

Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies

This is a pre print version of the following article:
Original:
Lazzerini, P.E., Laghi-Pasini, F., Boutjdir, M., Capecchi, P.L. (2019). Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies. NATURE REVIEWS IMMUNOLOGY, 19(1), 63-64 [10.1038/s41577-018-0098-z].
Availability:
This version is availablehttp://hdl.handle.net/11365/1087502 since 2019-12-18T09:28:43Z
Published:
DOI:10.1038/s41577-018-0098-z
Terms of use:
Open Access
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. Works made available under a Creative Commons license can be used according to the terms and conditions of said license.
For all terms of use and more information see the publisher's website.

(Article begins on next page)

Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies.

Pietro Enea LAZZERINI¹*, Franco LAGHI-PASINI^{1†}, Mohamed BOUTJDIR^{2,3†}, PhD; Pier Leopoldo CAPECCHI^{1†}, MD.

¹Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Italy; ²VA New York Harbor Healthcare System, SUNY Downstate Medical Center, New York, NY, United States;³NYU School of Medicine, New York, NY, United States.

[†]These authors contributed equally to this work.

Word count: 475

*Corresponding author:

Pietro Enea LAZZERINI,MD

Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Italy Tel. +39-0577-5585743; Fax +39-0577-233318; e-mail: <u>lazzerini7@unisi.it</u> We have read with great interest the excellent review on Cardioimmunology, by Swirski & Nahrendorf.¹ The authors extensively discussed the role of immune-cells in normal and diseased heart, specifically in myocardial infarction, myocarditis/endocarditis, heart failure, and rhythm disorders.¹ Regarding the latter topic on rhythm disorders, they speculated that the immune system could contribute to arrhythmias via two fundamental routes, i.e. a cross-talk between immune-cells and fibroblasts/myocytes leading to insulating fibrosis, or a direct participation of leukocytes (macropahages) in electrical regulation of conducting cells, by interacting through connexin 43(Cx43)-containing gap-junctions.¹

However, the authors substantially disregarded a third important arrhythmogenic mechanism in this new field of immuno-electrophysiology. In fact, accumulating data indicate that the immune system can promote arrhythmias by means of autoantibodies and/or inflammatory cytokines directly affecting the function of specific ion channels on the cardiomyocyte surface.²⁻⁴

Several autoantibodies have been described which target cardiac calcium(Ca⁺⁺), potassium(K⁺), or sodium(Na⁺) channels and exert arrhythmogenic effects regardless of evident histologic changes in the heart(*autoimmune channelopathies*).^{2,4} Indeed, it is well recognized that anti-Ro/SSA antibodies can cross-react with the pore region of both L-type(Ca_v1.2/1.3) and T-type(Ca_v3.1/3.2) Ca⁺⁺- channels, and by inhibiting related I_{CaL} and I_{CaT} currents promote conduction disturbances, such as sinus bradycardia/atrio-ventricular(AV) block.^{5,6} Similar clinical consequences were also demonstrated for autoantibodies recognizing the extracellular loop of domain I S5-S6 of the Na⁺⁻ channel(Na_v1.5).⁷ These antibodies, detected in patients with idiopathic AV-block, inhibit I_{Na} and induce conduction disturbances in experimental models⁷(Figure 1A).

Other anti-ion channels autoantibodies can affect action potential duration(APD) of ventricular myocytes, leading to long-QT syndrome(LQTS) or short-QT syndrome(SQTS) and associated malignant arrhythmias.² LQTS can be induced by anti-Ro/SSA antibodies, which inhibit the I_{Kr} current by targeting the extracellular pore loop of the $K_v11.1$ K⁺-channel(hERG),^{8,9} and anti- $K_v1.4$ K⁺-channel autoantibodies, possibly via a blockade of the related I_{to} current.¹⁰ Conversely, agonist-

like anti-Kv7.1 K⁺-channel autoantibodies enhancing the I_{Ks} current were associated with SQTS¹¹(Figure 1B).

Moreover, also inflammatory cytokines, particularly TNFa, IL-1 and IL-6, can be per se arrhythmogenic by directly affecting cardiac ion-channels function(*inflammatory channelopathies*).⁴ Specifically, it has been demonstrated that TNFa induces gap-junction channel dysfunction in atrial myocytes via impaired atrial connexin(Cx)40 and Cx43 expression and/or distribution, and that these changes promote atrial fibrillation by favouring a slow and heterogeneous conduction in the atria¹²(Figure 1C). In addition, cytokines can favour LQTS development by decreasing specific cardiac K⁺-currents and/or increasing I_{CaL}.^{3,4} TNFa inhibits I_{to}, I_{Kr}, and I_{Ks}, as a result of a down-regulation of channel expression and/or alterations in channelgating kinetics, also associating to APD/QT-interval prolongation.^{4,13} Similar effects are exerted by IL-1, by reducing I_{to},¹⁴ and IL-6, via Ca_v1.2 phosphorylation leading to I_{CaL} enhancement¹⁵(Figure 1D).

In terms of translational medicine, emphasizing the role of autoimmune and inflammatory channelopathies in arrhythmogenesis may lead in perspective to innovative anti-arrhythmic therapies based on a targeted modulation of the immune-inflammatory system, such as anti-cytokine monoclonal antibodies or short decoy peptides diverting autoantibodies from ion-channel binding-sites.

References

- 1. Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. *Nat Rev Immunol.* 2018.
- 2. Lazzerini PE, Capecchi PL, Laghi-Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. *Nat Rev Cardiol.* 2017;14(9):521-535.
- 3. Lazzerini PE, Capecchi PL, Laghi-Pasini F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. *Eur Heart J.* 2017;38(22):1717-1727.
- 4. Lazzerini PE, Capecchi PL, El-Sherif N, Laghi-Pasini F, Boutjdir M. Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies. *J Am Heart Assoc.* 2018;in press.
- 5. Xiao GQ, Hu K, Boutjdir M. Direct inhibition of expressed cardiac l- and t-type calcium channels by igg from mothers whose children have congenital heart block. *Circulation*. 2001;103(11):1599-1604.
- 6. Karnabi E, Qu Y, Wadgaonkar R, et al. Congenital heart block: identification of autoantibody binding site on the extracellular loop (domain I, S5-S6) of alpha(1D) L-type Ca channel. *J Autoimmun.* 2010;34(2):80-86.
- 7. Korkmaz S, Zitron E, Bangert A, et al. Provocation of an autoimmune response to cardiac voltagegated sodium channel NaV1.5 induces cardiac conduction defects in rats. *J Am Coll Cardiol*. 2013;62(4):340-349.
- 8. Yue Y, Castrichini M, Srivastava U, et al. Pathogenesis of the Novel Autoimmune-Associated Long-QT Syndrome. *Circulation.* 2015;132(4):230-240.
- 9. Lazzerini PE, Yue Y, Srivastava U, et al. Arrhythmogenicity of Anti-Ro/SSA Antibodies in Patients With Torsades de Pointes. *Circ Arrhythm Electrophysiol.* 2016;9(4):e003419.
- 10. Suzuki S, Baba A, Kaida K, et al. Cardiac involvements in myasthenia gravis associated with anti-Kv1.4 antibodies. *Eur J Neurol.* 2014;21(2):223-230.
- 11. Li J, Seyler C, Wiedmann F, et al. Anti-KCNQ1 K⁺ channel autoantibodies increase IKs current and are associated with QT interval shortening in dilated cardiomyopathy. *Cardiovasc Res.* 2013;98(3):496-503.
- 12. Sawaya SE, Rajawat YS, Rami TG, et al. Downregulation of connexin40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac-restricted overexpression of tumor necrosis factor. *Am J Physiol Heart Circ Physiol.* 2007;292(3):H1561-1567.
- 13. Wang J, Wang H, Zhang Y, Gao H, Nattel S, Wang Z. Impairment of HERG K(+) channel function by tumor necrosis factor-alpha: role of reactive oxygen species as a mediator. *J Biol Chem.* 2004;279(14):13289-13292.
- 14. Monnerat G, Alarcón ML, Vasconcellos LR, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice. *Nat Commun.* 2016;7:13344.
- 15. Hagiwara Y, Miyoshi S, Fukuda K, et al. SHP2-mediated signaling cascade through gp130 is essential for LIF-dependent I CaL, [Ca2+]i transient, and APD increase in cardiomyocytes. *J Mol Cell Cardiol*. 2007;43(6):710-716.

LEGEND TO FIGURE

Figure 1. Autoimmune and inflammatory cardiac channelopathies and arrhythmias: molecular basis. Autoantibodies and inflammatory cytokines can modulate cardiac ion channels function and promote arrhythmias. A | Bradyarrhythmias and conduction disturbances can be induced by anti-Ro/SSA autoantibodies which target the L-type and/or T-type calcium (Ca⁺⁺) channels and inhibit the related currents (I_{CaL} and I_{CaT}), or by anti-Nav1.5 channel autoantibodies which inhibit sodium (Na⁺) current (I_{Na}), in sino-atrial (SA)/atrio-ventricular (AV) nodal cells. **B** | Long-QT syndrome (LQTS) can be induced by anti-Ro/SSA autoantibodies which target the human ether-à-go-go-related gene (hERG) potassium (K⁺) channel and inhibit the rapid component of the delayed rectifier K^+ current (I_{Kr}), or by anti-Kv1.4-K⁺ channel autoantibodies which might inhibit the transient outward K⁺ current (I_{to}), in ventricular myocytes. Short-QT syndrome (SQTS) can be induced by anti-K_v7.1-K⁺ channel which increase the slow component of the delayed rectifier K^+ current (I_{Ks}) in ventricular myocytes. C | Atrial fibrillation can be induced by tumour necrosis factor-a (TNFa) which impairs connexin (Cx)40 and Cx43 expression/distribution and inhibit gap-junction channels function in atrial myocytes. $\mathbf{D} \mid LQTS$ can be induced by TNF α which targets $K_v 4.2/4.3$, hERG and $K_v 7.1$ -K⁺ channels, and inhibits the respective currents I_{to}, I_{Kr}, and I_{Ks}; by interleukin-1 (IL-1) which inhibits I_{to}; or by interleukin-6 (IL-6) which targets the Ltype Ca⁺⁺ channel and increases I_{CaL}, in ventricular myocytes.

