calibration process stops when the algorithm reaches the minimum value of objective function. New coefficients have been implemented in the calibrated PTFs 

(Figs. 8B to 15B). For each PTFs, GMER and GSDER have beeen calculated (Figs. 16A-B) in order to evaluate the accuracy of literature and calibrated PTFs to 

predict K. 

CONCLUSIONS 
 

1. Textural classes of Gsamples are mostly muddy gravel (mG), gravelly mud (gM) and muddy sandy gravel (msG, Fig. 4). Different textural classes have been identified by clu-

stering (Fig. 5A). SD of the considered lithological bedrock units (BLU) spread with different fractions among clusters. CFU mostly falls within clusters 4,5,6; instead STUa 

and STUb fall within clusters 2,3,8; suggesting an effective control of bedrock on engineering geology properties of SD. 

2. K varies within 3 order of magnitude (10-4-10-7 m/s), anyway, considering the interquatile ranges, most of the data fall between ~5x10-5-5x10-6 m/s for clusters 2-6; instead K 

ranges between ~5x10-7-10-6 m/s for cluster 7, which is mostly made up of sand+mud.  

3. Independently of BLU and grain size composition, K obtained by constant head permeameter is about 2 times higher than K by falling head permeameter.  

4.  K and BLU appear to be roughly correlated. Considering the interquartile ranges, 5x10-6<KSTU<10-4 m/s, while generally KSHU<2x10-5 m/s. CFU shows the highest variability 

and covers ranges of both STUa and SHU (Figs. 7, 8). . 

5. PTFs from the literature show high error of prediction in respect to K measured in this work. The calibration procedure here proposed allowed us to enhance accuracy of pre-

diction K. Nevertheless enhancement is generally unsatisfactory for K<10-6 m/s. 

Figures 9 to 15. Compari-

son bewteen measured K 

and K obtained by: 

A) literature pedotransfer 

functions; 

B) calibrated PTFs. 

Red line represents perfect 

match. 
 

 

Figure 16. GMER (A) and 

GSDER (B) related to lite-

rature and calibrated PTFs 

of Figs. 9 to 15. 

Figure 8. Modified interquatile ranges 

for same test sites of Fig. 7. 
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