Staphylococcus aureus vaccine preclinical and clinical development: current state of the art | This is the peer reviewed version of the following article: | | |-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------| | Original: | | | Redi, D., SPERTILLI RAFFAELLI, C., Rossetti, B., DE LUCA, A., Monta vaccine preclinical and clinical development: current state of the a 213. | | | Availability: | | | This version is availablehttp://hdl.handle.net/11365/1039687 | since 2018-03-30T09:59:36Z | | | | | | | # Terms of use: # **Open Access** The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. Works made available under a Creative Commons license can be used according to the terms and conditions of said license. For all terms of use and more information see the publisher's website. (Article begins on next page) # **TITLE PAGE** Staphylococcus aureus vaccine preclinical and clinical development: current state of the art David Redi^{1,2}, Chiara Spertilli Raffaelli^{1,2}, Barbara Rossetti², Andrea De Luca^{1,2}, Francesca Montagnani^{1,2}* ¹Department of Medical Biotechnologies, University of Siena, Siena, Italy ²Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy # * Corresponding author: Francesca Montagnani Department of Medical Biotechnologies, University of Siena, University Division of Infectious Diseases, Policlinico Le Scotte, 4° lotto piano 0 viale Bracci, 16 53100 Siena, Italy Tel. +39(0)577 586562 Fax: +39(0)577 233462 Email: francesca.montagnani@unisi.it RUNNING TITLE: Staphylococcus aureus vaccine development **SUMMARY** Staphylococcus aureus is a relevant pathogen both in community and in hospital settings. It is the etiological agent of significant to treat health care related infections due to both its ability to cause invasive infection as well as to form biofilm on biomaterials and high prevalence of resistance to first line antibiotics. The most challenging preventive strategy is the vaccine development to guarantee a full and durable protection from staphylococcal diseases in all different high-risk populations, even if the lack of a known correlate of protection from S. aureus is a relevant hindrance to this effort. We aimed to review the most recent advances in the field of vaccinology against S. aureus, highlighting the potential for future application of the different experimental vaccine types. Several vaccines have completed their preclinical phase of development and others have been tested in humans, however no successful phase III clinical trial has been completed yet. KEY WORDS: Staphylococcus aureus, vaccine, prevention, immunogenicity, antigens # INTRODUCTION Staphylococcus aureus is a Gram positive bacterium commonly colonizing humans. It can cause localized and serious invasive infections, as well as a severe septic shock syndrome (Krismer et al., 2017; Que and Moreillon, 2015). Its clinical relevance is also related to its ability to adhere and to form biofilms, mainly on biomaterials (e.g. orthopaedic joint prostheses, artificial heart valves, intravenous devices), causing difficult to treat infections (Figueiredo, 2017; Oliveira et al., 2018). S. aureus is one of the most important etiologic agents of post-surgical complications and hospital acquired or health-care associated infections and, moreover, it frequently develops resistance to beta-lactams agents. Prevalence of methicillin resistant S. aureus (MRSA) in Europe ranges from < 1% to over 50% and multidrug-resistant isolates have been demonstrated both in the community and in the health care settings (Hassoun et al., 2017; Que and Moreillon, 2015; Reddy et al., 2017; March et al., 2017). The high prevalence of antibiotic resistance makes it difficult to prescribe an effective empiric therapy. Moreover, in sub-chronic infections, bacterial culture may be difficult to obtain: in these cases, molecular diagnostic approaches may be required to improve sensitivity and to achieve a rapid diagnosis (Sambri et al., 2017), failing the goal to switch to a specific therapy after an in vitro chemosusceptibility test. Glycopeptides can be considered the cornerstone of antibiotic therapy for MRSA infections and the first-choice in patients with beta-lactams allergy, although resistance to this class is emerging in several countries, and toxicity issues may represent a Alternative anti-MRSA antimicrobials are available, but resistance to these newer limitation. molecules has already been reported in clinical S. aureus isolates and it is increasing (Que and Moreillon, 2015; Foster, 2017; Musumeci et al., 2016). To overcome problems in the clinical management of staphylococcal infections, several newer approaches and their possible application using different preventive or therapeutic strategies are being evaluated (e.g. biocidal nano-molecules, passive immunotherapy) (Oliveira *et al.*, 2018; Siddiqi *et al.*, 2018; Sause *et al.*, 2016). The most challenging preventive strategy is the vaccine development whose objective is to obtain a full and durable protection from staphylococcal diseases in all different populations at risk. The lack of a known correlate of protection from *S. aureus* infection is a major hindrance to vaccine development (Proctor, 2012). Since many years, efforts are therefore ongoing to gain a vaccine candidate, using recombinant or subunit antigens of *S. aureus* or antigens delivering system, with promising results in pre-clinical development (Adhikari *et al.*, 2012; Wacker *et al.*, 2014; Becherelli *et al.*, 2013; Colonna et al., 2013; Veloso *et al.*, 2015, Bagnoli *et al.*, 2015; Delfani *et al.*, 2015). We aimed to review the most recent advances in the field of vaccinology against *S. aureus*, highlighting the potential for a future application of the different experimental vaccine types. # **METHODS** We selected articles from Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/) using the following key words: 'vaccine', 'recombinant antigen', 'vaccination', 'immunization'. Matching each term with 'Staphylococcus aureus' we found 2,229 articles. We selected review articles (326 results) and further selected those starting from January 2016 up to February 2018, thus obtaining 45 articles. We made a further critical selection based on the content of the abstracts, finally finding 7 reviews really arguing about active immunization against Staphyloccoccus aureus. With the same key words and in the same temporal interval, original articles regarding new vaccine approaches and not included in the previous selected reviews, were also selected and analysed. A total of 17 papers were eventually included in our review. Criteria of articles selection are summarized in Figure 1. In summarizing Tables, original studies reporting preclinical and clinical trials (where available) have been mentioned. # PRECLINICAL STUDIES About half of the analysed papers describe preclinical phases of S. aureus vaccine candidates mainly using the murine model. This is a crucial stage in the development of immunization strategies, because a failure in this phase obviously threatens any further research. GlaxoSmithKline (GSK) company approached active immunization in mice and rabbits using the capsular polysaccharide antigens serotype 5 and 8 (respectively CP5 and CP8), responsible of cellular adhesion, and detoxified α-hemolysin (Hla_{H35L}) that plays a crucial role in invasive infections (Giersing et al., 2016, Reddy et al., 2017). The vaccine was produced by recombinant technology in Escherichia coli, obtaining a bioconjugated and N-glycosilated protein (Wacker et al., 2014). Even though elicited antibodies in immunized animals were protective against bacteraemia and pneumonia, there was no further development of this study (Reddy et al., 2017). Nabi biopharmaceutical and Uniformed Services University of the Health Sciences (USUHS) evaluated the PentaStaph vaccine, still based on CP5, CP8 and Hla antigens, with the addition of the toxin Panton Valentine Leukocidin S (LukSPV) and wall teichoic acids (Reddy et al., 2017). The efficacy was evaluated separately for each antigen component and studies seem ongoing regarding the penta-valent formulation: in 2009 PentaStaph was sold to GSK for further possible application (https://www.sec.gov/Archives/edgar/data/72444/000119312509167192/dex992.htm, last accessed February 28, 2018) but no final reporting paper is yet available. CRM₁₉₇ (a nontoxic recombinant mutant of diphtheria toxin)-conjugated polysaccharide antigens CP5 and CP8 have been recently valuated as vaccine candidates by Cheng *et al.* in a murine model of bacteraemia, lethal sepsis, and skin infection: even if a good antibody response was elicited and active immunization protected against staphylococcal bacteraemia, only CP8-CRM component protected against dermonecrosis and neither CP5-CRM nor CP8-CRM protected against mortality in the sepsis model (Cheng *et al.*, 2017). A multicomponent surface protein (SdrE, IsdA, SdrD, IsdB) target vaccine was developed by Novartis (now GSK) and revealed a protection from lethal doses of *S. aureus* strains in mice (Reddy *et al.*, 2017). The same company has recently created an alum adjuvated vaccine, named 4C-Staph. It was targeted on four different antigens: the previously described Hla_{H35L} in combination with EsxAB, FhuD2, Csa1A. EsxAB is a fusion of two virulence secreted factors involved in abscess formation, FhuD2 is a lipoprotein involved in iron uptake, while the role of lipoprotein Csa1A is still not clearly understood (Mancini F, *et al.*, 2016; Dayan *et al.*, 2016). The beneficial effects of this quadrivalent vaccine have been shown in a murine model of joints and lung infections, with robust antibody response and CD4+ T lymphocyte activation (Corrado *et al.*, 2016). To date, there is no information about a further development (Reddy *et al.*, 2017; Giersing *et al.*, 2016). Another potential vaccine S. aureus antigen is the surface protein Clamping factor A (ClfA) that allows the adhesion to several human tissues by fibrinogen binding. The successful preclinical study on ClfA opened the way to its application in multiple antigen vaccines, which are in advanced stages of development (Lacey et al., 2016; Dayan et al., 2016). An equally successful preclinical performance was not achieved by a recombinant vaccine (AT62, by National Institute of Allergy and Infectious Diseases, USA) based on the α-hemolysin (Hla) subunit, that showed a weak activity in preventing murine surgical wound infections, despite a robust antibody response. Hla subunit seems nevertheless to be suitable for the development of multivalent vaccines (Adhikari et al., 2016). An interesting immunization target under evaluation, by the Pasture Institute of Iran and Pharmaceutical Sciences Branch of Islamic Azad University, is the Penicillin Binding Protein 2A (PBP2a) that is involved in beta-lactams resistance due to target mutation. Vaccine based on PBP2a reduced mortality rate and protected mice against lethal MRSA challenge (Haghighat et al., 2017). Other possible vaccine candidates are a mutant live S. aureus, unable to synthetize cell wall Dalanine (Moscoso et al., 2018) and a bivalent fusion vaccine based on the D domain of staphylococcal protein A (SpA) and the A domain of fibronectin-binding protein A (FnBPA), by the National Natural Science Foundation of China (Yang et al., 2018). Vaccination with the mutant live S. aureus resulted in a protective effect against S. aureus bacteremia in mice (Moscoso et al., 2018). The bivalent fusion vaccine showed a protective efficacy in murine pneumonia and skin abscess model (Yang *et al.*, 2018). #### **CLINICAL STUDIES** #### Phase I Despite the efficacy obtained in the preclinical studies, some of the evaluated vaccine candidates did not undergo further development. A composed target vaccine (conjugated to tetanus toxin CP5/CP8 polysaccharides plus recombinant Hla/ClfA proteins) was developed by GSK, and it completed the phase I clinical trial (Dayan et al., 2016; Mohamed et al., 2017). This vaccine elicited an increase in functional humoral antibody responses that could kill CP5-expressing strains in opsonophagocytic assays after a single dose, but an inefficient T-cell activation. No safety concerns arouse during this study but this vaccine was not further developed (Levy et al., 2015; Giersing et al., 2016; Reddy et al., 2017). A hypothetically promising immunization strategy was proposed by NovaDigm Therapeutics with the so called NDV3 vaccine. This vaccine consists of an alum adjuvated, recombinant antigen rAls3p-N (agglutinin like sequence 3 protein), a C. albicans surface protein that cross reacts with S. aureus (Lacey et al., 2016). NDV3 previously demonstrated a preclinical efficacy in reducing murine skin abscesses, so it was carried on phase I, showing safety and immunogenicity (Dayan et al., 2016). NDV3 is currently under study for the prevention of Candida vaginitis (Giersing et al., 2016). A cell wall vaccine, SA75 by Vaccine Research International, has shown good tolerability and safety during phase I, but it was not further developed (Giersing et al., 2016). Indeed, preclinical studies on similar types of cell wall vaccines showed controversial results, showing sufficient immunogenicity only after intravenous injection, even if an efficient cellular and humoral response was observed in the murine model of skin and soft tissues infections (Selle et al., 2016, Zhang et al., 2017). Secreted virulence factors have also been evaluated in phase I trials. Recombinant staphylococcal enterotoxins A and C1 by Integrated BioTherapeutics showed a safe profile (Roetzer *et al.*, 2017). Moreover, Integrated BioTherapeutics, in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID), demonstrated a production of functional toxin-neutralizing antibodies in adults after immunization with STEBVax, an alum adjuvated recombinant enterotoxin B (rSEB) (Chen *et al.*, 2016). The SA4Ag vaccine by Pfizer is composed by four *S. aureus* virulence factors: CP5 and CP8 conjugated with diphteric toxoid *plus* recombinant-mutated ClfA and recombinant-mutated MntC (manganese transporter protein C). A previous use of an SA3Ag vaccine (lacking of MntC) and of SA4Ag showed an acceptable safety for both, but SA4Ag showed a more robust humoral immune response. (Xu et al., 2018, Esposito et al., 2016; Begier et al., 2017; Creech et al., 2017, Mohamed et al., 2017). One of the most recent phase I trials was conducted on the bivalent recombinant α-toxin and Panton Valentine Leukocidin vaccine (rAT/r rLukS-PV) produced by Nabi. It was investigated on healthy militaries obtaining positive results in terms of safety and long-term immunogenicity (Landrum *et al.*, 2017). # Phase II There are no ongoing phase II studies. Phase II of the previously described NDV3 by NovaDigm Therapeutics was stopped due to enrolment difficulties (Lacey *et al.*, 2016). The use of the previously described recombinant staphylococcal enterotoxins A and C1 by Integrated BioTherapeutics is under evaluation for a phase II trial (Roetzer et al., 2017). SA4Ag (PF-06290510) is the only candidate tested in an ongoing phase IIb trial: the STRIVE (*STaphylococcus aureus* suRgical InpatientVaccine Efficacy) study aims to confirm the phase I results in a wider target population of adults receiving spinal surgery (Begier *et al.*, 2017, *et al.*, 2016, Mohamed *et al.*, 2017). # **Phase III** Two phase III trials testing a purified CP5/CP8 conjugated with recombinant pseudomonal exotoxin A, StaphVax, by Nabi as well as a purified surface protein IsdB, V710 by Merck, were interrupted. The reason was the absence of difference in the primary endpoint between vaccine and placebo for StaphVax and an increased mortality in exposed subjects for V710 (Giersing *et al.*, 2016; Dayan *et al.*, 2016; Reddy *et al.*, 2017; Missiakas and Schneewind, 2016; Mohamed *et al.*, 2017; Pozzi *et al.*, 2017; Lacey *et al.*, 2016). No other clinical phase III trial is ongoing or under evaluation. Possible manufacturing matters causing failure of StaphVax were hypothesized (Fattom *et al.*, 2015; Dayan *et al.* 2016), its capsular polysaccharide antigens are however further being evaluated within the PentaStaph vaccine, as previously described. # **CONCLUSIONS** Development of an effective vaccination against *S. aureus* seems to be a relevant priority in terms of prevention at the individual patient level and as a public health measure, with the additional aim to reduce economic impact of these infectious complications. Despite the plethora of preclinical studies during the last years, clinical trials are still far from approaching a potential application into clinical practice. The multiple staphylococcal antigens and different pathogenic pathways make it difficult to imagine a single and universal anti *S. aureus* vaccine. Some authors referred to the bacterial complexity the failure of tested vaccine candidates (Lacey *et al.*, 2016; Dayan *et al.* 2016). Vaccines targeting each different type of staphylococcal infection have been proposed as a possible future approach (Lacey *et al.*, 2016). Differences in staphylococcal pathogenic mechanisms in humans, as compared to those in animal models, could represent another relevant problem to translate results from the preclinical development into the clinical phases. Animals, ad in particular mice, may be a suboptimal model to study staphylococcal infections (Proctor, 2012): "humanized" mice, rabbits and guinea pigs have been proposed to be used as a more reliable animal model (Parker, 2017; Malachowa, 2016; Kim, 2015). Other intriguing and advanced experimental studies explore the potential of reverse vaccinology or immunoproteomics (Holtfreter *et al.*, 2016; Stentzel *et al.*, 2016). More studies and clinical trials are warranted to reach the objective of an effective and widely employable anti-staphylococcal vaccine. # **ACKNOWLEDGMENTS** Financial support: nothing to declare. # **CONFLICT OF INTEREST** DR has received non financial support from ViiV Healthcare, Abbvie, Astellas and Gilead, all outside the submitted work. CSR: nothing to declare. BR received consultant fees from Janssen, ViiV Healthcare, Abbvie, Merck-Sharp and Dohme, Bristol-Myers Squibb and Gilead Sciences, all outside the submitted work. ADL has received research grants from ViiV, Gilead and Merck-Sharp and Dohme and has been a paid consultant for ViiV, Gilead, Janssen-Cilag and Merck-Sharp and Dohme. FM has received non financial support from Angelini and Astellas, outside the submitted work. She has done contract research for Novartis Vaccine and Diagnostic S.rl. (now GSK Vaccine S.r.l.) on behalf of the University Hospital of Siena; she is Infectious Diseases Consultant for GSK (consultancy fee on behalf of University of Siena). # REFERENCES - Adhikari R.P., Karauzum H., Sarwar J., Abaandou L., Mahmoudieh M., *et al.* (2012). Novel structurally designed vaccine for *S. aureus* α-hemolysin: protection against bacteremia and pneumonia. *PLoS One*. **7**:e38567. - Bagnoli F., Fontana M.R., Soldaini E., Mishra R.P., Fiaschi L., *et al.* (2015). Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against *Staphylococcus aureus*. *Proc Natl Acad Sci U S A*. **112**:3680-5. - Becherelli M., Prachi P., Viciani E., Biagini M., Fiaschi L., *et al.* (2013). Protective activity of the CnaBE3 domain conserved among *Staphylococcus aureus* Sdr proteins. *PLoS One*. **8**:e74718. - Begier E., Seiden D.J., Patton M., Zito E., Severs J., *et al.* (2017). SA4Ag, a 4-antigen *Staphylococcus aureus* vaccine, rapidly induces high levels of bacteria-killing antibodies. *Vaccine*. **35**:1132-1139. - Chen W.H., Pasetti M.F., Adhikari R.P., Baughman H., Douglas R., *et al.* (2016). Safety and immunogenicity of a parenterally administered, structure-based rationally modified recombinant staphylococcal enterotoxin B protein vaccine, STEBVax. *Clin Vaccine Immunol*. **23**:918-925. - Cheng B.L., Nielsen T.B., Pantapalangkoor P., Zhao F., Lee J.C., *et al.* (2017). Evaluation of serotypes 5 and 8 capsular polysaccharides in protection against *Staphylococcus aureus* in murine models of infection. *Hum Vaccin Immunother*.**13**:1609-1614. - Colonna C., Dorati R., Conti B., Caliceti P., Genta I. (2013). Sub-unit vaccine against *S. aureus*-mediated infections: set-up of nano-sized polymeric adjuvant. *Int J Pharm.* **452**:390-401. - Corrado A., Donato P., Maccari S., Cecchi R., Spadafina T., et al. (2016). Staphylococcus aureus-dependent septic arthritis in murine knee joints: local immune response and beneficial effects of vaccination. Sci Rep. **30**:6:38043. - Creech C.B., Frenck R.W. Jr, Sheldon E.A., Seiden D.J., Kankam M.K., *et al.* (2017) Safety, tolerability, and immunogenicity of a single dose 4-antigen or 3-antigen *Staphylococcus aureus* vaccine in healthy older adults: Results of a randomised trial. *Vaccine*. **35**:385-394... - Dayan G.H., Mohamed N., Scully I.L., Cooper D., Begier E., *et al.* (2016). *Staphylococcus aureus*: the current state of disease, pathophysiology and strategies for prevention. *Expert Rev Vaccines*. **15**:1373-1392. - Delfani S., Mohabati Mobarez A., Imani Fooladi A.A., Amani J., Emaneini M. (2016) Protection of mice against *Staphylococcus aureus* infection by a recombinant protein ClfA-IsdB-Hlg as a vaccine candidate. *Med Microbiol Immunol*. 20547-55. - Esposito S., Principi N. (2017). Strategies to develop vaccines of pediatric interest. *Expert Rev Vaccines*. **16**:175-186. - Fattom A., Fuller S., Propst M., Winston S, Muenz L. *et al.* (2004). Safety and immunogenicity of a booster dose of *Staphylococcus aureus* types 5 and 8 capsular polysaccharide conjugate vaccine (StaphVAX) in hemodialysis patients. *Vaccine*. **23**:656-663 - Fattom A., Matalon A., Buerkert J., Taylor K., Damaso S., *et al.* (2015). Efficacy profile of a bivalent *Staphylococcus aureus* glycoconjugated vaccine in adults on hemodialysis: Phase III randomized study. *Hum Vaccin Immunother*. **11**:632-41. - Figueiredo A.M.S., Ferreira F.A., Beltrame C.O., Côrtes M.F. (2017). The role of biofilms in persistent infections and factors involved in ica-independent biofilm development and gene regulation in *Staphylococcus aureus*. *Crit Rev Microbiol*. **43**:602-620. - Foster T.J. (2017). Antibiotic resistance in *Staphylococcus aureus*. Current status and future prospects. *FEMS Microbiol Rev.* **41**:430-449. - Fowler V.G., Allen K.B., Moreira E.D., Moustafa M., Isgro F., *et al.* (2013). Effect of an investigational vaccine for preventing *Staphylococcus aureus* infections after cardiothoracic surgery: a randomized trial. *JAMA*. **309**:1368-1378. - Frenck R.W. Jr, Creech C.B., Sheldon E.A., Seiden D.J., Kankam M.K., *et al.* (2017). Safety, tolerability, and immunogenicity of a 4-antigen *Staphylococcus aureus* vaccine (SA4Ag): results from a first-in-human randomised, placebo-controlled phase 1/2 study. *Vaccine*. **35**:375-384. - Giersing B.K., Dastgheyb S.S., Modjarrad K., Moorthy V. (2016). Status of vaccine research and development of vaccines for *Staphylococcus aureus*. *Vaccine*. **34**:2962-2966. - Haghighat S., Siadat S.D., Sorkhabadi S.M.R., Sepahi A.A., Mahdavi M. (2017). A novel recombinant vaccine candidate comprising PBP2a and autolysin against Methicillin Resistant *Staphylococcus aureus* confers protection in the experimental mice. *Mol Immunol.* **91**:1-7. - Hassoun A., Linden P.K., Friedman B. (2017). Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. *Crit Care.* **21**:211. - Hawkins J., Kodali S., Matsuka Y.V., McNeil L.K., Mininni T., *et al.* (2012). A recombinant clumping factor A-containing vaccine induces functional antibodies to *Staphylococcus aureus* that are not observed after natural exposure. *Clin Vaccine Immunol.* **19**:1641-1650. - Holtfreter S., Kolata J., Stentzel S., Bauerfeind S., Schmidt F., *et al.* (2016). Omics approaches for the study of adaptive immunity to *Staphylococcus aureus* and the selection of vaccine candidates. *Proteomes*. **4**: pii: E11. - Josefsson E., Hartford O., O'Brien L., Patti J.M, Foster T. (2001). Protection against experimental *Staphylococcus aureus* arthritis by vaccination with clumping factor A, a novel virulence determinant. *J Infect Dis.* **184**:1572-1580. - Kim H.K., Falugi F., Thomer L., Missiakas D.M., Schneewind O. (2015). Protein A suppresses immune responses during *Staphylococcus aureus* bloodstream infection in guinea pigs. *MBio*. **6**: pii: e02369-14. - Krismer B., Weidenmaier C., Zipperer A., Peschel A. (2017). The commensal lifestyle of *Staphylococcus aureus* and its interactions with the nasal microbiota. *Nat Rev Microbiol*. **15**:675-687. - Lacey K.A., Geoghegan J.A., McLoughlin R.M. (2016). The role of *Staphylococcus aureus* virulence factors in skin infection and their potential as vaccine antigens. *Pathogens*. **5:** pii: E22. - Landrum M.L., Lalani T., Niknian M., Maguire J.D., Hospenthal D.R., *et al.* (2017). Safety and immunogenicity of a recombinant *Staphylococcus aureus* α-toxoid and a recombinant Panton-Valentine leukocidin subunit, in healthy adults. *Hum Vaccin Immunother*. **13**:791-801. - Levy J., Licini L., Haelterman E., Moris P., Lestrate P., *et al.* (2015). Safety and immunogenicity of an investigational 4-component *Staphylococcus aureus* vaccine with or without AS03B adjuvant: Results of a randomized phase I trial. *Hum Vaccin Immunother*. **11**:620-31. - Malachowa N., Kobayashi S.D., Porter A.R., Braughton K.R., Scott D.P., *et al.* (2016). Contribution of *Staphylococcus aureus* coagulases and clumping Factor A to abscess formation in a rabbit model of skin and soft tissue infection. *PLoS One.* **11**:e0158293. - Mancini F., Monaci E., Lofano G., Torre A., Bacconi M., *et al.* (2016). One Dose of *Staphylococcus aureus* 4C-Staph vaccine formulated with a novel TLR7-dependent adjuvant rapidly protects mice through antibodies, effector CD4+ T cells, and IL-17A. *PLoS One*. **11**:e0147767. - March A., Aschbacher R., Sleghel F., Soelva G., Kaczor M., *et al.* (2017). Colonization of residents and staff of an Italian long-term care facility and an adjacent acute care hospital geriatric unit by multidrug-resistant bacteria. *New Microbiol.* 40:258-263. - McNeely T.B., Shah N.A., Fridman A., Joshi A., Hartzel J.S., *et al.* (2014). Mortality among recipients of the Merck V710 *Staphylococcus aureus* vaccine after postoperative *S. aureus* infections: an analysis of possible contributing host factors. *Hum Vaccin Immunother*. **10**:3513-3516. - Missiakas D., Schneewind O. (2016). *Staphylococcus aureus* vaccines: deviating from the carol. *J Exp Med.* **213**:1645-1653 - Mohamed N., Wang M.Y., Le Huec J.C., Liljenqvist U., Scully I.L., *et al.* (2017). Vaccine development to prevent *Staphylococcus aureus* surgical-site infections. *Br J Surg.* **104**:e41-e54. - Moscoso M., García P., Cabral M.P., Rumbo C., Bou G. (2018) A D-Alanine Auxotrophic Live vaccine is effective against lethal infection caused by *Staphylococcus aureus*. *Virulence*. **3**:0. - Musumeci R., Calaresu E., Gerosa J., Oggioni D., Bramati S., *et al.* (2016). Resistance to linezolid in *Staphylococcus* spp. clinical isolates associated with ribosomal binding site modifications: novel mutation in domain V of 23S rRNA. New Microbiol. **39**:269-273. - Oliveira W.F., Silva P.M.S., Silva R.C.S., Silva G.M.M., Machado G., *et al.* (2018). *Staphylococcus aureus* and *Staphylococcus epidermidis* infections on implants. *J Hosp Infect*. **98**:111-117. - Parker D. (2017). Humanized mouse models of *Staphylococcus aureus* infection. *Front Immunol*. **8**:512. - Pozzi C., Olaniyi R., Liljeroos L., Galgani I, Rappuoli R., et al. (2017) Vaccines for *Staphylococcus* aureus and target Populations. *Curr Top Microbiol Immunol.* **409**:491-528. - Proctor R.A. (2012). Challenges for a universal *Staphylococcus aureus* vaccine. Clin Infect Dis. **54**:1179–1186. - Que Y.A., Moreillon P. (2015). *Staphylococcus aureus* (Including Staphylococcal Toxic Shock Syndrome). *In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases*. Bennett J.E., Dolin R., Blaser M.J. Editors. Elsevier Saunders, Philadelphia, PA. Eight Edition, pp: 2237-2271. - Reddy P.N., Srirama K., Dirisala V.R. (2017). An update on clinical burden, diagnostic tools, and therapeutic options of *Staphylococcus aureus*. *Infect Dis* (Auckl). **10**:1179916117703999. - Roetzer A., Jilma B., Eibl M.M. (2017). Vaccine against toxic shock syndrome in a first-in-man clinical trial. *Expert Rev Vaccines*. **16**:81-83. - Sambri A., Pignatti G., Romagnoli M., Donati D., Marcacci M., et al. (2017). Intraoperative diagnosis of *Staphylococcus aureus* and coagulase-negative *Staphylococcus* using Xpert MRSA/SA SSTI assay in prosthetic joint infection. *New Microbiol.* **40**:130-134. - Sause W.E., Buckley P.T., Strohl W.R., Lynch A.S., Torres V.J. (2016). Antibody-based biologics and their promise to combat *Staphylococcus aureus* infections. *Trends Pharmacol Sci.* 37:231-241. - Schaffer A.C., Lee J.C. (2009). Staphylococcal vaccines and immunotherapies. *Infect Dis Clin*. **23**:153-171. - Schmidt C.S., White C.J., Ibrahim A.S., Filler S.G., Fu Y., *et al.* (2012). NDV-3, a recombinant alum-adjuvanted vaccine for *Candida* and *Staphylococcus aureus*, is safe and immunogenic in healthy adults. *Vaccine*. **30**:7594-7600. - Selle M., Hertlein T., Oesterreich B., Klemm T., Kloppot P., *et al.* (2016). Global antibody response to *Staphylococcus aureus* live-cell vaccination. *Sci Rep.* **6**:24754. - Siddiqi K.S., Husen A., Rao R.A.K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. *J Nanobiotechnology*. **16**:14. - Stentzel S., Gläser R., Bröker B.M. (2016). Elucidating the anti-*Staphylococcus aureus* antibody response by immunoproteomics. *Proteomics Clin Appl.* **10**:1011-1019. - Stranger-Jones Y.K., Bae T., Schneewind O. (2006). Vaccine assembly from surface proteins of *Staphylococcus aureus. Proc Natl Acad Sci USA*. **103**:16942-16947. - Torre A., Bacconi M., Sammicheli C., Galletti B., Laera D., et al. (2015). Four-component *Staphylococcus aureus* vaccine 4C-staph enhances Fcγ receptor expression in neutrophils and monocytes and mitigates *S. aureus* infection in neutropenic mice. *Infect Immun.* 83:3157-3163. - Veloso T.R., Mancini S., Giddey M., Vouillamoz J., Que Y.A., *et al.* (2015). Vaccination against *Staphylococcus aureus* experimental endocarditis using recombinant *Lactococcus lactis* expressing ClfA or FnbpA. *Vaccine*. **33**:3512-3517. - Wacker M., Wang L., Kowarik M., Dowd M., Lipowsky G., *et al.* (2014). Prevention of *Staphylococcus aureus* infections by glycoprotein vaccines synthesized in *Escherichia coli*. *J Infect Dis*. **209**:1551-1561. - Xu X., Zhu H., Lv H. (2018). Safety of *Staphylococcus aureus* four-antigen and three-antigen vaccines in healthy adults: A meta-analysis of randomized controlled trials. *Hum Vaccin Immunother*. **14**:314-321. - Yang L., Zhou H., Cheng P., Yang Y., Tong Y., *et al.* (2018). A novel bivalent fusion vaccine induces broad immunoprotection against *Staphylococcus aureus* infection in different murine models. *Clin Immunol.* **188**:85-93. - Zhang F., Jun M., Ledue O., Herd M., Malley R., *et al.* (2017). Antibody-mediated protection against *Staphylococcus aureus* dermonecrosis and sepsis by a whole cell vaccine. *Vaccine*. **35**:3834-3843.