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aDipartimento di Economia Politica e Statistica, Università di Siena, Italy
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Abstract

We recommend the addition of a deterministic displacement to multi-factor affine models to calibrate and
hedge SPX and VIX derivatives jointly. The proposed model, labeled Heston++, calibrates both markets
with an average relative error (on quoted implied volatilities over two years of data) of 2%, and a maximum
relative error of 4%, without additional computational costs with respect to traditional affine benchmarks.
Hedging performance on both markets is also drastically improved. The displacement can be interpreted as
a volatility push-up reflecting expectations about a (risk-neutral) lower bound on forward VIX dynamics.
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1. Introduction

The growing demand for trading volatility and managing volatility risk leaded to the creation of a liquid
market for derivatives on realized variance. The Chicago Board Options Exchange (CBOE) introduced, in
1993, the VIX volatility index, also known as the Fear Index, and later on started trading derivatives written
on it: VIX futures (in 2004) and VIX options (in 2006). The increased popularity of these assets has made
volatility a commonly accepted asset class. Surprisingly, there has been very little effort in the literature to
test pricing models on the two markets jointly. As we document in what follows, this mainly depends on the
difficulty of traditional continuous-time affine models in providing a reasonable calibration of both markets.

The purpose of this paper is then to propose a simple addition to affine models which is able to calibrate
the two “smiles” with a single set of parameters, without adding further computational complications. With
respect to traditional models in continuous time, we add a new ingredient: a deterministic displacement in
the spirit of Brigo and Mercurio (2001). While originally devised to improve the fitting of the term structure
in interest rate models, we show that this device is also extremely useful for pricing and hedging stock
index and variance derivatives. The new modeling framework, named Heston++, calibrates the prices of
vanilla options written on the S&P 500 index (the first traditional “smile”) consistently with VIX derivatives
(futures and options, the second “smile”), with maximum estimation error of roughly 4% (relative to the
market implied volatility), over a sample of more than 25,000 quoted prices. Moreover, it provides superior
hedging performance with respect to non-displaced models: the hedging error (defined as the absolute value
of the difference between the option and the replicating portfolio returns) is cut by roughly 25% for SPX
options and by roughly 10% on VIX options for a static replication with basic instruments over one week.
The displacement represents a lower bound to forward VIX dynamics, a desirable feature since historical
VIX is far from zero. The displacement adds flexibility to the model, allowing a better matching of higher
order moments (skewness and kurtosis), which are crucial for nonlinear payoffs. The empirical correlation
between fitted displacements and the variance risk premium indicates that the displacement can be used by
the aggregate trader not only as a “support variance” but, potentially, also as a “support risk premium” when
pricing variance derivatives.

Even if theoretical approaches for VIX modeling are abundant in the literature, they are typically focused
on just one of the two markets. They can be broadly divided in two categories: a standalone and a consistent
approach. In the standalone approach, the volatility is modeled without specifying the dynamics of the
underlying price. Earlier contributions to this field are Whaley (1993), who assumes VIX to follow a
Geometric Brownian Motion, Grünbichler and Longstaff (1996) and Detemple and Osakwe (2000), who
allow for mean-reversion, while Psychoyios et al. (2010) allow for jumps. Mencı́a and Sentana (2013)
perform an extensive empirical analysis of several standalone specifications, providing empirical support
for upward VIX jumps, time-varying central tendency and stochastic volatility of VIX. However, although
closed-form expressions for VIX derivatives prices are readily obtainable in this framework, the tractability
of this approach comes at expense of the inability to check the consistency with vanilla options. In the
second research stream, consistent approaches specify a joint dynamics for the underlying and its volatility.
Typically an affine model, such as the popular Heston (1993), is assumed for SPX dynamics (see, e.g., Zhang
and Zhu, 2006, extended by Zhang et al., 2010 to allow for stochastic mean reversion). This framework
can then be extended with jumps in volatility (Lin, 2007; Sepp, 2008a,b; Zhu and Lian, 2012; Lian and
Zhu, 2013) and/or with multi-factor specifications (Chen and Poon, 2013; Lo et al., 2013). Bayer et al.
(2013) adopted a double mean reverting CEV model to consistently price SPX and VIX options, Cont
and Kokholm (2013) considered an affine Lévy specification, Chen and Poon (2013) multi-factor Heston
specifications and finally Papanicolaou and Sircar (2014) added sharp volatility regime shifts to a Heston
dynamics. Since the same volatility process underlies both equity and volatility derivatives, as shown in the
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above mentioned contributions, this class of models can be used to price VIX derivatives as well. However,
none of the above mentioned studies used the joint information of vanilla options and variance derivatives in
empirical exercises. More recently, the two markets have been started to be analyzed jointly. Chung et al.
(2011) use the information in both markets to forecast realized volatility; Song and Xiu (2016) use these two
markets to estimate the dependence of the pricing kernel on the volatility factors; and Bardgett et al. (2018)
estimate a dynamic model on both markets to gain resolution on the risk premia. Kokholm and Stisen (2015)
also perform a joint calibration exercise, similar to that in this paper; they however analyze only few days
obtaining results which are hard to be considered satisfactory.

Our model is consistent with the consistent approach, is an affine model, and is successfully applied to
the joint calibration and hedging of both markets on a time span of two recent years. Formally, our model
belongs to the class of affine models studied in Duffie et al. (2000). It could also be seen as a special case
of Stochastic Local Volatility (SLV) models (see e.g. Tian et al., 2015 and the references therein), and in
particular of a displaced diffusion. The model was first introduced explicitly by Pacati et al. (2014), where
it was shown that the deterministic shift can dramatically improve the calibration of the term structure of
at-the-money vanilla options, thus improving sensibly the fit of the whole vanilla surface. In this paper, after
extending their model by adding jumps in volatility, we show that the displacement is extremely effective on
variance derivatives as well, since it provides a handy lower bound for VIX futures. The class of models
endowed with the deterministic shift extension is labeled Heston++, since it parallels the structure of the
CIR++ model of Brigo and Mercurio (2001).

These two additions (displacement and jumps in volatility) are interconnected, since jumps in volatility
are particularly well identified by the price of variance derivatives. We indeed not only show that the
deterministic shift provides the necessary flexibility to calibrate the term structure of VIX futures and the
surface of VIX options thoroughly, without compromising the excellent fit on vanilla options (two “smiles”
at once), but we also exploit the additional information content provided by variance derivatives to learn
about the features of the price dynamics. For example, we provide strong support for the contemporaneous
presence of two kinds of jumps in volatility, the first being correlated with jumps in the index (typically,
accounting for market downturns accompanied by a spike in volatility, as also empirically supported by
Todorov and Tauchen, 2011 and Bandi and Renò, 2016), and the second being independent from price
movements and accounting for spikes in volatility not accompanied by changes in the index. Our empirical
findings suggest that both sources of risk are present in the data, and thus that both need to be hedged. In
particular, idiosyncratic jumps in volatility appear to be particularly relevant for the pricing of VIX options,
especially for the short term.

The paper is structured as follows. In Section 2 we specify the model adopted in our empirical inves-
tigations together with the closed-form pricing expressions for SPX vanilla options and VIX index and
derivatives. In Section 3 we describe our calibration exercise. Section 4 is devoted to the hedging exercise
and to the assessment of the out-of-sample performance of the model. In Section 5, we discuss the economic
significance of the added displacement. Section 6 concludes. Appendix A collects technical results, while
Appendix B provides details on the implementation.

2. Pricing VIX derivatives with the Heston++ model

In this section we introduce the Heston++ class of models for the dynamics of the underlying price. It
is an affine class with a deterministic shift extension in the spirit of Brigo and Mercurio (2001). We then
provide pricing formulas for equity and variance futures and options.
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2.1. Model specification

We consider a filtered probability space (Ω,F , {Ft}t≥0 ,Q), satisfying usual assumptions. Under the
risk-neutral measure Q, we specify the evolution of the logarithmic price of the underlying xt = log S t as
follows 

dxt =

[
r − q − λµ̄ −

1
2

(
σ2

1,t + φt + σ2
2,t

)]
dt +

√
σ2

1,t + φt dWS
1,t + σ2,tdWS

2,t + cxdNt

dσ2
1,t = α1(β1 − σ

2
1,t)dt + Λ1σ1,tdWσ

1,t + cσdNt + c′σdN′t
dσ2

2,t = α2(β2 − σ
2
2,t)dt + Λ2σ2,tdWσ

2,t

(1)

where r is the short rate, q is the continuously compounded dividend yield rate, and in which the risk-neutral
dynamics of the index is driven by continuous and discontinuous shocks, modeled by the Wiener processes
WS

i,t,W
σ
i,t (i = 1, 2) and the independent Poisson processes Nt,N′t respectively. The short rate and the dividend

rate are kept constant for simplicity, but could be easily made time-varying, for example as in Bakshi et al.
(1997). The first volatility factor is displaced, as in Pacati et al. (2014), by a sufficiently regular deterministic
function φt which verifies:

φt ≥ 0 and φ0 = 0 . (2)

Parameters αi, βi,Λi (i = 1, 2) are non-negative constants. The effect of the displacement φt is to shift the
(risk-neutral) integrated variance distribution upward. Indeed, it moves the lower bound of the instantaneous
volatility of xt from 0 (the affine case) to

√
φt (the displaced case). In terms of integrated volatility, that is

in terms of VIX, this is equivalent to providing an additional deterministic term to the minimum attainable
by the probability density function of the forward VIX, which is explicitly computed in Proposition 2. We
denote this model with the generic label Heston++. The corresponding dynamics of the index S t is, by Itō’s
lemma:

dS t

S t−
= (r − q − λµ̄) dt +

√
σ2

1,t + φtdWS
1,t + σ2,tdWS

2,t +
(
ecx − 1

)
dNt . (3)

All correlations among Wiener processes are zero, with the exception of the following ones, which are
defined as

corr(dWS
1,t, dWσ

1,t) = ρ1

√√
σ2

1,t

σ2
1,t + φt

,

corr(dWS
2,t, dWσ

2,t) = ρ2 ,

where ρ1, ρ2 ∈ [−1, 1] are constants. This choice guarantees that the model is affine according to the
specification analysis of Dai and Singleton (2002), see also Collin-Dufresne et al. (2008) and Cheridito et al.
(2010).

The Poisson processes Nt and N′t are independent and also independent from all the Wiener processes.
Their intensities are given by the constant parameters λ and λ′ respectively. They drive jumps in price and
jumps in volatility. The first Poisson process Nt is responsible for correlated jumps, occurring simultaneously
in price and volatility, with sizes cx and cσ respectively. The second Poisson process N′t is instead responsible
for idiosyncratic jumps in volatility, with size c′σ, independent from all other shocks. Jumps in volatility are
exponentially distributed, with parameters µco,σ and µid,σ expressing the mean of correlated and idiosyncratic
jumps respectively. Jumps in price are conditionally (to jumps in volatility) normally distributed with

4



conditional mean µx + ρJcσ and variance δ2
x. The characteristic functions of the jump sizes are thus given by:

θco(zx, zσ) = EQ [
eicxzx+icσzσ] =

eiµxzx−
1
2 δ

2
xz2

x

1 − iµco,σ (zσ + ρJzx)
,

θid(z′σ) = EQ [
eic′σz′σ

]
=

1
1 − iµid,σz′σ

,

(4)

where zx, zσ, z′σ ∈ C.1 We define µ̄ = EQ [ecx − 1] = θco(−i, 0) − 1, so that the price jump compensator is λµ̄t.
The Heston++ model (1) belongs to the affine class of Duffie et al. (2000). In case of no displacement

(φt ≡ 0), the model nests several models already analyzed in the literature:

• Imposing σ2,t ≡ 0, several one-factor specifications can be obtained:

– The standard SV model of Heston (1993) if Nt ≡ N′t ≡ 0 is additionally imposed.
– If N′t ≡ zσ ≡ 0 (i.e. allowing for log-normal jumps in price only) we have the SVJ, which is considered

for example in Bates (1996) and Bakshi et al. (1997).
– The SVCJ model, extensively studied in the equity pricing literature (see Eraker et al., 2003, Eraker,

2004 and Broadie et al., 2007 among others), is obtained by switching off the N′t Poisson process and
imposing σ2,t ≡ 0. This model is considered for the pricing of futures and options on VIX by Lin
(2007), Zhu and Lian (2012), Lian and Zhu (2013) and Kokholm and Stisen (2015).

– If Nt ≡ σ2,t ≡ 0, we obtain the SVVJ model which features idiosyncratic jumps in volatility. The SVVJ
model is adopted by Sepp (2008b) for VIX option pricing extended with a local volatility term.

• Two-factor specifications can be obtained letting σ2,t > 0:

– The double Heston 2-SV model of Christoffersen et al. (2009) is obtained imposing no jumps Nt ≡

N′t ≡ 0.
– If N′t ≡ zσ ≡ 0, the 2-SVJ of Bates (2000) with constant jump intensity is obtained. A displaced version

of this model, which we label 2-SVJ++, was considered in Pacati et al. (2014).
– Finally if N′t ≡ 0 we obtain the 2-SVCJ model considered by Lo et al. (2013) and Chen and Poon (2013)

for VIX derivatives pricing.

The corresponding displaced models are obtained letting φt ≥ 0 and are labeled as their φt ≡ 0 counterparts,
with the suffix ++. Without restrictions, we label the model by 2-SVCVJ. The unrestricted model has in total
17 parameters plus the function φt. Two-factor model taxonomy is summarized in Table 1. Since this paper is
interested in determining the empirical properties of the displacement with respect to non-displaced models,
in what follows we focus only on the “largest” 2-SVCVJ and 2-SVCVJ++ models which, with a slight abuse
of terminology, will be referred to as the Heston and the Heston++ model, or just asH andH++ models
(referring also to their nested specifications).

2.2. SPX and VIX derivatives pricing
The analytical tractability of the displaced models H++ directly stems from the properties of non-

displaced specificationsH . The following Lemma summarizes the relation among the log-price and volatility
characteristic functions of the H and H++ models. All proofs and mathematical details are contained
in Appendix A.

1Jumps characteristic functions in equation (4) can be extended to the complex plane as long as Im(zσ + ρJzx) > −1/µco,σ and
Im(z′σ) > −1/µid,σ, respectively. This implies the parameter restriction ρJ < 1/µco,σ which is assumed throughout the present analysis
and which is often satisfied by market calibrated correlation parameter, as it is usually found ρJ ≤ 0.
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Table 1: Taxonomy of two-factor models.

model jumps in displacement

price volatility

idiosyncratic co-jumps

2-SV
2-SV++ X
2-SVJ X
2-SVJ++ X X
2-SVCJ X X
2-SVCJ++ X X X
2-SVVJ X X
2-SVVJ++ X X X
2-SVCVJ X X X
2-SVCVJ++ X X X X

Lemma 1. Under the H++ models, the time t conditional characteristic function of time T > t returns

fH++
x (z) = EQ

[
eizxT

∣∣∣ Ft
]
, and of the two stochastic volatility factors fH++

σ (z1, z2) = EQ
[
eiz1σ

2
1,T +iz2σ

2
2,T

∣∣∣∣ Ft

]
are given by:

fH++
x (z; xt, σ

2
1,t, σ

2
2,t, t,T, φ) = fHx (z; xt, σ

2
1,t, σ

2
2,t, τ)e−

1
2 z(i+z)Iφ(t,T ) ,

fH++
σ (z1, z2;σ2

1,t, σ
2
2,t, τ) = fHσ (z1, z2;σ2

1,t, σ
2
2,t, τ) ,

(5)

where τ = T − t, z, z1, z2 ∈ C and Iφ(t,T ) =
∫ T

t φsds.

Lemma 1 implies closed-form pricing formulas for vanilla options and variance derivatives for all the
H++ models by a modification of the conditional characteristic functions under the correspondingH model.
For both classes of derivatives, we borrow from the results of Lewis (2000, 2001), which turn out to be
convenient for numerical implementation.

Proposition 1. Under theH++ models, the arbitrage-free price at time t of a European call option on the
underlying S t, with strike price K and time to maturity τ = T − t, is given by

CH++
SPX (K, t,T ) = S te−qτ−

1
π

√
S tKe−

1
2 (r+q)τ

∫ ∞

0
Re

[
eiuk−i(u− i

2 )[xt−yt+(r−q)τ] fHx
(
u −

i
2

)] e−(u2+ 1
4 )Iφ(t,T )

u2 + 1
4

du , (6)

where k = log
(

S t
K

)
+ (r − q)τ and y is the exponential martingale such that S t = S 0e(r−q)t+yt .

The price dynamics under the H++ models also determines the dynamics of the volatility index. In
practice, the VIX quotation at time t is computed by CBOE as a model-free replication of the risk-neutral
integrated variance over the following 30 days, using a portfolio of out-of-the-money options on S&P500
over a discrete grid of strike prices. In the present analysis, we instead adopt a standard definition for the
variance index, expressed as the risk-neutral expectation of a log-contract (Jiang and Tian, 2005; Lin, 2007;
Duan and Yeh, 2010; Zhang et al., 2010):(

VIXt,τ̄

100

)2

:= −
2
τ̄

EQ
[
log

(
S t+τ̄

Ft,t+τ̄

) ∣∣∣∣∣∣ Ft

]
, (7)

where Ft,t+τ̄ = e(r−q)τ̄S t denotes the forward index quotation. For the CBOE VIX, τ̄ = 30 days. The following
Proposition gives the expression of VIXt,τ̄ under theH models and the effect of the displacement φt on the
index dynamics.
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Proposition 2. Under theH++ models,VIXH++
t,τ̄

100

2

=

VIXHt,τ̄
100

2

+
1
τ̄

Iφ(t, t + τ̄) , (8)

where (VIXHt,τ̄ /100)2 is the corresponding quotation under H models, which is an affine function of the
volatility factors σ2

1,t and σ2
2,t VIXHt,τ̄

100

2

=
1
τ̄

 ∑
k=1,2

ak(τ̄)σ2
k,t + bk(τ̄)

 , (9)

where Iφ(t, t + τ̄) =
∫ t+τ̄

t φsds; the exact forms of ak(τ̄) and bk(τ̄) are provided in Appendix A.

Pricing of VIX derivatives is complicated by the non-affinity of VIX with respect to the volatility process.
The arbitrage-free price FVIX(t,T ) at time t of a futures contract in VIX with maturity T cannot be derived as a
simple cost-of-carry relationship, see Zhang et al. (2010) for an extensive discussion. It has to be evaluated as
the risk neutral expectation of the VIX at settlement, see also Bardgett et al. (2018) and the discussion therein.
Call options on VIX with maturity T and strike K are European-style options paying the amount (VIXT −K)+

at maturity. They satisfy the put-call parity relation (Lian and Zhu, 2013) and no arbitrage conditions (Lin
and Chang, 2009) with respect to VIX futures price, and their implied volatility can be inverted with the
Black-76 formula (Papanicolaou and Sircar, 2014). They can be regarded as options on VIX futures, and
can be priced according to standard risk-neutral evaluation CVIX(K, t,T ) = e−rτ EQ

[
(VIXT −K)+

∣∣∣ Ft
]
. We

solve the complications related to the non-linear relation between VIX and volatility by taking advantage of
the analytical tractability of the conditional characteristic function of the volatility factors fH++

σ (z1, z2) in
Lemma 1, and of the generalized Fourier transform techniques of Lewis (2000, 2001) and Chen and Joslin
(2012). We provide an explicit pricing formula for futures and options on VIX for H++ models in the
following Proposition. Similar results can be found in Sepp (2008a), Sepp (2008b), Lian and Zhu (2013) and
Branger et al. (2014).

Proposition 3. Under H++ models, the time t value of a futures on VIXt,τ̄ settled at time T and the
arbitrage-free price at time t of a call option on VIXt,τ̄, with strike price K and time to maturity τ = T − t
are given respectively by

FH++
VIX (t,T ) = 100 ×

1
2
√
π

∫ ∞

0
Re

 fHσ

(
−z

a1(τ̄)
τ̄

,−z
a2(τ̄)
τ̄

)
e−iz(∑k=1,2 bk(τ̄)+Iφ(T,T+τ̄))/τ̄

(−iz)3/2

 d Re(z) , (10)

and

CH++
VIX (K, t,T ) = 100 ×

e−rτ

2
√
π

∫ ∞

0
Re

[
fHσ

(
−z

a1(τ̄)
τ̄

,−z
a2(τ̄)
τ̄

)

×
e−iz(∑k=1,2 bk(τ̄)+Iφ(T,T+τ̄))/τ̄

(
1 − erf(K/100

√
−iz)

)
(−iz)3/2

 d Re(z) , (11)

where z = Re(z) + i Im(z) ∈ C, 0 < Im(z) < ζc(τ), ζc(τ) is given in Appendix A, and erf(z) = 2√
π

∫ z
0 e−s2

ds is
the error function with complex argument.
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In this paper, we do not assume any explicit functional form for the displacement function φt. Once the set
of derivatives on which the model has to be calibrated is fixed, with its finite set of maturities, an inspection
of the pricing formulae shows that they depend only on the (finite number of) integrals of the displacement
from each maturity to the next. We therefore calibrate all such integrals, denoted by Iφ; of course, this allows
the immediate reconstruction of the integral of the displacement between any to maturities of the relevant set.
The output of this calibration procedure is consistent with any functional form of the displacement having the
same integrals, e.g. piecewise constant, piecewise linear, splines or other interpolation or functional methods.
A detailed example of the displacement calibration is presented in Appendix B.1.

3. Pricing performance

Our sample period spans two years, 2009 and 2010. The sampling frequency used for calibration is
weekly and the observation day is Wednesday. In total, we calibrate the Heston (H) and the Heston++

(H++) on 104 joint (SPX and VIX) surfaces and VIX Futures term-structures.
Commonly adopted exclusion filters are applied to data, see, e.g. Aı̈t-Sahalia and Lo (1998) and Bakshi

et al. (1997). We exclude option quotes with negative bid-ask spreads, zero bids and filter out observations
not satisfying standard no-arbitrage conditions. Potential liquidity and asynchronicity biases are reduced
by considering only options with maturity between one week and one year and excluding quoted contracts
that are not traded on a given date. Following Bardgett et al. (2018), the analysis is carried out only with
liquid out-of-the-money (OTM) options for the S&P500 market and only with liquid call options for the
VIX market. If a VIX in-the-money (ITM) call is illiquid, we use the put-call parity to infer the liquid price
of the call from a more liquid VIX OTM put (Lin and Chang, 2009).2 We finally excluded three glaring
outliers in the VIX option markets. The final sample is made of a total of 24,279 vanilla options (233 per
day, on average), 2,767 VIX options (27 per day, on average), and 792 VIX futures (8 per day, on average).
OTM vanilla (VIX call options) span on average 7 (5) maturity slices, ranging from 1 (4) weeks-to-maturity
to 12 (6) months and from 0.5 (0.4) to 1.4 (3.3) in the moneyness dimension. The term structure of VIX
futures ranges from roughly 7 days to 10 months. Vanilla option maturities range from one week to one year;
VIX option maturities range from 4 weeks to 6 months. Summary statistics for S&P500 index options are
presented in Table 2 and sample characteristics of VIX derivatives are presented in Table 3.

For each day in sample, we jointly calibrate theH andH++ models to SPX and VIX option and futures
market surfaces (the two “smiles”). Joint calibration is performed minimizing for each date in the sample the
following loss function, representing the weighted sum of squared relative errors,

L =
1

NSPX

NSPX∑
i=1

 IVMKT
i,SPX − IVmdl

i,SPX

IVMKT
i,SPX

2

+
1

NFut

NFut∑
j=1

FMKT
j − Fmdl

j

FMKT
j


2

+
1

NVIX

NVIX∑
k=1

 IVMKT
k,VIX − IVmdl

k,VIX

IVMKT
k,VIX

2

, (12)

where NSPX (NVIX) are the number of S&P500 (VIX) options quotes observed, IVMKT (IVmdl) the corre-
sponding market (model) implied volatilities and FMKT (Fmdl) the market (model) VIX futures prices term
structure, made of NFut points. The use of relative errors is suggested by the different range of implied
volatility values of SPX and VIX options and normalizing factors 1/NSPX, 1/NVIX and 1/NFut adjust for
the difference in the number of quotes, which would otherwise penalize the fit of the term structure of
VIX futures. Details on the calibration procedure can be found in Appendix B.1. We compare the pricing

2We consider as liquid a contract, either option or futures, which has both positive Volume and Open Interests.
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Table 2: Sample characteristics of SPX options. The table reports the average prices, bid-ask spreads (BA), Black and Scholes
(1973) implied volatilities (IV), bid-ask implied volatility spreads (IV BA), trading volume, open interests (OI), the total number
of (and in percentage of the total) observations (Obs) for each moneyness-maturity category of call (Panel A) and put (Panel B)
options on S&P500 index. The sample period is from January 7, 2009 to December 29, 2010 and the sampling frequency is weekly
(Wednesdays). Maturity is defined as the number of days to expiration. Moneyness is defined as the ratio of the option exercise price
to the current index level. ITM (OTM), ATM and OTM (ITM) for calls (puts) are defined by Moneyness < 0.95, 0.95 − 1.05, and
> 1.05, respectively.

Maturity Moneyness

Panel A: Calls Panel B: Puts

ITM ATM OTM All OTM ATM ITM All

< 45 Days
Price 90.84 24.61 2.02 30.12 2.99 24.54 81.08 15.77
BA 2.83 1.81 0.59 1.64 0.72 1.90 2.93 1.27
IV 30.43 22.92 20.14 23.48 36.35 23.39 20.19 30.92
IV BA 7.37 2.17 1.91 3.04 2.90 2.32 7.40 3.04
Volume 351.36 3, 378.77 2, 445.77 2, 557.84 2, 300.30 3, 394.44 108.86 2, 498.61
OI 19,734.07 25,392.34 17,186.77 21,987.46 23,523.10 22,979.02 9,930.25 22,350.05
Obs 863 2,507 1,373 4,743 4,232 2,316 517 7,065
Obs (% of TOT) 6.63 19.26 10.55 36.43 22.35 12.23 2.73 37.32

45 − 90 Days
Price 114.58 36.67 5.64 29.27 8.51 39.45 112.74 21.76
BA 2.91 2.32 1.09 1.79 1.28 2.44 3.08 1.68
IV 30.37 23.97 19.93 22.65 35.79 24.78 21.21 32.13
IV BA 2.99 1.47 1.65 1.70 2.31 1.53 3.86 2.17
Volume 279.63 1,914.14 923.79 1,282.75 1,314.92 2,479.65 215.41 1,577.75
OI 20,349.71 16,199.80 10,566.55 13,897.48 18,797.49 17,432.34 11,966.58 18,107.94
Obs 459 2,034 2,295 4,788 4,710 1,862 324 6,896
Obs (% of TOT) 3.53 15.62 17.63 36.78 24.88 9.83 1.71 36.42

> 90 Days
Price 149.66 64.52 17.69 48.92 24.24 71.85 168.24 46.99
BA 3.45 3.06 1.96 2.51 2.10 3.11 3.48 2.45
IV 30.20 25.35 21.16 23.64 34.77 25.90 22.24 31.67
IV BA 1.69 1.13 1.23 1.25 1.56 1.16 2.25 1.52
Volume 264.54 1,313.80 884.30 959.23 1,270.31 1,794.78 457.17 1,330.29
OI 23,226.76 24,169.13 24,861.13 24,436.20 32,406.18 22,356.63 20,350.24 2,9061.33
Obs 403 1,190 1,895 3,488 3,396 1,181 395 4,972
Obs (% of TOT) 3.10 9.14 14.56 26.79 17.94 6.24 2.09 26.26

All
Price 110.90 37.18 8.85 34.84 10.95 40.15 117.23 26.15
BA spread 3.00 2.25 1.27 1.93 1.31 2.36 3.14 1.73
IV 30.36 23.80 20.40 23.22 35.70 24.43 21.12 31.56
IV BA spread 4.88 1.70 1.57 2.07 2.31 1.79 4.82 2.32
Volume 311.99 2,430.18 1,285.98 1,660.61 1,640.63 2,724.07 248.10 1,856.39
OI 20,713.86 21,875.81 17,069.84 19,668.26 24,164.15 20,914.65 13,794.06 22,567.39
Obs 1,725 5,731 5,563 13,019 12,338 5,359 1,236 18,933
Obs (% of TOT) 13.25 44.02 42.73 100.00 65.17 28.31 6.53 100.00
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Table 3: Sample characteristics of VIX futures and options. The table reports the average prices, bid-ask spreads (BA), Black
(1976) implied volatilities (IV), bid-ask implied volatility spreads (IV BA), trading volume, open interests (OI), the total number of
(and in percentage of the total) observations (Obs) for each moneyness-maturity category of call (Panel A) and put (Panel C) options
on VIX index. Panel B reports VIX futures settle prices, trading volume, open interests and observations for each maturity bucket.
The sample period is from January 7, 2009 to December 29, 2010 and the sampling frequency is weekly (Wednesdays). Maturity is
defined as the number of days to expiration. Moneyness for an option of maturity T is defined as the ratio of the option exercise
price to the current VIX futures price expiring at T . ITM (OTM), ATM and OTM (ITM) for calls (puts) are defined by Moneyness
< 1.0, 1.0 − 1.4, and > 1.4, respectively.

Maturity Moneyness

Panel A: Calls Panel B: Futures Panel C: Puts

ITM ATM OTM All OTM ATM ITM All

< 45 Days
Price 5.82 1.28 0.31 2.57 28.24 0.89 5.37 21.48 4.80
BA 0.32 0.13 0.11 0.19 0.12 0.29 0.53 0.24
IV 90.70 95.36 119.34 101.75 75.60 94.27 123.94 88.68
IV BA 32.40 6.16 12.12 17.48 7.58 15.17 51.35 14.97
Volume 1,316.87 4,842.85 2,848.60 2,920.52 5,008.29 6,821.95 1,620.99 27.74 3,750.20
OI 14,995.01 45,508.84 48,503.80 35,671.48 24,226.57 48,195.48 36,968.28 1,052.05 38,778.74
Obs 253 220 239 712 144 193 212 38 443
Obs (%) 8.08 7.03 7.63 22.74 18.18 12.89 14.16 2.54 29.59

45 − 90 Days
Price 6.32 2.09 0.50 2.76 29.71 1.33 6.33 22.34 4.59
BA 0.37 0.19 0.14 0.23 0.16 0.32 0.51 0.24
IV 67.03 77.12 91.36 79.82 64.55 76.09 90.02 70.15
IV BA 13.52 4.13 7.79 8.58 5.35 7.12 26.09 7.62
Volume 852.46 2,382.41 1,038.02 1,349.91 1,698.15 1,723.83 678.05 19.54 1,266.86
OI 10,151.59 24,448.87 15,907.49 16,455.37 11,052.12 23,943.07 11,887.39 304.24 1,8340.82
Obs 239 210 314 763 144 250 122 34 406
Obs (%) 7.63 6.71 10.03 24.37 18.18 16.70 8.15 2.27 27.12

> 90 Days
Price 7.12 2.73 0.84 3.70 29.99 1.71 6.90 19.30 3.61
BA 0.51 0.32 0.23 0.36 0.26 0.46 0.59 0.32
IV 55.77 63.56 73.84 63.96 55.84 63.11 74.08 58.26
IV BA 12.72 4.72 6.45 8.09 5.73 6.68 16.15 6.36
Volume 189.52 448.47 399.13 341.49 279.97 617.08 276.10 10.31 513.16
OI 28,27.80 4,751.16 3,674.41 3,737.78 2,629.10 5,930.87 2,583.38 166.52 4,918.10
Obs 587 559 510 1,656 504 470 153 25 648
Obs (%) 18.75 17.85 16.29 52.89 63.64 31.40 10.22 1.67 43.29

All
Price 6.64 2.27 0.62 3.22 29.62 1.43 6.09 21.22 4.23
BA spread 0.44 0.25 0.17 0.29 0.21 0.35 0.54 0.27
IV 66.46 73.51 89.25 76.42 62.40 79.93 99.20 70.49
IV BA spread 17.51 4.91 8.12 10.34 6.02 10.49 33.42 9.25
Volume 600.70 1,836.63 1,138.58 1,173.71 1,397.51 2,231.79 962.25 20.37 1,675.49
OI 7,302.96 18,000.11 17,367.18 14,098.79 8,087.37 19,797.38 19,882.53 561.70 18,578.68
Obs 1,079 989 1,063 3,131 792 913 487 97 1,497
Obs (%) 34.46 31.59 33.95 100.00 100.00 60.99 32.53 6.48 100.00
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performance of each model separately on each market in terms of the absolute errors

RMSEM =

√√√
1

NM

NM∑
i=1

(
QMKT

i,M − Qmdl
i,M

)2
, (13)

and relative errors

RMSREM =

√√√√
1

NM

NM∑
i=1

QMKT
i,M − Qmdl

i,M

QMKT
i,M


2

, (14)

whereM = {SPX,Fut,VIX} denotes the market-specific label and QMKT
M

(Qmdl
M

) the market (model) quotes
of the SPX (VIX) implied volatilities IVMKT (IVmdl) and VIX futures prices FMKT (Fmdl). Moreover, we
evaluate the overall calibration performance with the aggregate errors3

RMSEAll =

√√√
1
N

∑
M

NM∑
i=1

(
QMKT

i,M − Qmdl
i,M

)2
,

RMSREAll =
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1
N

∑
M

NM∑
i=1

QMKT
i,M − Qmdl

i,M

QMKT
i,M


2

. (15)

where N = NSPX + NFut + NVIX.
Table 4 reports average parameter estimates together with their in-sample standard deviation. Average

parameters have sound economic interpretation, and they are in line with typical parameters found by the
option pricing literature. Estimates indicate the presence of two volatility factors with approximate similar
long-run mean (β1 ≈ β2), with one factor being less persistent (α2 > α1) and more volatile (Λ2 > Λ1). The
first factor has σ1,0 ≈

√
β1, while the second has σ2,0 <

√
β2, indicating a tendency of the volatility term

structure to be increasing (through the second factor). Volatility shocks are virtually perfectly anticorrelated
with the price shocks, indicating a strong leverage effect. Regarding price jumps, option prices reflect the
fear of rare jumps (on average, λ = 0.064 for the Heston++ model, corresponding to a jump every 15
years) with a very large negative impact (−28% on average, with an average standard deviation of the jump
size distribution of 41%, again for the Heston++ model). Volatility jumps have an average of 19.8% (H)
and 25.5% (H++) for co-jumps (expressed in percentage, and as jumps in the volatility process), and of
22.7% for idiosyncratic jumps in the Heston++ model. Price and volatility co-jumps are also negatively
correlated, providing a further statistical channel for the leverage effect. The frequency of idiosyncratic
jumps appears to be smaller than that of co-jumps. Still, as discussed below, idiosyncratic jumps in volatility
are not negligible from a pricing perspective. As usual, all parameters related to jumps are characterized
by more uncertainty, as measured by the standard deviation of the parameters. Parameters related to the
dynamics of the volatility factors are much less variable, in-sample, for the displaced Heston++ model with
respect to the non-displaced Heston model.

Tables 5 reports the summary statistics on the root mean squared errors for the 2-SVCVJ and 2-SVCVJ++

models averaged over the three markets, while Tables 6, and 7, report the same summary statistics dissected
on the three markets. The results clearly show that the addition of the deterministic shift is crucial for the
joint fit of the three markets.

3In the definition of RMSEAll we have divided by 100 each VIX futures price F in order to make it comparable with implied
volatility levels IV.

11



Table 4: Calibrated parameters (annual units). This table reports the sample median (median absolute deviation) of joint SPX, VIX
futures and VIX options calibrated parameters for the 2-SVCVJ and 2-SVCVJ++ models considered in the empirical analysis. The
sample period is from January 7, 2009 to December 29, 2010 and the sampling frequency is weekly (Wednesdays). Panel A (B)
reports 1st (2nd) volatility factor diffusive parameters. Panel C reports intensity and unconditional mean and standard deviation of
normal jumps in price, where E[cx] = µx + ρJµco,σ and Var[cx] = δ2

x + ρ2
Jµ

2
co,σ Panel D reports the correlated co-jumps parameters.

The unconditional correlation between jump sizes is corr(cx, cσ) = ρJµco,σ/
√

Var[cx]. Panel E reports the idiosyncratic jumps
parameters.

2-SVCVJ 2-SVCVJ++

Panel A: 1st Factor
α1 1.967 (1.334) 1.676 (1.070)
√
β1 (%) 17.819 (9.162) 18.219 (6.079)

Λ1 0.445 (0.219) 0.504 (0.115)
ρ1 −0.865 (0.121) −0.964 (0.036)
σ1,0 (%) 16.250 (4.677) 16.376 (4.837)

Panel B: 2nd Factor
α2 8.451 (3.420) 6.488 (2.477)
√
β2 (%) 22.950 (4.308) 21.531 (3.158)

Λ2 2.050 (0.738) 2.115 (0.576)
ρ2 −0.997 (0.003) −1.000 (0.000)
σ2,0 (%) 8.683 (6.309) 7.984 (4.640)

Panel C: Price jumps
λ 0.079 (0.053) 0.064 (0.055)
E[cx] −0.240 (0.151) −0.280 (0.183)
√

Var[cx] 0.318 (0.215) 0.413 (0.255)

Panel D: CO-jumps
√
µco,σ (%) 19.813 (19.808) 25.463 (25.014)

corr(cx, cσ) −0.363 (0.366) −0.520 (0.458)

Panel E: Idiosyncratic jumps
λ′ 0.002 (0.002) 0.013 (0.012)
√
µid,σ (%) 109.701 (106.420) 22.684 (21.928)

Table 5: Calibration errors (in %). This table reports the sample average (max in sample) of the Root Mean Squared Error (Panel
A) and Root Mean Squared Relative Error (Panel B) of the 2-SVCVJ and 2-SVCVJ++ models calibrated jointly to SPX options,
VIX futures and VIX options market data. The sample period is from January 7, 2009 to December 29, 2010 and the sampling
frequency is weekly (Wednesdays). For each date in sample, the fit is performed minimizing the distance L in equation (12). Here we
report the absolute (relative) errors on (S&P500 and VIX options) implied volatility surfaces RMSESPX and RMSEVIX (RMSRESPX

and RMSREVIX) in percentage points and errors on the VIX futures term structures in US$. Performance measures are defined in
equations (13) and (14). Overall pricing errors RMSEAll and RMSREAll are expressed in percentage points and defined in equation
(15).

2-SVCVJ 2-SVCVJ++

Panel A: RMSE
RMSESPX 0.90 (4.28) 0.65 (1.64)
RMSEFut 0.53 (1.50) 0.22 (1.07)
RMSEVIX 3.39 (14.70) 1.64 (4.03)
RMSEAll 1.42 (4.57) 0.82 (2.11)

Panel B: RMSRE
RMSRESPX 3.07 (11.31) 2.02 (3.95)
RMSREFut 1.81 (6.13) 0.74 (2.60)
RMSREVIX 4.78 (23.56) 2.04 (4.34)
RMSREAll 3.34 (10.70) 2.01 (3.94)
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Table 6: Calibration RMSRE (in %) on SPX options by Moneyness - Maturity category. This table reports the sample average of the
Root Mean Squared Relative Error for different Moneyness and time-to-Maturity categories of S&P500 options for the 2-SVCVJ
(Panel A) and 2-SVCVJ++ (Panel B) models calibrated jointly to S&P500 options, VIX futures and VIX options market data. The
sample period is from January 7, 2009 to December 29, 2010 and the sampling frequency is weekly (Wednesdays). For each date
in sample, the fit is performed minimizing the distance L in equation (12). Here we report the relative errors on S&P500 implied
volatility surfaces RMSESPX, as defined in (14), conditioned to the Moneyness - Maturity category considered. Time to Maturity is
measured in days and Moneyness for an option is defined as the ratio of the option exercise price to the current index level: low,
ATM and high moneyness are defined by Moneyness < 0.95, 0.95 − 1.05, and > 1.05, respectively. For each category, errors are
expressed in percentage points and the sample average is weighted by the number of daily observations in each category. Overall
errors are reported in Table 5

.

Maturity Moneyness

Panel A: 2-SVCVJ model Panel B: 2-SVCVJ++ model

low ATM high All low ATM high All

< 45 3.00 3.68 4.34 3.60 2.23 2.12 3.06 2.42
45 − 90 1.88 1.68 2.27 2.01 1.62 0.90 1.64 1.53
> 90 2.11 3.16 4.48 3.27 1.65 1.43 2.40 1.93
All 2.49 3.10 3.83 1.93 1.67 2.40

Panel C: Observations Panel D: Observations (% of TOT)

low ATM high All low ATM high All

< 45 4,232 2,642 1,373 8,247 17.43 10.88 5.66 33.97
45 − 90 4,704 2,368 2,292 9,364 19.37 9.75 9.44 38.57
> 90 3,369 1,418 1,881 6,668 13.88 5.84 7.75 27.46
All 12,305 6,428 5,546 24,279 50.68 26.48 22.84 100.00

To better illustrate matters, Figure 1 shows the calibration of the 2-SVCVJ++ and 2-SVCVJ models on
a specific day in which the VIX futures display a hump4, that is of the models with the largest number of
parameters, with and without the deterministic shift extension. The figure shows, quite clearly, that taking
advantage of the added flexibility provided by the deterministic shift φt in fitting the term structure of VIX
futures, the proposed model (solid red) is able to calibrate vanilla and VIX options jointly without particular
difficulty. The “traditional” affine model (dashed blue), missing such a flexibility, cannot calibrate the prices
of the two market even if the number of parameters is quite high (17). Figure 2 shows the same exercise
on a day in which the non-displaced model is able to reproduce the VIX futures term structure, but not the
VIX options. In this case, the flexibility of the displacement is used by the Heston++ model to fit the rapidly
declining term structure of the VIX options implied volatility.

The non-displaced Heston model performs on average with a sample mean relative error of 3.1% on SPX
vanilla options, 1.8% on VIX futures and 4.8% on VIX options. Still, as shown in Figure 1, it often fails in
reproducing a humped VIX futures term structure and, as confirmed by Table 7, it tends to perform poorly at
longer maturities. As further shown in Table 6, the calibration error on vanilla options on S&P500 tends to
increase, in absolute terms, at short and long maturities and as moneyness increases.

With the simple introduction of the displacement φt, which is costless from a computational perspective,
the three relative errors mentioned above become 2.0%, 0.7%, and 2.0% respectively. In terms of absolute
average root mean square error (see Table 5), this implies a gain of 28% on vanilla options, which was
already documented by Pacati et al. (2014) on FX vanilla options. On top of that, we show a much larger
advantage on VIX futures (−58%) and VIX options (−52%). Thus, the deterministic shift extension is even

4Figures corresponding to al 104 calibrations are available upon request from the authors.
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Table 7: Calibration RMSRE (in %) on VIX options by Moneyness - Maturity category and VIX futures by tenor. This table reports
the sample average of the Root Mean Squared Relative Error for different Moneyness and time-to-Maturity categories of call options
on VIX and VIX Futures for the 2-SVCVJ (Panel A) and 2-SVCVJ++ (Panel B) models calibrated jointly to S&P500 options, VIX
futures and VIX options market data. The sample period is from January 7, 2009 to December 29, 2010 and the sampling frequency
is weekly (Wednesdays). For each date in sample, the fit is performed minimizing the distance L in equation (12). Here we report
the relative errors on VIX implied volatility surfaces RMSREVIX and VIX Futures term structure RMSREFut, as defined in (14),
conditioned to the Moneyness - Maturity category considered and tenor bucket, respectively. Time to Maturity is measured in days
and Moneyness for an option of maturity T is defined as the ratio of the exercise price to the current VIX futures price expiring at T ;
ITM, ATM and OTM for calls are defined by Moneyness < 1.0, 1.0 − 1.4, and > 1.4, respectively. For each category, errors are
expressed in percentage points and the sample average is weighted by the number of daily observations in each category. Overall
errors are reported in Table 5.

Maturity Moneyness

Panel A: 2-SVCVJ model Panel B: 2-SVCVJ++ model

Options Futures Options Futures

ITM ATM OTM All ITM ATM OTM All

< 45 6.12 3.58 3.28 4.67 0.35 1.85 1.85 2.02 2.08 0.12
45 − 90 7.93 2.81 3.00 5.19 0.21 1.84 1.81 2.15 2.11 0.13
> 90 6.87 3.14 2.88 4.73 1.07 1.69 1.96 2.06 2.00 0.44
All 7.61 3.41 3.15 1.90 2.03 2.17

Panel C: Observations Panel D: Observations (% of TOT)

Options Futures Options Futures

ITM ATM OTM All ITM ATM OTM All

< 45 160 194 230 584 144 5.78 7.01 8.31 21.11 18.18
45 − 90 220 202 302 724 144 7.95 7.30 10.91 26.17 18.18
> 90 447 525 487 1,459 504 16.15 18.97 17.60 52.73 63.64
All 827 921 1,019 2,767 792 29.89 33.29 36.83 100.00 100.00

more important on variance derivatives, where the average estimation error is more than halved with respect
to the traditional benchmark. It is particularly striking that the maximum absolute error of the Heston++

model becomes 3.9%, 2.6% and 4.3% respectively, which is comparable with the average error obtained
without displacement. On VIX options, the maximum error with displacement is even less than the average
error without displacement.5 The maximum overall absolute pricing error RMSREAll is instead 10.70% for
the Heston model.6

From this in-sample exercise we can clearly see that both kind of jumps in volatility (idiosyncratic and
correlated to price jumps) are needed to calibrate effectively, providing indirect evidence for the presence of
both in the volatility dynamics. To gain insight, we only consider models endowed with the displacement,
and we compare the decrease in average absolute pricing error with respect to the model without jumps in
volatility, the 2-SVJ++. Overall, adding only idiosyncratic jumps in volatility or adding correlated jumps

5These results are obtained without imposing the Feller condition. We have performed the same calibration imposing the Feller
condition 2αiβi ≥ Λ2

i separately on each volatility factor (i = 1, 2) (Duffie and Kan, 1996; Andersen and Piterbarg, 2007). With this
restriction imposed, the average (maximum) relative pricing error of Heston++ increase to 4% (11.7%) on SPX options, 4.4% (12%)
on VIX options and 1.4% (5.6%) on VIX futures, while for the Heston model we obtained 4.9% (22.1%) on SPX options, 7.3%
(25.4%) on VIX options and 2.5% (5.8%) on VIX futures. Thus, imposing the Feller condition does not affect the superiority of the
extension. Pacati et al. (2015) discuss the theoretical and empirical reasons to relax the Feller condition; see also the discussion in
Song and Xiu (2016); Amengual and Xiu (2018).

6When the Feller condition is imposed, the mean (maximum) overall relative pricing error RMSREAll grows up to 5.23%
(20.92%) for the Heston model and 4.05% (11.63%) for the Heston++ model. Again, there is a strong benefit in relaxing the Feller
condition.
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Figure 1: This figure reports market and model implied volatilities for S&P500 (plot at the top) and VIX (plot at the bottom) options,
together with the term structure of VIX futures (plot in the middle) on September 2, 2009 obtained calibrating jointly on the three
markets the 2-SVCVJ (blue dashed line) and 2-SVCVJ++ (red line). Maturities and tenors are expressed in days and volatilities are
in % points and VIX futures settle prices are in US$.
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Figure 2: This figure reports market and model implied volatilities for S&P500 (plot at the top) and VIX (plot at the bottom) options,
together with the term structure of VIX futures (plot in the middle) on August 11, 2010 obtained calibrating jointly on the three
markets the 2-SVCVJ (blue dashed line) and 2-SVCVJ++ (red line). Maturities and tenors are expressed in days and volatilities are
in % points and VIX futures settle prices are in US$.
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produces the same calibration advantage with respect to the model without volatility jumps: −26% for
correlated jumps, −31% for idiosyncratic jumps. Adding both volatility jumps yields a gain of −47%. The
larger effect is on VIX options (−57%) and VIX futures (−55%). Consistently with the intuition that jumps
have larger impact on short terms, the gain (again with respect to the 2-SVJ++, but now in terms of the
relative errors) is −65% on VIX options with maturity shorter than 45 days, −52% on VIX options with
maturity between 45 and 90 days, and −43% on VIX options with maturity longer than 90 days. Thus, the
impact of both kind of idiosyncratic jumps is larger on short term VIX options.

As one may argue, this better fit of the displaced Heston++ model might simply be a consequence of
having a larger number of parameters. To investigate this issue, we compared the Heston and Heston++

models for each day using a likelihood ratio test, under the assumption of homoskedastic Normally distributed
and independent errors and considering as additional parameters of the nesting specification the piecewise
integrals of the displacement (see Appendix B.1).7 For each calibrated day, the test p-value is less than 1%,
implying therefore strong statistical support for the displaced model.8

After having discussed the statistical significance of the displacement, in the next Section we turn to
examining the improvements in the hedging and out-of-sample cross-sectional pricing performance induced
by its introduction.

4. Hedging performance and out-of-sample pricing

Does the addition of a deterministic displacement to the volatility dynamics improves hedging perfor-
mance? To answer this question, we assume that the options analyzed so far, both on S&P500 and VIX are
hedged using a strategy meant to neutralize the three main sources of risk: shocks to the underlying price and
to the two volatility factors. Specifically, we hedge options using a portfolio composed of three instruments:
the underlying asset S t, and two VIX futures, the one with the shortest available maturity above the week,
F short

t , and the one with the longest available maturity below the year, Flong
t . The choice of two futures with

different maturity, meant two account for a two-factor volatility risk, allows to hedge changes in the variance
level and in the slope of the variance term structures. Specifically, given an option with price Ot (either on
S&P500 or VIX), the replicating portfolio is given by:

VOt = ∆ · S t + βshort · F short
t + βlong · F

long
t + cash

7To this end, the loss function of both models was rewritten as the sum of N = NSPX + NFut + NVIX squared errors ε`

L =

N∑
`=1

ε2
` =

NSPX∑
i=1

 1
√

NSPX
−

IVmdl
i,SPX

IVMKT
i,SPX

√
NSPX

2

+

NFut∑
j=1

 1
√

NFut
−

Fmdl
j

FMKT
j

√
NFut

2

+

NVIX∑
k=1

 1
√

NVIX
−

IVmdl
k,VIX

IVMKT
k,VIX

√
NVIX

2

.

Assuming the same variance Vε for each error, our calibration becomes a maximum likelihood estimate, with log-likelihood

−
N
2

log(2π) −
1
2

N∑
`=1

[
log Vε +

ε2
`

Vε

]
= −

N
2

log(2πVε) −
1

2Vε

L .

8Alternatively, the Akaike Information criterion (AIC) ranking yields the same outcome.
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where the “hedge ratios” ∆, βshort, and βlong are determined by imposing risk-neutrality with respect to the
three risk factors, namely:

∂Ot

∂S
(S t, σ

2
1,t, σ

2
2,t) = ∆ ,

∂Ot

∂σ2
1

(S t, σ
2
1,t, σ

2
2,t) = βshort

∂F short
t

∂σ2
1

(S t, σ
2
1,t, σ

2
2,t) + βlong

∂Flong
t

∂σ2
1

(S t, σ
2
1,t, σ

2
2,t) ,

∂Ot

∂σ2
2

(S t, σ
2
1,t, σ

2
2,t) = βshort

∂F short
t

∂σ2
2

(S t, σ
2
1,t, σ

2
2,t) + βlong

∂Flong
t

∂σ2
2

(S t, σ
2
1,t, σ

2
2,t) ,

(16)

where, of course, ∆ = 0 for VIX options. The quantity of cash needed for the hedging portfolio is determined
by the requirement VOt = Ot.

Hedging performance is evaluated as follows. For each option in our data used for calibration (Wednesday
options) with at least 7 days of maturity, we compute numerically the Greeks needed in Eq. (16) to recover
the hedging quantities ∆, βshort, and βlong.9 Then, for a horizon h ranging from 1 to 5 market days (that is
from the following Thursday to the following Wednesday), we compute the percentage return of the option

rOh =
Ot+h − Ot

Ot
,

using the market value of Ot+h, and of the corresponding hedging portfolio return

rPh =
VOt+h − VOt

VOt
,

using market values of S t+h, F short
t+h and Flong

t+h . The hedging performs well when rOh is close to rPh . Therefore,
our measure of performance is the difference between these two returns. Our hedging exercise is meant to be
realistic, since it uses three suitable instruments to hedge three risk factors, and cost-effective since we use
the same instruments for all options, either on S&P500 or VIX. Moreover, it represents a truly out-of-sample
metric of the model performance, since the hedging portfolio is composed at time t using the calibrated
parameters (to compute the Greeks), and the hedging performance is evaluated on following days using
realized market values.

Figure 3 reports quantiles and mean absolute deviations of the hedging error, defined as MAD =

median
∣∣∣rPh − rOh

∣∣∣. The figure shows that the addition of the displacement yields significant improvements in
the hedging performance of both SPX and VIX options, and especially for the former. In particular, hedging
with the traditional 2-SVCVJ model (without displacement) could generate large outliers in the hedging
error distribution. On the contrary, hedging errors are much more contained using the displacement. Tables 8
and 9 reports the absolute hedging errors at the rebalancing horizons considered. For SPX options (Table 8),
the hedging improvement is more or less uniform across strikes and maturities. For VIX options (Table 9)
the improvement is particularly relevant for options with low moneyness, while there is some deterioration
for options with large moneyness.

Finally, we proceed to a genuine out-of-sample pricing exercise, inspired by a similar exercise in Bakshi
et al. (1997). For out-of-sample pricing, indeed, the additional presence of the displacement may actually
cause overfitting and have the 2-SVCVJ++ model penalized if the extra parameters do not improve the model

9In this exercise, we converted puts to calls using put-call-parity.
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Hedging performance.
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Figure 3: Reports quantiles of the hedging error rPh − rOh on S&P 500 options (left panel) and VIX options (right panel), for
the 2-SVCVJ (labeled Heston) and the 2-SVCVJ++ (labeled Heston++) model. In the insets the mean absolute deviation
MAD = median |rPh − rOh |, where rPh is the percentage return, over the given horizon h, on the hedging portfolio and rOh is the
corresponding return of the hedged option.

Out-of-sample pricing performance.
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Figure 4: Reports the out-of-sample average RMSRE of option pricing using the 2-SVCVJ (labeled Heston) and the 2-SVCVJ++

(labeled Heston++) model, for SPX options (left panel) and VIX options (right panel). The models are calibrated on Wednesdays,
so the first point in the figure is the in-sample RMSRE, as reported in Table 5. Then, these parameters are used as input for pricing
in the following days. The insets report Diebold-Mariano tests for superior out-of-sample pricing of the Heston++ model, using the
average MSRE as the loss function.

specification. In this exercise, we rely on parameters calibrated on each Wednesday, and use them as input to
compute option prices on the following days.10 Figure 4 shows the out-of-sample pricing performance, in
terms of average RMSRE for SPX and VIX options. The first point in the figures corresponds to the in-sample
RMSRE, as reported in Table 5. Clearly, as we move forward in time, the pricing performance of the “frozen”

10The displacement at time t + h is obtained by linearly interpolating the term structure calibrated at date t. Details are provided in
Appendix B.2.
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Table 8: Hedging errors (in %) on SPX call options by Moneyness - Maturity category. This table reports the median absolute
hedging error MAD = median|rPh − rOh | for different Moneyness and time-to-Maturity categories for the 2-SVCVJ (Panel A) and the
2-SVCVJ++ (Panel B) models. The hedging horizons range from 1 (following Thursday) to 5 (next Wednesday) business days and
hedged options range from 16256 (1 day horizon) to 13826 (5 days horizon). Time to Maturity is measured in days and Moneyness
is defined as the ratio of the exercise price to the current index level; ITM, ATM and OTM for calls are defined by Moneyness
< 0.95, 0.95 − 1.05, and > 1.05, respectively. Maturity/Moneyness buckets are defined and fixed at the time in which the replicating
portfolio is formed.

Maturity Moneyness

Panel A: 2-SVCVJ model Panel B: 2-SVCVJ++ model

ITM ATM OTM All ITM ATM OTM All

Thursday
< 45 2.40 12.66 34.56 7.80 1.80 9.60 26.85 5.48
45 − 90 1.57 4.73 17.57 3.65 1.25 3.64 13.16 2.84
> 90 0.66 1.95 11.77 1.70 0.52 2.02 8.14 1.43
All 1.43 6.06 19.30 3.94 1.10 4.71 14.09 2.89

Friday
< 45 3.51 23.75 69.16 11.47 2.50 14.37 59.23 7.78
45 − 90 2.49 6.89 38.14 5.98 1.72 5.67 24.20 4.31
> 90 0.90 3.25 21.99 2.56 0.73 3.04 14.73 2.08
All 2.17 10.13 38.21 6.29 1.58 7.37 25.69 4.43

Monday
< 45 4.21 22.95 59.31 13.71 3.05 15.73 42.55 8.07
45 − 90 2.85 7.70 48.91 6.90 2.31 6.81 36.35 5.34
> 90 1.14 3.82 29.05 3.19 0.92 3.67 20.11 2.36
All 2.41 9.48 43.21 6.80 1.91 7.79 32.20 4.89

Tuesday
< 45 5.12 29.09 72.94 17.35 3.69 22.24 65.01 11.32
45 − 90 3.38 9.31 56.75 7.50 2.66 8.78 42.42 6.19
> 90 1.19 4.87 23.57 3.44 1.02 4.92 18.13 2.82
All 2.74 13.57 47.72 8.14 2.17 10.63 36.30 6.07

Wednesday
< 45 7.08 37.10 150.61 23.12 5.49 28.42 109.77 16.79
45 − 90 3.64 10.89 61.22 9.43 2.84 10.24 45.13 7.61
> 90 1.16 4.79 29.14 3.76 1.10 5.03 21.04 2.95
All 3.01 13.40 53.69 9.51 2.43 11.63 42.43 7.19

parameters deteriorates. However, the Heston++ remains superior to the Heston model even out-of-sample.
The out-of-sample superiority of the Heston++ model is significant, as assessed by a Diebold-Mariano
test which uses the average MSRE as the loss function (we use one lag in the implementation of the test),
as displayed in Figure 4.11 This result, in connection with the lower variability of parameters related to
the volatility factors documented in Section 3, justifies the superior hedging performance of the displaced
Heston++ model with respect to the non-displaced counterpart.

5. The role of the displacement

The novelty of the proposed approach in this paper is the introduction of the deterministic displacement
φt, which thus deserves a separate discussion. We recall that, in our calibration exercise, no functional form

11A Diebold-Mariano test on the superiority of the hedging performance of the Heston++ model is instead not significant. This is
due to the large outliers in hedging errors of the 2-SVCVJ model documented in Figure 3.
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Table 9: Hedging errors (in %) on VIX call options by Moneyness - Maturity category. This table reports the median absolute
hedging error MAD = median|rPh − rOh | for different Moneyness and time-to-Maturity categories for the 2-SVCVJ (Panel A) and the
2-SVCVJ++ (Panel B) models. The hedging horizons range from 1 (following Thursday) to 5 (next Wednesday) business days and
hedged call options range from 985 (1 day horizon) to 917 (5 days horizon). Time to Maturity is measured in days and Moneyness
for an option of maturity T is defined as the ratio of the exercise price to the VIX futures price expiring at T ; ITM, ATM and OTM
for calls are defined by Moneyness < 1.0, 1.0 − 1.4, and > 1.4, respectively. Maturity/Moneyness buckets are defined and fixed at the
time in which the replicating portfolio is formed.

Maturity Moneyness

Panel A: 2-SVCVJ model Panel B: 2-SVCVJ++ model

ITM ATM OTM All ITM ATM OTM All

Thursday
< 45 15.18 81.19 115.78 66.44 8.00 78.65 146.37 55.93
45 − 90 7.20 20.25 28.59 18.39 4.74 19.72 46.41 17.34
> 90 6.85 7.79 12.68 9.38 4.80 7.92 17.88 8.49
All 8.72 13.46 23.69 13.29 5.62 10.86 33.49 11.78

Friday
< 45 17.41 119.17 150.17 81.69 15.38 116.22 112.40 73.11
45 − 90 10.77 18.87 44.33 21.07 6.04 20.52 72.46 20.79
> 90 11.03 10.44 17.65 13.20 9.67 9.88 20.01 12.62
All 11.54 17.67 36.64 19.79 9.26 15.86 45.68 18.92

Monday
< 45 27.52 121.19 271.96 88.80 19.38 120.46 211.58 72.57
45 − 90 12.43 37.74 59.90 34.56 7.35 34.86 84.29 33.01
> 90 11.37 12.28 22.33 14.31 8.19 11.14 24.05 13.60
All 13.22 21.77 43.53 22.65 9.04 23.78 48.94 20.63

Tuesday
< 45 32.71 118.84 161.72 89.47 25.60 118.25 225.71 83.00
45 − 90 18.22 42.20 68.42 42.20 12.79 43.55 77.13 37.31
> 90 13.82 15.95 23.27 16.87 11.62 16.36 28.97 15.64
All 17.84 30.39 49.10 29.47 13.70 26.48 54.08 23.83

Wednesday
< 45 38.54 144.52 231.41 127.77 26.44 175.29 225.05 123.39
45 − 90 27.26 45.67 61.85 45.36 16.55 44.96 91.80 42.07
> 90 17.95 17.17 32.84 21.11 17.71 20.43 41.07 21.91
All 22.55 27.91 54.66 34.07 18.10 29.07 76.23 28.28

is assumed for the displacement and only its integrals are estimated. This is consistent e.g. with a piecewise
constant φt across the maturities of the considered derivatives. We start by showing, in Figure 5, the dynamics
(right panel) and the average estimate (left panel), across the 104 weeks, of

σφ(0,T ) = 100 ·

√
1
T

Iφ(0,T ) , (17)

where Iφ(t,T ) =
∫ T

t φsds. The purpose of the transformation in Eq. (17) is to express the displacement in the
same units of the VIX index, making its interpretation easier. Figure 5 shows that the contribution of the
displacement is substantial, hovering around 4 − 11% across different weeks and maturities, with a median
value around 7% almost flat across maturities.

We now discuss the interpretation of these estimates, as well as their time series properties. We concentrate
on the minimum value, implied by the model, which the forward VIX can realize in the risk-neutral world.
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Average value of σφ(0,T ). Estimated dynamics of σφ(0,T ).
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Figure 5: Left panel: average estimate of σφ(0,T ) = 100 ·
√

1
T Iφ(0,T ), as a function of the maturity T , across the 104 days fitted in

the time span 2009–2010. Right panel: estimated dynamics of σφ(0,T ) over time (we use an exponential smoother with lag 10
weeks).

Looking at the proof of Proposition 2 in the appendix, this is easily given by:(
VIXmin

t

100

)2

=
∑

k=1,2

βk

(
τ̄ −

1 − e−τ̄αk

αk

)
(volatility drift contribution)

+
λµco,σ+λ′µid,σ

α1

(
τ̄ −

1−e−τ̄α1

α1

)
+ µ̄ −

(
µx+ρJµco,σ

)
(jumps contribution)

+
1
τ̄

Iφ(t, t + τ̄) (displacement contribution),

(18)

where τ̄ = 1 month, which can be computed given the calibrated parameters. This quantity is composed of
three parts: the first two (volatility drift and jumps contribution) denote the contribution to the minimum from
the “vibrancy” of the underlying volatility, and are the only ones determining the minimum in traditional
affine models. The third part (displacement contribution) is specific to the Heston++ models, and allows the
minimum of the forward VIX to depend on the maturity. Without the displacement, the attainable minimum
of the forward VIX is the same for all maturities.

Figure 6 reports the time series of model-implied values of the forward VIX, that is VIXmin in Eq. (18),
at maturities 1 and 6 months for the 2-SVCVJ and 2-SVCVJ++ model, together with the respective
displacement contribution. The figure makes clear what is the contribution of the displacement in this setting.
The model-implied attainable minimum coincides in the Heston and in the Heston++ case. This is to be
expected since this quantity depends on the calibration of the two models on the very same option surfaces.
However, in the non-displaced case, the calibration of the lower value attainable by the VIX is done using
the available parameters, see Eq. (18), which restricts their ability to match high-order moments of the
risk-neutral distribution.

Clearly, higher moments of the risk-neutral distribution are also affected by φt. To show this, Figure 7
reports the impact of the displacement φ on the moments of the forward VIX distribution (at 6 months
maturity), computed as calculated in Proposition 4 in the Appendix. We use average parameter estimates.
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Time series of VIXmin.
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Figure 6: Reports the time series of model implied forward VIX minimum, computed with formula (18), for the Heston and
the Heston++ models (solid lines). Note that for the traditional affine models the minimum is constrained to be the same for all
maturities. The figure also reports the contribution of the displacement to this term (dashed lines). The sample spans 104 weeks in
2009 and 2010.

We consider the case φt = c for increasing values of c (the value c = 0 corresponding to the case without
displacement). We report the displacement in terms of σφ(0, 6m) = 100

√
c. The figure makes clear that the

displacement has an intuitive effect on VIX moments, an higher φt corresponding to higher mean, lower
standard deviation, higher skewness and higher kurtosis. In this sense, the displacement contributes to
non-Gaussianities which are strongly required to generate a positive variance premium, and, at the same
time, reliable out-of-the-money derivatives pricing, see the discussion in Bakshi et al. (2003) and, more
recently, Bekaert and Engstrom (2017). In Table 10, we report the average and standard deviation of weekly
model-implied risk neutral moments at different horizons. The difference between calibrated third and fourth
moments is striking, with the Heston++ model providing smaller and more stable high-order moments.

We can thus interpret the displacement as a “VIX shift” that can be used to push the (risk-neutral)
distribution of the forward VIX up. Providing an artificial lower bound, expressed in terms of displacement,
is empirically sensible since the VIX has an historical lower bound: the lowest close value of the VIX has
been 9.14% on November 3, 2017. It thus makes then sense that traders do expect a lower bound for the
forward volatility. The added flexibility to the risk-neutral distribution resulting from the “volatility shift”
due to the displacement explains the superior pricing performance of Heston++ models. The computational
cost of the addition is negligible, since by using a deterministic displacement the model is still in the affine
class.

Finally, Figure 8 compares the dynamics of σφ(0, 6m) (a mid-term average displacement, see again
Figure 5) to the dynamics of the variance risk premium. The variance risk premium on day t (VRPt)
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The impact of the displacement on forward VIX moments.
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Figure 7: Reports the moments of the forward VIX distribution at 6 months maturity in the case φt = c, as a function of
σφ(0, 6m) = 100

√
c for various values of the coefficient c.

corresponding to the horizon τ is defined as:(
VRPt

100

)2

= EQ [QV(t, t + τ)] − EP [QV(t, t + τ)] , (19)

where EQ [QV(t, t + τ)] is the expected risk-neutral quadratic variation of the stock index between times t
and t + τ, and EP [QV(t, t + τ)] is the expected quadratic variation in the same interval. We use τ = 1 month
and we estimate VRPt using:

V̂RPt = VIX2
t,t+30 −R̃Vt,t+30 , (20)

where VIXt,t+30 is the 30-days VIX index observed on day t, and R̃Vt,t+30 = e ̂log RVt,t+30 is the forecasted
realized variance as obtained from the regression:

log RVt,t+30 = α0 + α1 log VIX2
t−1,t+29 +α2 log RVt−30,t−1 +α3 log RVt−90,t−1 +εt , (21)

where εt is noise and
RVt,t+h = 252 · ψ ·

∑
t≤t′≤t+h

RVt′ ,

with RVt′ being the 5-minutes open-to-close realized variance on day t, properly rescaled by 252 (to convert
it to yearly units) and by the constant ψ, which is the ratio between the sum of squared close-to-close S&P500
daily returns and the average of RV in the sample, and which is meant to take into account the contribution
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Table 10: Model-implied risk neutral moments of the forward VIX distribution at 1, 3, 6 months and 1 year horizons for the Heston
and Heston++ model. Reported values are median (median absolute deviation) over the 104 weekly calibrations of the models.
Panel A reports the mean, Panel B the standard deviation, Panel C the skewness and Panel D the kurtosis. Model implied moments
are calculated as described in Proposition 4 in the Appendix.

2-SVCVJ 2-SVCVJ++

Panel A: Mean
1 month 27.47 (4.15) 26.78 (4.26)
3 months 29.27 (3.09) 29.10 (3.12)
6 months 29.56 (2.50) 29.38 (2.62)
1 year 29.43 (2.76) 29.42 (2.69)

Panel B: Standard Deviation
1 month 8.88 (2.13) 7.80 (1.90)
3 months 12.62 (2.78) 11.28 (2.01)
6 months 14.24 (2.48) 13.11 (2.15)
1 year 15.56 (2.98) 14.10 (2.58)

Panel C: Skewness
1 month 6.09 (4.08) 3.05 (0.76)
3 months 3.94 (1.88) 2.97 (0.45)
6 months 4.02 (1.84) 2.82 (0.56)
1 year 4.09 (2.01) 2.78 (0.76)

Panel D: Kurtosis
1 month 101.29 (92.01) 21.08 (9.30)
3 months 44.51 (35.36) 17.98 (5.84)
6 months 39.11 (30.00) 15.92 (5.15)
1 year 37.67 (29.40) 14.98 (6.53)

of overnight returns to the total variance. The model (21) is a modification of the model used in Caporin
et al. (2017) to include the lagged VIX as a regressor, as suggested by Bekaert and Hoerova (2014) (and
indeed highly significant in our sample). The figure clearly shows a common pattern in the dynamics of
the two objects, with a correlation above 50%. This common pattern could be explained either by the
interpretation of the displacement as an additional volatility factor, useful to add flexibility not only in the
matching of the risk-neutral forward VIX moments but also of its minimum, or by a “support risk premium”,
or a combination of both. Indeed, as made clear by the literature (see e.g. Section 8 in Bandi and Renò, 2016
and the discussion therein) a time varying variance risk premium can be obtained even with time invariant
preferences. This makes the identification of the relative contribution of the displacement to the dynamics
of the risk premia and/or the volatility state as difficult as for the other volatility factors.12 This said, our
results are compatible with the behavior of traders who use the displacement as a heuristic correction of
affine models meant to adjust their aggregate perception of changing risk premia.

Summarizing, this section provides a palatable interpretation of the displacement φt, which is the main
novelty introduced by this paper. The displacement is, mathematically, a “forward VIX push-up”, that is a
contribution to the lower bound of the risk-neutral probability density function of the forward VIX, allowing
it to vary with the maturity. Empirically, the effect is sizable. We can thus explain the successful pricing
performance due to the introduction of the displacement in the Heston++ model as follows. The displacement
is used by the model to bound the dynamics of the VIX leaving free the other parameters, especially jump
parameters, to match the higher moments of the risk-neutral distribution, e.g. enhancing the fit of the slope of

12Notice that the interpretation of the displacement as a volatility factor is purely qualitative here, since the displacement is
deterministic, and in this sense it is inherently different from a volatility factor. Making it deterministic, however, is exactly the trick
adopted in this paper to gain flexibility in affine models.
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The dynamics of variance risk premium and displacement.
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Figure 8: Reports the time series of the estimated variance risk premium VRPt, and of σφ(t, t + 6m).

the VIX options (Sepp, 2008b). This leads to much better pricing of VIX derivatives, without compromising
the quality of the fit on vanilla options. The bound to the forward VIX is empirically sensible (the VIX never
gets too low) and is compatible with the interpretation of the displacement as a “support risk premium”, that
is as a minimal value added to true volatility expectations when pricing variance derivatives.

6. Conclusions

This paper calibrates jointly S&P 500 vanilla options and VIX futures and options with average relative
discrepancy from market prices of 2%, and maximum relative discrepancy of 4% by means of the Heston++

model, an affine two-factor model with jumps endowed with a deterministic shift extension (the displacement).
The deterministic shift extensions is showed to play a crucial role in easing the calibration of the term structure
of both VIX futures and options, and to have a sound interpretation as a forward VIX shift, supported by
the data. The improvement in the option fitting is statistically significant, carries over out-of-sample, and
determines a sizable improvement of the hedging performance of the options. The data also show that the
displacement is highly correlated with the dynamics of the variance risk premium. Assessing whether the
displacement should be interpreted as an additional (deterministic) volatility factor and/or as a support risk
premium requires the specification of the dynamics of the Heston++ model under the natural probability P,
in addition to the dynamics under the risk-neutral probability Q, and the estimation of this joint dynamics,
which is left for future research.

Further, the calibration exercise suggests that two kind of jumps are present in the volatility dynamics,
the first being independent from jumps in price, and the second being correlated with them, that is happening
at the same time and with anti-correlated size. The impact of both jumps is particularly beneficial on short
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term VIX options, and their importance is not affected by the presence of the displacement.
Importantly, the Heston++ models achieve these performances without any additional computational

costs with respect to traditional benchmarks. This observation makes these models ideal candidates for the
joint calibration of volatility surfaces.
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Appendix A. Mathematical appendix

Conditional characteristic functions ofH models. As the 2-SVCVJ is an affine model, ordinary calculations
following Duffie et al. (2000) lead to characteristic functions which are exponentially affine in the state
variables. For the logarithmic price and volatility factors we obtain, respectively:

log f 2-SVCVJ
x (z; τ) = i(xt + (r − q)τ)z +

∑
k=1,2

(
Ax

k(z; τ) + Bx
k(z; τ)σ2

k,t

)
+ Cx

co(z; τ) + Cx
id(z; τ) ,

log f 2-SVCVJ
σ (z1, z2; τ) =

∑
k=1,2

(
Aσk (zk; τ) + Bσk (zk; τ)σ2

k,t

)
+ Cσ

co(z1; τ) + Cσ
id(z1; τ) ,

(A.1)

where coefficients satisfy the following sets of ODEs:

∂Ax
k(z; τ)
∂τ

= αkβkBx
k(z; τ) ,

∂Bx
k(z; τ)
∂τ

=
1
2

Λ2
k

(
Bx

k(z; τ)
)2
− (αk − izρkΛk) Bx

k(z; τ) −
1
2

z(i + z) ,

∂Cx
co(z; τ)
∂τ

= λ
(
θco

(
z,−iBx

1(z, τ)
)
− 1 − iµ̄z

)
,

∂Cx
id(z; τ)

∂τ
= λ′

(
θid

(
−iBx

1(z, τ)
)
− 1

)
,

with null initial conditions at τ = 0, and

∂Aσk (zk; τ)

∂τ
= αkβkBσk (zk; τ) ,

∂Bσk (zk; τ)

∂τ
=

1
2

Λ2
k

(
Bσk (zk; τ)

)2
− αkBσk (zk; τ) ,

∂Cσ
co(z1; τ)
∂τ

= λ
(
θco

(
0,−iBσ1 (z1, τ)

)
− 1

)
,

∂Cσ
id(z1; τ)

∂τ
= λ′

(
θid

(
−iBσ1 (z1, τ)

)
− 1

)
,

(A.2)
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with initial conditions Aσk (zk; 0) = Cσ
co(z1; 0) = Cσ

id(z1; 0) = 0 and Bσk (zk; 0) = izk. Explicit solutions can be
found. For the f 2-SVCVJ

x coefficients, we have:

Ax
k(z; τ) =

αkβk

Λ2
k

[
(ck − dk)τ − 2 log

(
1 − gke−dkτ

1 − gk

)]
,

Bx
k(z, τ) =

ck − dk

Λ2
k

1 − e−dkτ

1 − gke−dkτ
,

Cx
co(z; τ) = λτ

(
Θco(z; τ) − 1 − iµ̄z

)
,

Θco(z; τ) = exp
{

iµxz −
1
2
δ2

xz2
}
,

×
1

G−co

1 − 2
τ

µco,σ

Λ2
1

1
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co
log

(
G−co − g1G+

coe−d1τ

(1 − g1)(1 − izρJµco,σ)

) ,

Cx
id(z; τ) = λ′τ

(
Θid(z; τ) − 1

)
,

Θid(z; τ) =
1

G−id

1 − 2
τ

µid,σ

Λ2
1

1
G+

id
log

G−id − g1G+
ide−d1τ

1 − g1

 ,

where we have defined the auxiliary parameters:

ck = αk − izρkΛk ,

dk =

√
c2

k + z(i + z)Λ2
k ,

gk =
ck − dk

ck + dk
,

G±co = 1 − izρJµco,σ −
µco,σ

Λ2
1

(c1 ± d1) ,

G±id = 1 −
µid,σ

Λ2
1

(c1 ± d1) .

For the f 2-SVCVJ
σ coefficients, we have:

Aσk (zk; τ) = −
2αkβk

Λ2
k

log
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Λ2

k

2αk

(
1 − e−αkτ
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k
2αk

(1 − e−αkτ)
,

Cσ
co(z1; τ) = λΘ(z1; τ, µco,σ) ,

Cσ
id(z1; τ) = λ′Θ(z1; τ, µid,σ) ,

Θ(z1; τ, µ) = −
2µ

Λ2
1 − 2α1µ

log
1 − iz1

1 − iz1µ

Λ2
1 − 2α1µ

2α1

(
1 − e−α1τ

) .

(A.3)

Characteristic functions of the other nestedH models can be obtained applying the appropriate simplifications
to the corresponding expressions just presented for the 2-SVCVJ model, as discussed in section (2.1), see
Lian and Zhu (2013) and Kokholm and Stisen (2015) for the case of the SVCJ model of Duffie et al. (2000)
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and Chen and Poon (2013) for the case of the 2-SVCJ model with two volatility factors with correlated
co-jumps between the first one and the price process. We present here the expressions for the nested models
adopted in the empirical analysis. For ease of exposition we begin with the results for the two factor
continuous 2-SV model of Christoffersen et al. (2009):

log f 2-SV
x (z; τ) = i(xt + (r − q)τ)z +

∑
k=1,2

(
Ax

k(z; τ) + Bx
k(z; τ)σ2

k,t

)
,

log f 2-SV
σ (z1, z2; τ) =

∑
k=1,2

(
Aσk (zk; τ) + Bσk (zk; τ)σ2

k,t

)
.

(A.4)

For the 2-SVJ model, with log-normal jumps in price only we obtain:

log f 2-SVJ
x (z; τ) = log f 2-SV

x (z; τ) + Cx
co(z; τ)

∣∣∣
µco,σ=0 ,

log f 2-SVJ
σ (z1, z2; τ) = log f 2-SV

σ (z1, z2; τ) .
(A.5)

For the 2-SVVJ model, with log-normal jumps in price and idiosyncratic jumps in σ2
1,t we obtain:

log f 2-SVVJ
x (z; τ) = log f 2-SVJ

x (z; τ) + Cx
id(z; τ) ,

log f 2-SVVJ
σ (z1, z2; τ) = log f 2-SV

σ (z1, z2; τ) + Cσ
id(z1; τ) .

(A.6)

For the 2-SVCJ model, with correlated co-jumps in price and σ2
1,t we obtain:

log f 2-SVCJ
x (z; τ) = log f 2-SV

x (z; τ) + Cx
co(z; τ) ,

log f 2-SVCJ
σ (z1, z2; τ) = log f 2-SV

σ (z1, z2; τ) + Cσ
co(z1; τ) .

(A.7)

Relations (5) are easily derived since each H++ model is an affine model nesting the corresponding
undisplacedH model.

Proof of Proposition 1. The pricing formula is easily obtained from the first of (5) and from a straightforward
application of results of Lewis (2000, 2001).

Proof of Proposition 2. Applying Itō’s Lemma to the process log(S t+τ̄/Ft,t+τ̄), under the dynamics of the
2-SVCVJ++ in (1), the VIX definition in (7) may be rewritten as(

VIXt

100

)2

=
1
τ̄

∑
k=1,2

EQ
[∫ t+τ̄

t
σ2

k,sds

∣∣∣∣∣∣ Ft

]
+ 2λEQ

[
ecx − 1 − cx

]
+

1
τ̄

Iφ(t, t + τ̄) , (A.8)

where we have also used the fact that φt is a deterministic function. The integrated volatilities and the
co-jumps contribution can be computed in closed form (see for example Lin (2007) and Duan and Yeh (2010)
for similar computations)

EQ
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∣∣∣∣∣∣ Ft

]
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]
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)
,

EQ
[
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(
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)
,

(A.9)
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and therefore we have that the coefficients of affinity in (9) are

ak(τ̄) =
1 − e−τ̄αk

αk
, k = 1, 2,

b1(τ̄) =
α1β1 + λµco,σ + λ′µid,σ

α1

(
τ̄ − a1(τ̄)

)
+ 2λτ̄

[
µ̄ −

(
µx + ρJµco,σ

) ]
,

b2(τ̄) = β2
(
τ̄ − a2(τ̄)

)
.

(A.10)

Relation (8) readily comes from the nesting of 2-SVCVJ model into 2-SVCVJ++ if φt ≡ 0.

Proof of Proposition 3. The payoffs of a VIX futures contract settled at time T and of a call option on VIX
of strike K maturing at T are linear functions of the VIX index value at settle VIXT , respectively VIXT and
(VIXT −K)+. As stated in Proposition 2, underH++ models, VIXT is non-linearly related to the value of
volatility factor processes at time T , whose conditional characteristic function is known in closed form as
shown in Lemma 1. To overcome this issue we rewrite the payoffs as non-linear functions of the squared
index

wF(VIX′2T )
100

=

√
VIX′2T ,

wC(VIX′2T )
100

=

(√
VIX′2T − K′

)+

,

(A.11)

where VIX′t = VIXt /100 and K′ = K/100 are, respectively, the index and strike values expressed in
percentage points. Fourier transforms for these payoffs are available in closed form

ŵF(z)
100

=

√
π

2
1

(−iz)3/2 ,

ŵC(z)
100

=

√
π

2
1 − erf(K′

√
−iz)

(−iz)3/2 ,

(A.12)

and are single-valued regular functions in the upper half of the complex plane

Sw = {z ∈ C : Im(z) > 0} . (A.13)

Denote with f 2-SVCVJ++

VIX′2
the time t conditional characteristic function EQ

[
eiz VIX′2T

∣∣∣∣ Ft

]
of the squared

index process VIX′2t at time T under the 2-SVCVJ++ model. From Proposition 2 (with τ = T − t)

f 2-SVCVJ++

VIX′2
(z; τ) = eizIφ(T,T+τ̄)/τ̄ f 2-SVCVJ

VIX′2
(z; τ)

= eiz(∑k=1,2 bk(τ̄)+Iφ(T,T+τ̄))/τ̄ f 2-SVCVJ
σ (za1(τ̄)/τ̄, za2(τ̄)/τ̄; τ)

(A.14)

Following the approach of (Lewis, 2000, 2001), the value at time t of the call option on VIX under the
2-SVCVJ++ model is given by

C2-SVCVJ++
VIX (K, t,T ) = e−rτ EQ

[
(VIXT −K)+

∣∣∣ Ft
]

= e−rτ EQ
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i Im(z)−∞
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(A.15)
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and similarly for futures

F2-SVCVJ++
VIX (t,T ) = EQ [VIXT | Ft] = EQ

[
wF(VIX′2T )

∣∣∣ Ft
]

=
1

2π
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i Im(z)−∞
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VIX′2
(−z; τ)ŵF(z)dz ,

(A.16)

from which the results in Proposition 3 follow since the real (imaginary) part is an even (odd) function
of Re(z). For both claims, the integrands are well behaved functions as long as z ∈ S∗

VIX′2
∩ Sw where

f 2-SVCVJ++

VIX′2
(z; τ) is regular in the strip SVIX′2 and S∗

VIX′2
is the conjugate strip, obtained via reflection with

respect to the real z axis. The characteristic functions f 2-SVCVJ++
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VIX′2
(−i Im(z); τ) (A.17)

and therefore, considering the relation in (A.14), determining the strip of regularity S∗
VIX′2

corresponds to
analyze the stability of the solutions of the system ODEs in equation (A.2) for zk = −i Im(z)ak(τ̄)/τ̄ and
k = 1, 2. Similar arguments have been considered by (Lee, 2004; Andersen and Piterbarg, 2007; Lord and
Kahl, 2010) in studying the regularity of the log-price characteristic function fx(z; τ) of Heston-like stochastic
volatility models. From the second of the (A.3), the solution Bσk (−i Im(z)ak(τ̄)/τ̄; τ) is regular as long as its
denominator is not equal to zero, requiring:

Im(z) < ζ
Bσk
c (τ) =

τ̄

ak(τ̄)
1

Λ2
k

2αk
(1 − e−αkτ)

, (A.18)

which, in addition, guarantees the regularity of Aσk (−i Im(z)ak(τ̄)/τ̄; τ), given in the first of (A.3). Idiosyncratic
and correlated co-jumps solutions Cσ

co(−i Im(z)a1(τ̄)/τ̄; τ) and Cσ
id(−i Im(z)a1(τ̄)/τ̄; τ) are regular as long as

the argument of the logarithms is not equal to zero, that requires, respectively:
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 1
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 , (A.19)

and

Im(z) < ζ
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id
c (τ) =

τ̄

a1(τ̄)
min

 1
µid,σ

,
1
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 . (A.20)

We notice that, since µco,σ, µid,σ > 0, we have that min
(
ζ

Cσ
co

c (τ), ζ
Cσ

id
c (τ)

)
< ζ

Bσ1
c (τ) , and therefore ζc(τ) is

given by

ζc(τ) = min
(
ζ

Cσ
co

c (τ), ζ
Cσ

id
c (τ), ζ

Bσ2
c (τ)

)
. (A.21)

Unreported results analyze the effect of the choice of the upper bound ζc(τ) on the integrand behavior
and pricing performance. Preliminary results show that the choice of Im(z) does have an effect on the shape
of the integrand (e.g. it corresponds to different values at Re(z) = 0), and on pricing results. For typical
parameter values, as those shown in Table 4, we observe greater impact (roughly of order 10−4) on VIX
futures prices and on lower strikes and short-term options. The effect seems to be quite stable when the
magnitude of the displacement ranges in typical values of order Iφ ≈ 10−4, 10−3. In the empirical analysis we
use Im(z) = ζc(τ)/2.
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Proposition 4. Under theH++ models, the time t conditional central n-th moment

kH++
VIX (n, t,T ) = EQ

[ (
VIXT −µ

H++
t,T

)n ∣∣∣∣ Ft

]
(A.22)

of the risk-neutral distribution of the forward VIXT is given by

kH++
VIX (n, t,T ) =

1
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∫ ∞
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d Im(z) ,

(A.23)
where z = Re(z)+ i Im(z) ∈ C, 0 < Im(z) < ζc(τ), ζc(τ) is given in equation (A.21), µH++

T is the corresponding
VIX Futures quotation

µH++
t,T = EQ [VIXT | Ft] ≡ FH++

VIX (t,T ) (A.24)

of Proposition 3 and the payoff transform ŵH++
n (z) is known in closed form. Moreover, for n = 2, 3, 4 these

are given by
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2 (z, t,T )

1002 =
−1 + izµ2 + µ

√
π
√
−iz

z2 ,
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1004 =
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(A.25)

respectively (µ = µH++
t,T /100), which are single-valued regular functions provided that Im(z) > 0.

Proof of Proposition 4. Rewrite the kernel
(
VIXT −µ

H++
t,T

)n
of the central moments kH++

VIX (n, t,T ) in (A.22)
as non-linear functions, named wH++

n , of the squared index VIX′2t = (VIXt /100)2

wH++
n (VIX′2T , t,T )

100n =

(√
VIX′2T − µ

′

)n

, (A.26)

where µ = µH++
t,T /100. Complex Fourier transforms ŵH++

n (z, t,T ) of these functions are given by the integral

ŵH++
n (z, t,T )

100n =

∫ +∞

0
eizx wH++

n (x, t,T )
100n dx , (A.27)

that can be solved explicitly. Their expressions for n = 2, 3, 4 are shown in equations (A.25). Transforms
ŵH++

n (z, t,T ) are single-valued regular function in the upper half of the complex plane z ∈ Sw (A.13), that is
Im(z) > 0. We can, therefore, follow the approach of Lewis (2000, 2001) stating the following:
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(A.28)
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from which the statement in Proposition 4 follows provided that z ∈ S∗
VIX′2

∩ Sw, that is 0 < Im(z) < ζc(τ),
where ζc(τ) is given in equation (A.21).

Appendix B. Calibration procedure

Appendix B.1. In sample calibration
We describe here the calibration procedure performed on each day t in sample. H++ models depend

on the set of affine parameters reported in Table 4, that we denote here synthetically as θt, and on the
displacement function φt. On date t, joint calibration on the three markets is performed with Matlab’s
function lsqnonlin minimizing the loss function in (12), which we report again here highlighting the
functional dependencies w.r.t. affine and displacement parameters

L(θt, φt) =
1

NSPX

NSPX∑
i=1

 IVMKT
i,SPX − IVmdl

i,SPX(θt, φt)

IVMKT
i,SPX

2

+
1

NFut

NFut∑
j=1

FMKT
j − Fmdl

j (θt, φt)

FMKT
j


2

+
1

NVIX

NVIX∑
k=1

 IVMKT
k,VIX − IVmdl

k,VIX(θt, φt)

IVMKT
k,VIX

2

.

(B.1)

The calibration of affine parameters θt simply requires positivity constraints on volatility factors’ drift
αi, βi, vol-of-vol Λi parameters, jumps intensities λ, λ′, exponential jumps mean sizes µco,σ, µid,σ and on the
normal jumps dispersion parameter δ2

x.
For what concerns the calibration procedure of the displacement φt, we provide a practical example and

consider the market observed on the date t = Wednesday September 2nd 2009, which is shown in Figure 1.
Let us denote with T t

SPX (respectively T t
VIX) the set of maturities of SPX vanilla (resp. VIX derivatives)

observed on date t and let τt
SPX = T t

SPX − t (resp. τt
VIX = T t

VIX − t) the corresponding times to expiration.
From Figure 1, we have

τt
SPX = {17, 28, ..., 290} and τt

VIX = {14, 49, 77, 105, ..., 196} (B.2)

days to maturity, with 105 days being the longest horizon at which VIX options are quoted in this date. From
the results of Propositions 1 and 3, SPX vanilla and VIX derivatives prices depend on integrals of the form
Iφ(t,T t

SPX) and Iφ(T t
VIX,T

t
VIX + τ̄)), which are equivalent to

Iφ(t,T t
SPX) = Iφ(0, τt

SPX) =

∫ τt
SPX

0
φsds ,

Iφ(T t
VIX,T

t
VIX + τ̄) = Iφ(τt

VIX, τ
t
VIX + τ̄) =

∫ τt
VIX+τ̄

τt
VIX

φsds .

(B.3)

The model constraint φt ≥ 0 translates into the constraints on the displacement’s integrals

Iφ(t, t + τ) ≥ 0 , (B.4)

∀t, τ ≥ 0, which we impose in the calibration procedure. Let us denote with T t =
{
0∪T t

SPX∪T t
VIX∪T t

VIX + τ̄
}

the set of the relevant maturities (as included the set of the 30-days forward shifted maturities T t
VIX + τ̄) in t

and accordingly
τt = T t − t =

{
0 ∪ τt

SPX ∪ τ
t
VIX ∪ τ

t
VIX + τ̄

}
(B.5)
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the set of the relevant horizons. Time units have to be consistent, so if, as we have defined, τ̄ = 30/365
years, then also τt

SPX and τt
VIX have to be measured in years. Horizons which are common to the different

markets are counted just once. In our example: N = 1 + 7 + 7 + 7 (including the 0 at the beginning), because
both SPX options and VIX futures have 7 horizons and τt

VIX + τ̄ brings 7 more non-duplicated horizons.
Therefore, in this case τt

N = τt
22 = 290 days, coinciding with the last SPX options horizon, as it is usually

found, being the SPX vanilla the longest quoted options.
At each Wednesday t in sample, the relevant integrals of φt are calibrated as follows:

1. Sort in ascending order all the N time to maturities τt
i ∈ τ

t observed in the three markets in date t.
Therefore, τt

1 = 0 and τt
N is the longest horizon in τt.

2. Define the interval integrals

∆Φi = Iφ(τt
i, τ

t
i+1) = Iφ(0, τt

i+1) − Iφ(0, τt
i) (B.6)

i = 1, ...,N − 1 and input them to the optimizer, imposing the positivity constraints ∆Φi ≥ 0.

3. In the pricing routines, reconstruct the needed integrals of displacement as follows:

(a) A SPX vanilla of k-th ranked horizon τt
k ∈ τ

t
SPX can be constructed as:

Iφ(τt
1 = 0, τt

k) =

k−1∑
i=1

∆Φi . (B.7)

(b) A futures or option on VIX of p-th ranked horizon τt
p ∈ τ

t
VIX and q-th ranked forward horizon

τt
q ∈ τ

t
VIX + τ̄, with q ≥ p + 1, can be constructed as:

Iφ(τt
p, τ

t
q) =

q−1∑
i=p

∆Φi . (B.8)

The output of this calibration procedure is an optimal term structure of interval integrals at date t

∆Φ∗ =
{
I∗φ(τt

1 = 0, τt
2), ..., I∗φ(τt

N−1, τ
t
N)

}
(B.9)

which is, by construction, consistent with the positive displacement constraint (B.4) and consistent with
any functional form of the displacement φt having the same calibrated integrals (e.g. piecewise constant,
piecewise linear, splines or other interpolation or functional methods). From the optimal interval integral
term structure ∆Φ∗, the optimal displacement term structure I∗φ(0, τt) according to the market of date t can be
reconstructed as the vector of

I∗φ(0, τt
n) =

n−1∑
i=1

∆Φ∗i (B.10)

n = 2, ...,N. In our example, the resulting calibrated displacement term structure (B.10) is shown in
Figure B.9.
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Figure B.9: This figure shows the optimal displacement term structure I∗φ(0, τt) of the 2-SVCVJ++ model calibrated on the three
derivative markets observed on Wednesday September 2nd 2009, as reported in Figure (1). Black dots are calibrated I∗φ(0, τt

n)
integrals for τt

1 = 0, τt
2 = 14, ..., τt

22 = 290 days to maturity. Red bars report the calibrated interval integrals ∆Φ∗i = I∗φ(τt
i, τ

t
i+1), placed

at the right edges τt
i+1, which are the (positively constrained) optimization variables.

Appendix B.2. Out of sample displacement interpolation
Let us denote with T t+n

SPX and T t+n
VIX the set of SPX and VIX markets maturities observed at date t + n.

According to Propositions 1 and 3, to price out of sample SPX vanilla options (respectively VIX derivatives),
we have to evaluate integrals like Iφ(t + n,T t+n

SPX) (resp. Iφ(T t+n
VIX,T

t+n
VIX + τ̄)).

Along the lines of the in-sample calibration above, we denote with T t+n =
{
0 ∪ T t+n

SPX ∪ T t+n
VIX ∪ T t+n

VIX + τ̄
}

the set of the relevant maturities observed in t + n, let τt+n
SPX(n) = T t+n

SPX − (t + n) (resp. τt+n
VIX(n) = T t+n

VIX − (t + n))
represent the corresponding times to maturity - as computed from date t + n - and define accordingly the set
of relevant horizons

τt+n(n) = T t+n − (t + n) =
{
0 ∪ τt+n

SPX(n) ∪ τt+n
VIX(n) ∪ τt+n

VIX(n) + τ̄
}
. (B.11)

To implement the out of sample pricing we have to evaluate the displacement term structure at date t + n:

Iφ(t + n,T t+n) = Iφ(0, τt+n(n)) =

∫ τt+n(n)

0
φsds . (B.12)

Moreover, for any τ̂t+n(n) = T̂ t+n − (t + n) ∈ τt+n(n) we have Iφ(t + n, T̂ t+n) = Iφ(0, τ̂t+n(n)), and

Iφ(t + n, T̂ t+n) = Iφ(t, T̂ t+n) − Iφ(t, t + n)

= Iφ(0, τ̂t+n(0)) − Iφ(0, n) ,
(B.13)

where τ̂t+n(0) = T̂ t+n − t is the time-to-maturity of the contract expiring in date T̂ t+n, as it was at date t,
i.e. n days before. This allows to derive the integral Iφ(t + n, T̂ t+n) interpolating (and/or extrapolating) the
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Figure B.10: This figure shows an example of out of sample displacement term structure. The term structure I∗φ(0, τt) in black,
also reported in Figure (B.9) is calibrated on date t Wednesday September 2nd 2009 and is plotted at the horizons τt = T t − t.
Iφ(0, τt+6(6)), in red, is derived from I∗φ(0, τt) according to equation (B.13) using a linear interpolation and is plotted at the horizons
τt+6(6) = T t+6 − (t + 6) observed on date t + 6 Tuesday September 8th 2009.

calibrated term structure I∗φ(0, τt) in (B.10) at the horizons τ̂t+n(0) and for n days. As a minimal assumption
in the out of sample pricing exercise of Section 4, we have opted for a linear interpolation.

Resuming the example considered in the previous section, we show, in Figure B.10 the derived term
structure Iφ(0, τt+6(6)), in red, considered in the out of sample pricing on date t + 6 (Tuesday, September
8th 2009), i.e. n = 6 days after the calibration date t (Wednesday, September 2nd 2009). Since, in this
example, the contracts quoted in the out of sample date t + 6 are exactly the same contracts quoted in t (that
is, T t+6 ≡ T t), the Iφ(0, τt+6(6)) term structure results in a rigid shift of n = 6 days towards shorter horizons
of the calibrated term structure I∗φ(0, τt), according just to the aging τt+6(6) ≡ τt − 6 of the contracts.
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