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Abstract: Whenever vegetated areas are monitored over time, phenological changes in land cover
should be decoupled from changes in acquisition conditions, like atmospheric components, Sun and
satellite heights and imaging instrument. This especially holds when the multispectral (MS) bands
are sharpened for spatial resolution enhancement by means of a panchromatic (Pan) image of
higher resolution, a process referred to as pansharpening. In this paper, we provide evidence that
pansharpening of visible/near-infrared (VNIR) bands takes advantage of a correction of the path
radiance term introduced by the atmosphere, during the fusion process. This holds whenever the
fusion mechanism emulates the radiative transfer model ruling the acquisition of the Earth’s surface
from space, that is for methods exploiting a multiplicative, or contrast-based, injection model of
spatial details extracted from the panchromatic (Pan) image into the interpolated multispectral (MS)
bands. The path radiance should be estimated and subtracted from each band before the product by
Pan is accomplished. Both empirical and model-based estimation techniques of MS path radiances are
compared within the framework of optimized algorithms. Simulations carried out on two GeoEye-1
observations of the same agricultural landscape on different dates highlight that the de-hazing of MS
before fusion is beneficial to an accurate detection of seasonal changes in the scene, as measured by
the normalized differential vegetation index (NDVI).

Keywords: atmospheric path-radiance; change analysis; detail injection modeling; haze; data fusion;
normalized differential vegetation index (NDVI); pansharpening; radiative transfer

1. Introduction

The term panchromatic sharpening or pansharpening denotes the process by which the geometric
resolution of a multi-band image is increased by means of a single-band panchromatic observation
of the same scene having greater spatial resolution. Pansharpening techniques take advantage of the
complementary spatial and spectral resolutions of multi-/hyper-spectral (MS/HS) and panchromatic
(Pan) images to synthesize a unique fusion product that exhibits as many spectral bands as the MS/HS
image, each with the same spatial resolution as the Pan image [1,2]. It is important, however, to
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highlight that pansharpening cannot increase the spatial resolution of the spectral information of the
original data, but is simply a means to represent such information at a finer spatial scale, more suitable
for visual or automated analysis tasks [3].

Recent achievements in MS pansharpening mostly exploit the concept of superresolution [4].
Despite the formal mathematical elegance of some approaches, all such methods exhibit very subtle
increments in performance (decrements, in some cases [5]) over the state-of-the-art, obtained at
an exorbitant computational cost of massive constrained numerical minimizations, with plenty of
adjustable parameters. Superresolution-based, or more generally optimization-based, variational
methods, either model-based [6] or not [7], are unconceivable for practical applications requiring routine
fusion of tens of megapixels of data, for which traditional approaches are pursued [3]. Especially, their
performance is crucial, being subordinated to a proper optimization of its running parameters on a local
basis, e.g., on small blocks partially overlapped to avoid discontinuities in fusion effects. What was
believed would become the third generation of pansharpening methods is still far to come.

Conversely, the current second generation of pansharpening methods, which approximately
started twenty years ago and was established ten years later [8], features methods all following the
same flowchart. After the MS bands have been superimposed, that is interpolated and co-registered,
to the Pan image, the spatial details of each pixel are extracted from the latter and added to the MS
bands according to a certain injection model. The detailed extraction step can follow the spectral
approach, originally known as component substitution (CS), or the spatial approach, which may
rely on multiresolution analysis (MRA) [9], but not necessarily on a linear shift-invariant filtering,
e.g., on morphological filtering [10]. The Pan image is preliminarily histogram matched, that is
radiometrically transformed by constant gain and offset in such a way that its low-pass version, having
the same spatial frequency content as the MS bands, exhibits mean and variance equal to those of the
spectral component that shall be replaced, e.g., the intensity component, for CS methods, or the MS
band that shall be sharpened for MRA methods [11–13].

The injection model rules the combination of the low-pass MS image with the spatial detail
extracted from Pan. Such a model is stated between each of the co-registered MS bands and the
low-pass version of the Pan image. A wide variety of injection models has been proposed in the
literature [14,15]. However, the most popular ones are:

(i) the projection model, which may be derived from the Gram–Schmidt (GS) orthogonalization
procedure, representing the basis of the GS spectral sharpening [16] and of the context-based
decision (CBD) [17];

(ii) the multiplicative or contrast-based model, which is the basis of such techniques as high-pass
modulation (HPM) [18], Brovey transform (BT) [19], the synthetic variable ratio (SVR) [20],
UNBpansharp [21], smoothing filter-based intensity modulation (SFIM) [22] and the spectral
distortion minimizing (SDM) injection model [23].

Unlike the projection model, which may be either global, as for GS, or local [24], as for CBD,
the contrast-based model is inherently local, or context-adaptive [25,26], because the injection gain
changes at each pixel [27]. The multiplicative injection model of details is the key to the fusion of MS
images with synthetic aperture radar (SAR) images [28].

Although considerations of atmospheric effects were already present in SVR [20] and unspecified
empirical adjustments in the baseline of UNB pansharp [21], the paper that introduced SFIM [22] firstly
gave an interpretation of the multiplicative injection model in terms of the radiative transfer model
ruling the acquisition of an MS image from a real-world scene [29]: a low spatial-resolution spectral
reflectance, previously estimated from the MS bands and the low-pass filtered Pan image, is sharpened
through multiplication by a high spatial-resolution solar irradiance, represented by the high-resolution
Pan image.

Currently, very few authors [30–33] have explicitly considered the path radiance of the MS band,
which is an undesired energy scattered by different atmospheric constituents that reaches the aperture
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of the instrument without being reflected by the Earth’s surface. Such an atmospheric path-radiance,
which appears as haze in an RGB true color visualization, should be estimated and subtracted from
each band before modulation and possibly re-inserted later, to get an unbiased sharpened image.
The pansharpened bands are left de-hazed in all cases, in which spectral reflectance or analogous
products are calculated.

Calculation of path-radiances may follow image-based approaches or rely on models of
the atmosphere and its constituents, as well as on knowledge of acquisition parameters, such
as actual Sun-Earth distance, Sun height angle and observation angle of the satellite platform.
Image-based atmospheric corrections [34,35] are a series of statistical methods based on some
general assumptions and empirical criteria (see Section 6.4). The goal is that of estimating the
atmospheric effects on acquisition without requiring acquisition parameters or making assumptions on
atmospheric constituents.

In this paper, after deriving the haze-corrected versions of contrast-based spectral (CS) and
spatial (MRA) pansharpening methods, starting from physical considerations of radiative transfer,
several methods for estimating the path radiances of individual bands are reviewed. Image-based
and model-based estimates of path-radiances are correlated. For this purpose, the Fu–Liou–Gu (FLG)
radiative transfer model [36] has been considered. Model-enforced empirical image-based haze
estimation criteria attain the fusion performance of the theoretical model and of an exhaustive search
for the unknown path-radiance values, performed at a degraded spatial scale [37]. Experiments carried
out on a couple of GeoEye-1 images of the same agricultural landscape on different dates highlight
that the de-hazing of MS is beneficial for an accurate detection of seasonal changes in the scene,
as measured by the normalized differential vegetation index (NDVI), from pansharpened imagery.
It is proven that the calculation of NDVI is unaffected by fusion, provided that the multiplicative
model with haze correction is employed. In fact, since NDVI is a purely spectral index, any sharpness
of its map introduced by fusion is unlikely and artificial. Ultimately, the proposed NDVI-preserving
pansharpening method, besides featuring excellent fusion scores [37], exhibits an extremely fast
algorithm and may be thus recommended for agricultural applications, especially the detection of
vegetation cover changes.

2. Spectral and Spatial Pansharpening Methods

The math notation used in the following is explained here. Vectors are indicated in bold lowercase
(e.g., x) with the i-th element indicated as xi. Two- and three-dimensional arrays are expressed in bold
uppercase (e.g., X). An MS image M = {Mk}k=1,...,N is a three-dimensional array composed by N
bands indexed by the subscript k = 1, . . . , N; hence, Mk denotes the k-th band of M. The Pan image is
a 2D array and will be indicated as P; its version histogram matched, e.g., to the intensity component
ÎL, as P̌ÎL

. Furthermore, M̃k and M̂k indicate interpolated and sharpened MS bands, respectively.
Unlike the conventional matrix product and ratio, such operations are intended as the product and
ratio of the terms of the same positions within the array.

2.1. Spectral or Component-Substitution Methods

The class of CS, or spectral, methods is based on the projection of the MS image into another
vector space, by assuming that the forward transformation splits the spatial structure and the spectral
diversity into separate components.

Under the hypothesis of the substitution of a single component that is a linear combination of
the input bands, the fusion process can be obtained without the explicit calculation of the forward
and backward transformations, but through a proper injection scheme [1], thereby leading to the fast
implementations of CS methods, whose general formulation is:

M̂k = M̃k + Gk ·
(
P̌IL − IL

)
, k = 1, . . . , N (1)
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in which k is the band index, G = [G1, . . . , Gk, . . . , GN ] the 3D array of injection gains, which in
principle may be one per pixel per band, while the intensity, IL, is defined as:

IL =
N

∑
i=1

wi · M̃i (2)

in which the weight vector w = [w1, . . . , wi, . . . , wN ] is the 1D array of spectral weights, corresponding
to the first row of the forward transformation matrix. The term P̌IL is P histogram matched to IL:

P̌IL , (P− µP) ·
σIL

σPL

+ µIL (3)

in which µ and σ denote the mean and square root of variance, respectively, and PL is a low-pass
version of P having the same spatial frequency content as I [11,12].

In GS spectral sharpening, the fusion process is described by (1), with the injection gains spatially
uniform for each band and thus denoted as {gk}k=1,...,N . They are given by [17]:

gk =
cov(M̃k, IL)

var(IL)
k = 1, . . . , N (4)

in which cov (X, Y) indicates the covariance between X and Y and var (X) is the variance of X. In [17],
a multivariate linear regression was exploited to model the relationship between the low-pass-filtered
Pan, PL, and the interpolated MS bands:

PL = ŵ0 +
N

∑
i=1

ŵi · M̃i + ε , ÎL + ε (5)

in which ÎL is the optimal intensity component and ε the least squares (LS) space-varying residue.
The set of space-constant optimal weights {ŵk}k=0,...,N is calculated as the minimum MSE (MMSE)
solution of (5). A figure of merit of the matching achieved by (5) is given by the coefficient of
determination (CD), namely R2, defined as:

R2 , 1− σ2
ε

σ2
PL

(6)

in which σ2
ε and σ2

PL
denote the variance of the (zero-mean) LS residue, ε, and of the low-pass filtered

Pan image. Histogram matching of Pan to the MMSE intensity component, ÎL, should take into account
that µP = µPL = µÎL

, from (5). Thus, from the definition of CD (6):

P̌ÎL
= (P− µP) · R + µP. (7)

Furthermore, methods different from GS, based on adaptive MMSE estimation of the component
that shall be substituted together with the detail-injection gains, have been proposed [38,39].

The multiplicative or contrast-based injection model is a special case of (1), in which space-varying
injection gains, G, are defined such that:

Gk =
M̃k
IL

, k = 1, . . . , N. (8)

The resulting pansharpening method is described by:

M̂k = M̃k +
M̃k
IL
· (P̌IL − IL) = M̃k ·

P̌IL

IL
, k = 1, . . . , N (9)
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which, in the case of spectral weights all equal to 1/N, is the widely known BT pansharpening
method [19]. An evolution of BT is SVR [20], in which the parameters {wk} are obtained through
a supervised regression analysis carried out on five simulated classes, with a known atmospheric
model. After construction of IL, a linear histogram matching is performed to force the Pan image to
match the mean and variance of IL, in order to eliminate atmospheric and illumination differences. An
evolution of SVR is the baseline of UNB pansharp [21], which exploits an unsupervised multivariate
regression of the original Pan to interpolated MS bands to yield the set of {wk}. Histogram matching
is performed analogously to SVR. Thus, BT, SVR and UNB pansharp fit the model (1) with the choice
of injection gains (8).

2.2. Spatial or Multiresolution Analysis Methods

The spatial approach relies on the injection of high-pass spatial details of Pan into the resampled
MS bands [9,40–42].

The most general MRA-based fusion may be stated as:

M̂k = M̃k + Gk ·
(

P̌(k) − P̌(k)
L

)
, k = 1, . . . , N. (10)

in which the Pan image is preliminarily histogram matched to the interpolated k-th MS band [11,22]:

P̌(k) , P̌M̃k
= (P− µP) ·

σM̃k

σPL

+ µM̃k
(11)

and P̌(k)
L the low-pass-filtered version of P̌(k). It is noteworthy that according to either (3) or (11),

histogram matching of P always implies the calculation of its low-pass version PL.
According to (10), the different approaches and methods belonging to this class are uniquely

characterized by the low-pass filter employed for obtaining the image PL, by the presence or absence
of a decimator/interpolator pair [43] and by the set of space-varying injection gains, either spatially
uniform, {gk}k=1,...,N , or space-varying, {Gk}k=1,...,N .

The contrast-based version of MRA pansharpening is:

M̂k = M̃k +
M̃k

P̌(k)
L

·
(

P̌(k) − P̌(k)
L

)
= M̃k ·

P̌(k)

P̌(k)
L

, k = 1, . . . , N. (12)

It is noteworthy that, unlike what happens for (9), (12) does not preserve the spectral angle of M̃k,
because the multiplicative sharpening term depends on k.

Equation (12) accommodates HPM [18], SFIM [22] and SDM [23], which differ from one another
by the low-pass filter used to achieve PL.

In some cases, the spectral transformation of CS methods is cascaded with MRA to extract the
spatial details that are injected. The resulting methods are called hybrid methods. According to
a recent study [9], they behave as either spectral or spatial, depending on whether the detail extracted
is P̌IL − IL or P̌(k) − P̌(k)

L . The most popular hybrid method with the multiplicative injection model is
the additive wavelet luminance proportional (AWLP) [44], which has been recently improved [11] by
changing its histogram matching from (3) to (11).

3. A Review of the Radiative Transfer Model

The radiative transfer model [29] relates the at-sensor spectral radiance to the surface reflectance,
top-of-atmosphere (TOA) solar irradiance, upward and downward atmospheric transmittances and
upward scattered radiance, also known as path radiance:

L(λ) =
ρ(λ) · τu(λ) · (Es(λ) · cos(θS) · τd(λ) + Ed(λ))

d2
ES · π

+ LP(λ) (13)
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in which:

• λ: wave length of the electromagnetic radiation (µm)
• L(λ): at-sensor spectral radiance (W·m−2· sr−1 · µm−1)
• ρ(λ): surface reflectance (unitless)
• τu(λ): upward transmittance of atmosphere (unitless)
• ES(λ): mean TOA solar irradiance (W·m−2 · µm−1)
• θS: solar zenith angle (degrees)
• τd(λ): downward transmittance of atmosphere (unitless)
• Ed(λ): diffuse irradiance at the surface (W·m−2 · µm−1)
• dES: Earth-Sun distance (astronomical units)
• LP(λ): upward scattered radiance at TOA (W·m−2·sr−1 · µm−1)

The upward transmittance τu(λ) depends on the satellite zenith angle, or observation angle
θo, the same as the downward transmittance τd(λ) depends on the solar zenith angle θS. Both
transmittances roughly decrease with the cosines of the respective angles, as the angles increase [29].

Estimation of surface spectral signature or reflectance requires a preliminary correction of the
offset (path radiance) of the k-th spectral band, LP(k), corresponding to a certain wavelength interval
and then rescaling by the product of the atmospheric upward transmittance, τu(k), and by the total
solar irradiance measured in the k-th spectral interval of the instrument. The latter equals the sum of
the solar, i.e., direct, and diffuse irradiances at the Earth’s surface:

ET(k) ,
(ES(k) · cos(θS) · τd(k) + Ed(k))

d2
ES

, k = 1, . . . , N (14)

The reflectance, under the assumption of a Lambertian surface, may be written as:

ρ(k) =
(L(k)− LP(k)) · π

τu(k) · ET(k)
, k = 1, . . . , N (15)

in which ρ(k)/π is the average of a Lambertian bidirectional reflectance distribution function (BRDF),
whose maximum is ρ(k).

All quantities in (13) that are functions of the wavelength are integrated over the relative spectral
responsivity function of the k-th spectral channels of the instrument to yield the corresponding
quantity measured by the k-th spectral band of the instrument. Figure 1 shows the spectral responsivity
functions for a typical MS scanner having blue, green, red, near infra-red (NIR) and Pan channels.

Figure 1. Spectral responsivity functions of GeoEye-1 (four-bands MS + Pan). Notice that the bandwidth
of Pan encompasses part of the wavelengths of the rightmost NIR band and the red edge around 730 nm.
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4. Data Formats and Products

Remote sensing optical data, specifically MS and Pan, are generally distributed in either spectral
radiance format, that is radiance normalized to the width of the spectral interval of the imaging
instrument, or in both spectral radiance and spectral reflectance formats [45]. The spectral reflectance
is normalized in [0, 1] and can be defined as either TOA reflectance or surface reflectance. The former
is the reflectance as viewed by the satellite and is given by the spectral radiance rescaled by the TOA
spectral irradiance of the Sun. The latter represents the spectral signature of the imaged surface, and its
exact determination requires also the estimation, through parametric modeling and/or measurements,
of the upward and downward transmittances of the atmosphere and of the upward scattered radiance
at TOA, also known as the path-radiance.

Besides the spectral radiance product, the spectral reflectance product is available for systems
featuring a global Earth coverage, like ASTER, Landsat 7 ETM+, Landsat 8 OLI and Sentinel-2.
Such systems have auxiliary bands and/or on-board instruments to measure atmospheric parameters
that are useful for the atmospheric model inversion. On the contrary, extremely high resolution (EHR)
systems (IKONOS, QuickBird, GeoEye-1, WorldView-2/3/4, Pléiades 1AB) perform acquisitions
only on demand and generally do not have auxiliary bands or instruments to measure atmospheric
constituents. Hence, the spectral reflectance product would require ancillary data or tools that are not
provided by the system itself. That is the reason for which EHR data are generally not available in
spectral reflectance format. In this case, spectral radiance is directly processed in order to produce
sharpened data of the same format. This study points out that the multiplicative pansharpening model
mimics the radiative transfer model if the MS and Pan bands are processed for haze correction before
being processed for pansharpening.

The advantage of the spectral radiance format over the radiance format is that the former exhibits
dynamic ranges of levels that are practically equal for both the narrow bands and the broadband
Pan; the latter does not, the radiance of one pixel of Pan being approximately equal to the sum
of the radiances of the underlying MS bands. In order to distribute fixed-point data (typically
8/11/16 bits per pixel per band), more compact and practical than floating-point data, the spectral
radiance/reflectance values are rescaled to completely fill the 256, or 2048, or 65,536 digital numbers
(DN) of the representation. In some cases, a negative offset is introduced to force the minimum
radiance value in the zero DN. The reciprocal of the scaling factors and the negative of the offsets of
the various bands, one set for the spectral radiance format, another for the spectral reflectance format,
are placed in the header as metadata and are used to restore exact spectral radiance/reflectance values
from the DNs, which are generally identical for the two formats; only gains and offsets change. In some
cases, the offsets of the spectral radiance format are set equal to zero, for all bands, including Pan,
which implies that the minimum DN may be greater than zero. In this case, path radiances can be
directly estimated from DNs by using image-based methods [35].

In applications concerning different acquisition dates, e.g., change detection [46] and
multitemporal pansharpening [47,48], corrections for Sun elevation and atmospheric effects, both
reductive and diffusive, should be performed according to (15). Another typical case is the calculation
of the normalized differential vegetation index (NDVI) from multispectral images. If N and R denote
the spectral band covering the NIR and red wavelengths, respectively, NDVI is defined as:

NDVI ,
N− R
N + R

(16)

and such a definition holds for surface reflectance data. If the available data are in spectral radiance
format (15), the first correction is the subtraction of path-radiance from the measured spectral radiance
values, or de-hazing. The subsequent correction for the total irradiance and upward transmittance is
less crucial, given the fractional nature of NDVI and the fact that spectrally-adjacent bands will have
similar irradiances and transmittances. However, in order to derive a corrected expression for NDVI
calculated from spectral radiance data, the red and NIR bands must be preliminarily de-hazed, and
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the NIR band must be multiplied by a constant gain α, equal to the ratio of spectral irradiance of the
Sun measured on the Earth’s surface in the red and NIR bands of the instrument:

NDVI =
α · [N− LP(N)]− [R− LP(R)]

α · [N− LP(N)] + [R− LP(R)]
(17)

For the GeoEye-1 MS scanner, α ≈ 1.2. The correction considers that the spectral irradiance of the sun
is 20% greater in the red channel of the instrument than in the NIR one.

MS pansharpening, which produces a sharp MS image having the same format as the original MS
image [11], generally does not require any kind of atmospheric corrections, unless a multiplicative
detail-injection model is adopted [20,22]. In this case, the haze-corrected pansharpening is capable of
thoroughly preserving the NDVI map of the original MS data, as will be proven in Section 5.

5. Contrast-Based Fusion with Haze Removal

In this section, path radiance correction is introduced in (9) and (12) in order to produce estimates
of low spatial resolution spectral reflectance, which is the key to contrast-based pansharpening. For this
purpose, both the MS and Pan bands must be preliminarily de-hazed. While the haze of narrow spectral
bands can be calculated through either model-based or image-based techniques [35], calculation of the
haze of a broad band is less immediate, because phenomena typical of narrow wavelength intervals,
e.g., scattering and absorption, are spread over a large interval and thus less easily quantifiable.
A viable solution consists of inferring the haze of Pan by means of the haze values of individual narrow
bands that have been previously calculated. From (5), since the path radiance is assumed to be spatially
uniform within a scene of moderate size and the LS residue, ε, exhibits minimum mean square error
(MSE) and hence zero mean, the path radiances of ÎL, of PL and, trivially, of P, are identical. The former
can be easily calculated from the set of MMSE spectral weights, ŵk, and the set of estimated path
radiances, LP(k),

LP(P) = LP(PL) = LP(ÎL) = ŵ0 + ∑
k

ŵk · LP(k). (18)

After de-hazing of all the bands, including Pan, histogram matching is to be accomplished from
de-hazed data. It is noteworthy that the goal of histogram matching is different for CS and MRA fusion.
In the former case: (a) the mean of Pan is forced to be identical to the mean of the intensity component,
in order to avoid injecting spatial details having nonzero mean; (b) the standard deviation of PL is
forced to be identical to that of IL, to avoid over-/under-enhancement. For MRA fusion, equalization
of the mean of Pan to that of M̂k was introduced in [22] to perform an implicit adjustment of haze
between MS and Pan. In the present case, in which such an adjustment is explicitly performed, only
equalization of the MS-to-Pan gains should be accomplished.

Upon these premises, from the general model of contrast-based CS fusion (9), the atmospheric
model inversion (15) and the path radiances of the broad bands (18), the haze-corrected version is
given by:

M̂k = (M̃k − LP(k)) ·
(

P− LP(ÎL)

ÎL − LP(ÎL)

)
+ LP(k), k = 1, . . . , N. (19)

With simple manipulations, (19) can be written as an addition of spatial details driven by a
space-varying multiplicative gain that is proportional to the k-th de-hazed band:

M̂k = M̃k +

(
M̃k − LP(k)
ÎL − LP(ÎL)

)
· (P− ÎL), k = 1, . . . , N. (20)

Starting from the general model of contrast-based MRA fusion (12), the haze-corrected version is
given by:

M̂k = (M̃k − LP(k)) ·
(

P− LP(ÎL)

PL − LP(ÎL)

)
+ LP(k), k = 1, . . . , N. (21)
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Note that in (21), the histogram matching gain factors of Pan (11), σM̃k
/σPL , do not explicitly

appear because they cancel each other in the ratio. Analogously to (20), the additive version of (21)
can be stated as:

M̂k = M̃k +

(
M̃k − LP(k)
PL − LP(ÎL)

)
· (P− PL), k = 1, . . . , N. (22)

Equations (19) and (21) may be easily explained by watching (15), in which the radiative transfer
model is inverted to yield the surface reflectance product. Accordingly, the reflectance is given by
the spectral radiance diminished by the path-radiance (offset) divided by the product of the upward
atmospheric transmittance by the total solar irradiance. The rationale is that the de-hazed Pan image
viewed by the satellite is proportional to the product of the solar irradiance (that generated it) by the
upward transmittance (that determined its crossing of the atmosphere). Histogram matching to the k-th
band adjusts the broadband Pan/intensity in such a way that it matches the product of narrowband
irradiance by upward transmittance. Once a map of low spatial resolution spectral reflectance is
obtained, it is sharpened by multiplying its pixels by something that is proportional to the high spatial
resolution irradiance multiplied by the upward transmittance, that is either Pan histogram matched to
the MMSE intensity or Pan histogram matched to the de-hazed k-th interpolated MS band.

As an example of the accurate spectral preservation of the haze-corrected pansharpening, let us
calculate NDVI from the pansharpened red and NIR bands. Denote with R̃ and Ñ the interpolated
red and NIR bands and with R̂ and N̂ their pansharpened versions. Then, (17) written for de-hazed
pansharpened spectral radiance values, e.g., MRA (21), yields:

NDVI =
α · (N̂− LP(Ñ))− (R̂− LP(R̃))

α · (N̂− LP(Ñ)) + (R̂− LP(R̃))

=
α · (Ñ− LP(Ñ)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

)
− (R̃− LP(R̃)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

)
α · (Ñ− LP(Ñ)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

)
+ (R̃− LP(R̃)) ·

(
P−LP(ÎL)

PL−LP(ÎL)

) (23)

=
α · (Ñ− LP(Ñ))− (R̃− LP(R̃))

α · (Ñ− LP(Ñ)) + (R̃− LP(R̃))
.

The proof is analogous for CS pansharpening (19). Thus, contrast-based pansharpening, either
CS or MRA, with haze correction is capable of thoroughly preserving the NDVI of the original
(interpolated) MS data. This is not surprising because NDVI depends on the reflectance, and a correct
pansharpening cannot increase the spatial resolution of the original reflectance, but simply enhances
the geometrical information of the scene without increasing the associated color information. On the
contrary, Equation (24), as well as independent recent studies [49] state that if the contrast-based
fusion model is not haze-corrected or, worse, if the red and NIR bands are not properly de-hazed
before calculating the NDVI, an unlikely high-frequency spatial pattern will appear in the NDVI map
calculated from pansharpened data.

6. Experimental Results

6.1. Methods

Path-radiance correction (PRC) has been considered for two optimized contrast-based methods,
one relying on CS, the another on MRA [11]. The two methods with path-radiance correction are
labeled as CSw/PRC (20) and MRAw/PRC (22). The two versions without path-radiance correction,
CSw/oPRC and MRAw/oPRC, are given by (9) with MMSE intensity (5) and by (12), respectively.
All spatial filters are separable Gaussian with the amplitude at Nyquist equal to 0.25 [9]. To allow for
homogeneous comparisons, interpolation of MS data to yield M̃k is performed in two steps by means
of the 23-taps filter described in [50], which is suitable for 1:2 interpolation. The method labeled as
Expdenotes plain interpolation without injection of details.
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6.2. Dataset

Two GeoEye-1 observations of the same scene have been acquired on the area of Collazzone, a
small town in Central Italy, on different dates of the same year, that is on 27 May 2010 and 13 July 2010.
The spatial sampling interval (SSI) is 2 m for MS (blue, green, red and NIR bands) and 0.5 m for Pan,
respectively. The DNs of the 11-bit fixed-point representation are proportional to spectral radiances
through a set of floating-point calibration gains (metadata). All offsets are equal to zero. The choice
of the sensor is motivated by the compatibility of the traditional R, G, B and NIR bands with the
corresponding bands of WorldView-2/3/4, which, in turn, exhibit four additional bands, two of which
lie outside the span of the Pan band.

The area investigated in the following is approximately 1 km2 (2048× 2048 Pan and 512 × 512 MS).
All the images have been orthonormalized by using a digital terrain model (DTM) available at a 10-m
resolution for all spatial coordinates. In particular, the second dataset (slave) has been coregistered on
the first one (master). The lack of a digital surface model (DSM) including also buildings and man-made
structures in general is not crucial for the analysis of vegetation, because residual misregistrations
(Pan-to-MS and date-to-date) are confined in the urban area. Figure 2 shows 2048 × 2048 close-ups
of the panchromatic images acquired on May (Figure 2a) and July (Figure 2b). Figure 3 shows the
512 × 512 MS images, resampled to the Pan scale, for the two dates, both in true (3-2-1) and false
(4-3-2) color compositions.

6.3. Assessments

Quality evaluations have been carried out at the full spatial scale (0.50 m for GeoEye-1 products)
equal to that of the original Pan [51,52]. The check at full scale foresees separate measurement of
spectral consistency, which may be defined according to Wald’s protocol [53], and spatial consistency,
which may be defined according to either QNR[54] or Khan’s [55] protocol. Spectral consistency is the
complement of the normalized spectral distortion that is defined as Dλ according to the QNR protocol
or D(K)

λ according to Khan’s protocol. Analogously, spatial consistency is defined as the complement

of the normalized spatial distortion, either DS or D(K)
S , respectively. The spectral consistency of Khan’s

protocol strictly implements the guidelines of Wald’s consistency property. The crossed coupling of
the QNR and Khan’s protocols is preferable, and a global index, referred to as hybrid QNR (HQNR),
was recently introduced and validated [56]:

HQNR ,
(

1− D(K)
λ

)
· (1− DS) . (24)

(a) (b)

Figure 2. The 2048× 2048 details of the GeoEye-1 Pan images taken on (a) 27 May 2010, (b) 13 July 2010.
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(a) (b)

(c) (d)

Figure 3. The 512 × 512 details of the original GeoEye-1 MS images acquired on (a,c) 27 May 2010 and
(b,d) 13 July 2010. (a,b) 3-2-1 true color display; (c,d) 4-3-2 false color composite display.

6.4. Estimation of Path Radiances

The haze-corrected versions of CS (20) and MRA (22) require one value of path radiance estimated
for each band. In principle, also image-based methods are feasible because band offset metadata in
the file header are all identically zero. In this case, the path-radiance values estimated for each band
will not be expressed in physical units, but as DNs. Conversion to spectral radiance units, typically
(W·m−2· sr−1 ·µm−1) or (mW·cm−2·sr−1 ·µm−1) requires subsequent multiplication by the calibration
gain metadata.

The path radiance is arguably a fraction of the minimum of spectral radiance attained over the
scene. If the scene is large enough and hence statistically consistent, setting the actual minimum
equal to the first-percentile of the histogram ensures robustness to the photon and thermal instrument
noise [57], appearing as fluctuations of the dark signal around its average, and to outliers originated
by pattern-gain correction of the instrument. The rationale is that the minimum attained over a certain
spectral band generally depends on the spatial scale of representation, whereas the path radiance does
not, at least for a wide range of metric or sub-metric scales. Invariance to scales between 2 m and 8 m
is attained with p-tile values between 0.5 and one. Below 0.5, the invariance is weak; above one, the
invariance is almost perfect. Thus, the path radiance of the B band, which is usually approximated by
the minimum over the scene [34], may be approximated by one p-tile.

Once the path-radiance of the blue channel, LP(B), is known, the intercept of the G-to-(B–LP(B))
scatterplot yields an estimate of LP(G); analogously for the R channel, LP(R) may be estimated from
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the R-to-(G–LP(G)) scatterplot. This empirical/statistical approach holds for the visible bands [35].
For calculating the path radiance of NIR, which is practically uncorrelated with the visible bands [58]
in the presence of vegetation, the scatterplot method may fail, unless its calculation, either supervised
or unsupervised, e.g., NDVI-enforced, is performed on non-vegetated areas. Otherwise, a reasonable
physical approximation is that the LP of NIR is set equal to zero.

Furthermore, a modeling of the atmosphere was considered. In this case, the DNs must be
preliminarily calibrated my means of the gain metadata. The Fu–Liou–Gu (FLG) radiative transfer
model [36] requires acquisition year, month, day, local time, longitude, latitude and possibly the type
of landscape for setting aerosols [59,60] (advected [61,62] or local) both in the boundary layer [63,64]
or upper troposphere. The content of water vapor may be inferred from the presence of cirrus clouds
in the visible bands [65,66]. Such a model directly yields values of path radiance in predefined bands,
roughly corresponding to those of MS scanners, like Landsat 8 OLI. With small adjustments to fit the
R and NIR bands of GeoEye-1, it was found that the modeled path radiance is well approximated
by 95% of the one p-tile of B, 65% of the one p-tile of G, 45% of the one p-tile of R and 5% of the one
p-tile of NIR. Path-radiance values are correlated to one another: for a clear atmosphere dominated by
Rayleigh scattering, the path radiance is inversely proportional to the fourth power of the wavelength.

The results reported in Section 6.5 are the best attainable varying with the estimated path
radiances. An exhaustive search at steps of one DN was performed for each dataset: the optimal path
radiances are those that optimize with-reference fusion scores, on average, at the degraded spatial
scale, i.e., when the ground truth is available as a reference. With FLG-modeled path radiances and
model-enforced image-based path-radiances, the performance is about 0.1% lower than that achieved
with the exhaustive search. Therefore: (i) the radiative transfer model actually rules the performance
of contrast-based MS pansharpening; (ii) the accuracy of path radiance estimation is not crucial, at
least for clear atmospheres.

6.5. Fusion Simulations

The GeoEye-1 pansharpened images at a 0.5-m scale are portrayed in Figures 4 and 5, for true
and false color display. What immediately stands out is that the synthesis of vegetated areas is much
more realistic and accurate for the haze-corrected methods. This is mostly noticeable in the true color
display, the bands of which are more largely affected by haze compared to those of the false color.
Without correction, the texture of the canopies, which appears in Pan, originating from the red-edge
and NIR wavelengths, but would be much less noticeable in the bands covering the visible spectrum,
is transplanted in the fusion products and originates an unlikely over-enhancement, marred by a
blueish texture. In fact, the blue band exhibits the largest path radiance over the visible spectrum.
The visual quality of non-vegetated areas is generally good for all methods. While the difference
between corrected and non-corrected methods stands out, especially in the true color display, the
difference between the CS and MRA approaches, both with or without correction, is not perceivable.

Table 1 reports the scores achieved by the two CS and MRA contrast-based methods, with
and without path-radiance correction. The baseline GS spectral sharpening and the optimized
BDSD [38], practically unsurpassed for pansharpening of four-band MS images [8], are also included for
benchmarking. The interpolated low-resolution MS is included in the comparison as Exp. The benefits
of the path-radiance correction are evaluated in terms of the decrement in both spectral and spatial
distortions, as measured according to the QNR [54] (Dλ, DS) and Khan’s [55] (D(K)

λ , D(K)
S ) protocol.

For the QNR protocol, both distortions are approximately halved thanks to the haze-corrected injection.
For Khan’s protocol, the spectral distortions benefit by a 20–25% reduction from the correction, while
the spatial distortion almost doubles in size with the correction. A match with visual quality suggests
that the spatial distortion of QNR and Khan’s spectral distortion should be coupled together to yield
a global quality index (24). The QNR and Khan’s quality indexes are reported together with HQNR
in the last three columns of Table 1. QNR detects a high improvement of the corrected versions,
both CS and MRA, over the uncorrected ones. The global index of Khan’s protocol is extremely flat,
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almost insensitive to the haze-correction detail injection. However, the unfused image is somewhat
poorer than all the fused images, and this is reasonable. The mixed index HQNR detects significant
improvements of the corrected versions and places the quality of the unfused image Exp quite in the
middle of the corrected and uncorrected CS/MRA. This result is consistent with the tests at degraded
scale carried out in [37].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. True color compositions of 256 × 256 fragments of the GeoEye-1 pansharpened images
acquired (a–d) on 27 May 2010 and (e–h) on 13 July 2010. (a,e) component substitution without
path-radiance correction (CSw/oPRC); (b,f) CSw/PRC; (c,g) multiresolution analysis without PRC
(MRAw/oPRC); (d,h) MRAw/PRC.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. False color compositions (4-3-2 as R-G-B) of 256× 256 fragments of the GeoEye-1 pansharpened
images acquired (a–d) on 27 May 2010 and (e–h) on 13 July 2010. (a,e) CSw/oPRC; (b,f) CSw/PRC;
(c,g) MRAw/oPRC; (d,h) MRAw/PRC.
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Table 1. Full-scale spectral/spatial distortion indexes and cumulative scores. GS stands for
Gram–Schmidt spectral sharpening (see [16]) and BDSD for band-dependent spatial detail [38].

27-May-2010 Dλ Dλ
(K) DS DS

(K) QNR QNR(K) HQNR

EXP 0.0000 0.0376 0.1160 0.0535 0.8840 0.9109 0.8507
CSw/oPRC 0.1033 0.0600 0.1471 0.0140 0.7648 0.9268 0.8017
CSw/PRC 0.0507 0.0467 0.0674 0.0209 0.8853 0.9334 0.8890
MRAw/oPRC 0.1043 0.0445 0.1514 0.0126 0.7601 0.9434 0.8109
MRAw/PRC 0.0523 0.0379 0.0666 0.0212 0.8846 0.9418 0.8981
GS 0.0621 0.1235 0.0592 0.0229 0.8823 0.8564 0.8246
BDSD 0.0326 0.0521 0.0538 0.0156 0.9154 0.9331 0.8970

13-July-2010 Dλ Dλ
(K) DS DS

(K) QNR QNR(K) HQNR

EXP 0.0000 0.0302 0.1673 0.0816 0.8327 0.8907 0.8076
CSw/oPRC 0.0962 0.0425 0.1044 0.0128 0.8095 0.9453 0.8576
CSw/PRC 0.0427 0.0348 0.0580 0.0242 0.9017 0.9419 0.9092
MRAw/oPRC 0.0923 0.0315 0.0939 0.0127 0.8224 0.9562 0.8776
MRAw/PRC 0.0417 0.0282 0.0554 0.0253 0.9052 0.9472 0.9180
GS 0.0452 0.0932 0.0739 0.0188 0.8843 0.8897 0.8399
BDSD 0.0192 0.0411 0.0275 0.0206 0.9538 0.9391 0.9325

Numerical results are reported also for the second date, in which most of the vegetated fields have
been cropped. The difference in performance due haze correction is approximately halved, thereby
revealing that the correction is particularly effective for vegetated areas. Figure 1 shows that the red
edge and part of the NIR wavelengths are captured by the bandwidth of Pan and hence are injected
into the visible bands, where they originate an unlikely texture, particularly annoying in the blue
band, in which the path radiance is most relevant. The removal of path radiance in the multiplicative
injection model cancels the band offsets that multiply by the texture and thus makes it disappear.
Whenever the bandwidth of Pan is narrow, e.g., for Landsat 8 OLI data [45], it is expected that the
path-radiance correction is poorer in performance than for EHR data, in which the Pan instrument
covers part of the NIR spectrum.

Eventually, NDVI was calculated from pansharpened images and found to be identical to NDVI
calculated from the original interpolated MS bands, as otherwise proven in (24). While the area of the
town is moderately affected by changes in the vegetation cover, the surrounding agricultural area is
greatly changed after the harvest. Woods and trees in general are less affected by seasonal changes.
This behavior is highlighted by the seasonal difference of NDVI shown in Figure 6, in which changes
of July over May and vice versa are displayed. The conclusion is that pansharpening cannot improve
the spatial resolution of NDVI, which is purely spectral information, but can impair the fidelity of
the NDVI map calculated from the original data, as otherwise found in other studies [49], in which
NDVI was calculated from pansharpened data in TOA spectral reflectance format. The proposed
haze-corrected contrast-based detail injection model is a viable solution that thoroughly preserves the
spectral information of the original MS data.
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Figure 6. Normalized differential vegetation index (NDVI) of pansharpened images on 27 May 2010
and 13 July 2010. Map of differences in NDVI values: (left) July-to-May; (right) May-to-July.

7. Conclusions

In this study, we pointed out that the step of MS path-radiance estimation and correction is the key
to attain improved performance from traditional pansharpening methods based on spatial modulation.
Whenever the bandwidth of Pan encompasses the MS bands, an optimized intensity component can
be achieved through multivariate regression of low-pass-filtered Pan to MS, and optimal injection
of spatial details can be achieved through haze removal. The path radiance of each band, LP(k),
is estimated, subtracted before the spatial modulation and reinserted after fusion. Both visual and
numerical assessments highlight improvements, especially noticeable in the true color display of
vegetated areas.

As a further result of this study, it is proven that the haze-corrected multiplicative method,
either CS or MRA, identically preserves the NDVI, or any other normalized differential index, of
the original MS data. The proposed haze-corrected pansharpening method is extremely fast and
computationally comparable with standard methods, like Gram–Schmidt (GS) and Brovey transform
(BT). The procedure may need minor adjustments, e.g., for WorldView-2/3/4 data, in which the
outermost bands are not encompassed by Pan. In this case, a viable solution consists of forcing to zero
the spectral weights of the outermost bands. This will be a possible hint for future investigations and
developments.
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