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Design of a Wearable Interface for Lightweight Robotic Arm for People

with Mobility Impairments

Tommaso Lisini Baldi1,2, Giovanni Spagnoletti1, Mihai Dragusanu1, and Domenico Prattichizzo1,2

Abstract— Many common activities of daily living like open a
door or fill a glass of water, which most of us take for granted,
could be an insuperable problem for people who have limited
mobility or impairments. For years the unique alternative to
overcame this limitation was asking for human help. Nowadays
thanks to recent studies and technology developments, having
an assistive devices to compensate the loss of mobility is
becoming a real opportunity. Off-the-shelf assistive robotic
manipulators have the capability to improve the life of people
with motor impairments. Robotic lightweight arms represent
one of the most spread solution, in particular some of them are
designed specifically to be mounted on wheelchairs to assist
users in performing manipulation tasks. On the other hand,
usually their control interface relies on joystick and buttons,
making the use very challenging for people affected by impaired
motor abilities. In this paper, we present a novel wearable
control interface for users with limb mobility impairments.
We make use of muscles residual motion capabilities, captured
through a Body-Machine Interface based on a combination
of head tilt estimation and electromyography signals. The
proposed BMI is completely wearable, wireless and does not
require frequently long calibrations. Preliminary experiments
showed the effectiveness of the proposed system for subjects
with motor impairments, allowing them to easily control a
robotic arm for activities of daily living.

Index Terms— Wheelchair-mounted robotic arm, Head
tracking, EMG signals, Inertial and magnetic sensors, Wearable
technology, Assistive technology.

I. INTRODUCTION

According to the European Health and Social Integration

Survey over 49 million people need assistance in their daily

lives [1]. Assistive technologies like powered wheelchairs,

walkers, canes, and prosthetic devices have greatly enhanced

the quality of life for individuals with disabilities. Nev-

ertheless, people with limited limbs usage have difficulty

in performing Activities of Daily Living (ADLs) such as

picking up and objects, opening doors, filling a glass of

water, etc. Interest and effort in this field have led to de-

sign Wheelchair-Mounted Robotic Manipulators (WMRMs)

to increase autonomy in manipulating objects in ADL for

people with upper extremity reduced mobility, like persons

with spinal cord injuries [2], [3]. Several robotic arms

designed as WMRM are commercially available. The Manus
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manipulator, produced by Exact Dynamics, is a 6 Degrees of

Freedom (DoFs) robot that can be mounted on a wheelchair

system [4]. Kinova developed JACO and MICO lightweight

robots ready to be carried on a wheelchair to help people with

limb impairments in their ADL [5]. A common drawback for

this robot family is having more DoF than the dimensionality

of their control interface, thus resulting a hard usability for

impaired users.

Recent works studied solutions for making such robots

fully or partially autonomous [6], [7]. However, it has been

proven that patients prefer to retain as much control as

possible when working with assistive devices [3]. Joysticks

and gamepads are the most widespread input technologies,

thanks to their quick integration and easiness of use, but

they have to be operated by hand. Very often people with

upper limbs impairments cannot move their hands and arms

with fine and precise gestures. Existing Human-Computer

Interaction (HCI) modalities [3] as well as emerging Brain

Computer Interfaces [8] and state-of-the-art computer vision

systems [9] have been shown to be suitable controllers for

WMRM systems. Prior investigations in HCI for people

with upper extremity impaired or quadriplegics has resulted

in several Body-Machine Interfaces (BMI) as speech and

gesture recognition [10], [11], tongue movements [12], Elec-

trooculography [13], and Electromyography (EMG) [14].

Voice control interface is a common solution, but the reli-

ability of the speech recognition decrease with increasing

of the environmental noise, so it becomes unreliable in

crowded spaces, or noisy outdoor scenarios. An alternative

control method relies on gesture motion recognition and

body tracking. Concerning this, several techniques have been

developed such as optical trackers, exoskeletons, camera

tracking algorithms, and fabric-integrated sensors. Accurate

optical tracking systems such as Vicon (Vicon Motion Sys-

tems, UK) and Optitrack (NaturalPoint Inc., USA) exploit

active or passive optical markers to estimate human body

configuration with high precision and accuracy. The main

drawback of such approaches is the need of a high-cost

structured environment. Exoskeletons allow to accurately es-

timate the human pose thanks to their rigid structure and high

quality sensors [7]. Disadvantages result in cost, weight, and

poor portability. Camera-based tracking algorithms became a

widespread solution due to improvements in computer vision

techniques and progressive growth in GPU computational

capabilities [15], [16]. However these techniques have some

limitations: RGB-D cameras might not work properly in an

outdoor environment due to the infrared interference, and

occlusions may induce a poor estimation. A promising way
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Fig. 1. System architecture scheme. A cap instrumented with a MARG board and three EMG electrodes is used to record and wireless transmit to a PC
both the detected frontalis muscle contractions and the inertial and magnetic values. Two Xbee Series 1 boards create a wireless serial link between the
cap and the wheelchair controller. The controller is based on an Intelr NUC pc in which are executed at the same time both the minimization algorithm
and the robot control main program. The Intelr NUC pc and the Kinova arm can be mounted on a powered wheelchair.

to track the user and control a robotic manipulator is based on

Micro Electro-Mechanical Systems (MEMS) technology. In

particular, a MARG (Magnetic, Angular Rate, and Gravity)

board consists of a MEMS triaxial gyroscope, accelerometer,

and magnetometer. The board can be easily integrated with

a wearable device and used to command the motion of a

robotic aid. Tracking systems based on this technology are

commercially available and allow to accurately track, both

in outdoor and indoor environments, under different light

conditions and free from grounded hardware [17]–[19].

In this paper, we present a novel Body Machine Interface

to control an assistive robotic arm. The proposed BMI

extracts signals from body motions exploiting residual move-

ments available even in people with severe impairments.

Our system employs a MARG sensor for estimating the

patient’s head orientation and EMG electrodes for detecting

muscle contractions. The patient can thus drive the assistive

robot tilting the head and contracting the frontalis muscles.

This choice fitted the requirements of designing a low cost

interface capable of working in unstructured environments

with varying light conditions, being portable and independent

from grounded tracking hardware. Moreover, since the goal

is to create a wearable system, an instrumented cap repre-

sents a good deal between user customization, portability,

and tracking capabilities. Pilot experimental results show the

effectiveness of the proposed approach, allowing the patient

to grasp a bottle and fill a glass of water in about a minute

and half.

The paper is organized as follows. Section II presents the

wearable interface for controlling a lightweight robotic arm

using EMG signals and head motion. Section III details the

head tilt estimation algorithm. Section IV reports the EMG

signals acquisition and filtering procedure. In Section V we

describe the case study. Finally, in Section VI conclusions are

drawn and possible subjects of future research are outlined.

II. WEARABLE INTERFACE

A patient oriented control interface should be easy to use

and effective. Based on this principle we build a system

in which the user is both in control and is assisted by the

LED

Fig. 2. The wearable control interface is made by a MARG board for
tilt estimation, three EMG electrodes, and an acquisition board, based on a
ATMega328 microcontroller. The system is capable of collecting the values
from the MARG board and from the electrodes and send them wireless to
the robot controller. A LED is used for provide the user with visual feedback

robot during the manipulation tasks. The wearable interface

presented in this work aims at replacing dedicated inputs

to fully control a robotic arm and operate the end effector.

Usually joystick and buttons are used to control assistive

robots, but they are not suitable for patients with disabilities,

or upper limbs impairments. To overcame this functional

limitation we replaced the buttons with the frontalis muscle

contraction, and the joystick with the head inclination.

A cap (see Fig. 2), instrumented with a single MARG

board and three electrodes (one channel bipolar EMG), is

employed and used both as inputs for the tilt estimation and

for the control mode selection. With the proposed system

the user can switch between different robot control modes

contracting the frontalis muscle, and move the gripper tilting

the head. In Section III we report the algorithm for the tilt

estimation, whereas in Section IV the EMG signal detections

is fully detailed. An ATMega328 microcontroller, included

in the cap, is in charge of collecting the values from the

MARG board and from the EMG electrodes and send them

through two Xbeer modules to the wheelchair controller.

The acquisition rate of the inertial and magnetic values is



100 Hz. A Kinova MICO2 robotic arm is actuated using

an Intelr NUC PC under C environment. The PC can be

powered using the wheelchair battery and it is configured

for a low power consumption. Thanks to these features

the MICO2 arm could be mounted to the seat frame of

a motorized wheelchair together with the controller. The

architecture of the proposed wearable interface is illustrated

in Fig. 1.

The proposed system required an initialization procedure

composed of two steps. In the first phase, the user is asked to

keep the head still for 3 seconds, time in which the MARG

board collects 300 samples to calibrate the sensors, after that

the current orientation is set as the initial one (see Section III

for further details). In the second step, according to the

maximum voluntary contraction (MVC) technique [20], the

user is asked activate two times the frontalis muscle for

three seconds to adjust levels and thresholds for a correct

detection. A LED informs the user once the procedure is

successfully completed. Thenceforth the user can start to

operate the robot, switching between four different control

modes selectable with the muscle contractions as detailed

in Table I. The selection is fed back to the operator with

the LED, that flashes n times per second indicating the

selected control mode (e.g., 3 times per second for the wrist

rotation modality). Once the user has selected the desired

control, he/she is able to move the robot tilting the head.

Cap inclination and selected mode are transformed in robot

motions in accordance with the following equation

vk =

{

αkΨi, if |Ψi| > δk

0, if |Ψi| ≤ δk
, (1)

where Ψi is the angle estimated using the algorithm detailed

in Section III, i = {Roll, P itch} is the current axis, δk
represents a threshold to avoid undesired motion due to

the head tremor and αk is a parameter that converts the

estimated angle into a velocity reference. The resulting speed

vk, along the k-th axis depends on the selected modality k =
{x, y, z, θ, φ, ψ}. Being x−, y−, z− the axis w.r.t the robot

base reference frame, and θ, φ, ψ the robot wrist rotational

axes. We discarded the Yaw angle, since it is not suitable for

people with impairments. Moreover after some preliminary

tests, we decide to use four different control modality instead

of three to improve the usability and system effortlessness.

We experimentally observed that keeping separated end

effector translations and wrist rotations increases the learning

effect and the familiarization with the system, thus reduce

the uncertainty in the user’s movement and consequently

the motion control errors. We defined a high level control

strategy based on a Finite State Machine (see Fig. 3) so

that the user can switch between different control modalities

(see Table I) thanks to the frontalis muscle contractions.

Furthermore for the open and close fingers operation we

decided to use only the EMG signals to control the grasp,

since we can not control the speed of the fingers actuators.

The event e3 associated to the fingers motions produces a

change in the end-effector state, i.e, from opened to close

position and vice-versa, keeping the same control modality.

Fig. 3. The proposed finite state machine for the motion control of the
robotic manipulator. MODE 1 is the starting state. Events e1, e2 and e3 are
generated by contracting the frontalis muscle, that correspond to one, two,
and three frontalis muscle contraction, respectively.

TABLE I

MODES DESCRIPTION

CAP TILT

Roll Pitch

Mode 1
Translation
Left/Right

Translation
Forward/Backward

Mode 2
Translation
Up/Down

Mode 3
Wrist rotation

clockwise/counter-clockwise
Wrist

Lateral orientation

Mode 4
Wrist

Vertical orientation

III. TILT ESTIMATION OF MARG SENSOR

In the proposed work, we tested and implemented a Gauss-

Newton method combined with a complementary filter [21]

for the cap tilt estimation. As suggested in [19] this algo-

rithm represents a good compromise since it achieved low

estimation error, and it has only one parameter to be set.

In this section, we briefly review the data fusion method

and the procedure used to estimate the orientation of a

single MARG with respect to an arbitrary position. The

proposed algorithm uses quaternions to describe rotations.

This redundant representation allow us to overcame the

problem of rotating from a reference frame to another one

without loss of precision due to the trigonometric functions.

At each time t, the gyroscope records the angular rates
Sωx(t),

Sωy(t) and Sωz(t) with respect to the x−, y− and

z−axis of the sensors board frame S. We can represent these

values in a quaternion form

Sω(t) = 0 + iSωx(t) + jSωy(t) + kSωz(t)



assuming that the first component of Sω(t) is the real

number. We consider the sensor orientation rate as an in-

finitesimal quaternion variation,

S ġ(t) =
1

2

(

Sq(t− δt)⊗ Sω(t)
)

(2)

where Sq(t − δt) is the latest estimated quaternion,
Sω(t) = [ 0 Sωx(t)

Sωy(t)
Sωz(t) ]

T is the angular rate

vector at the time t, ⊗ is the Hamilton product, and δt is the

sampling time.

Computing the orientation quaternion from accelerometer

and magnetometer values is less trivial. The idea of the

algorithm, which is based on the Gauss-Newton method, is

to exploit the information of gravity and Earth’s magnetic

flux obtained from the sensor to compute a measurement

of rotation with respect to the Earth and limit the effects

of drifting in the orientation estimate due to the gyroscope

integration.

Let Sa(t), Sm(t) ∈ ℜ3×1 be the accelerometer and mag-

netic components expressed in the sensor reference frame,

and consider

Se(t) =

[

Sa(t)
Sm(t)

]

∈ ℜ6×1.

We can refer to the known Earth reference vector as
W e(t) ∈ ℜ6×1, and consequently we can define the orien-

tation estimation error as

ǫ(t) = W e(t) − WMS(t)
Se(t) (3)

.

The idea is to use the Gauss-Newton (GN) method to

estimate WRS(t) (and consequently WMS(t)) in Eq. (3).

Let r(t) be the quaternion representation of the rotation

matrix WMS(t). If we write a single step of the GN method

in a quaternion form we obtain

ri+1(t) = ri(t)− J
♯
i(t)ǫ(t) (4)

where

J
♯
i(t) = (JT

i (t)Ji(t))
−1JT

i (t),

the subscript i represents the i-th iteration of the opti-

mization algorithm and Ji(t) is the Jacobian of the error

ǫ(t) introduced in Eq. (3). As suggested in [21], [22], we

compensate the possible magnetic distortion forwarding the

latest computed quaternion.

The last step of the algorithm fuses the estimation com-

puted exploiting the accelerometer and magnetometer (see

Eq. (4)) with the quaternion estimated with the gyroscope

integration. This operation is provided by a complementary

filter. The gyroscope orientation g(t) is fused with the Gauss-

Newton method result r(t). The output quaternion q(t) is

computed as,

q(t) = γg(t) + (1− γ)r(t)

being 0 < γ < 1, γ ∈ ℜ the parameter of the complementary

filter and

g(t) = q(t− δt) + ġ(t) δt

where ġ(t) is in accordance with Eq. (2). For the sake of

simplicity g(t) is initialized as

g(0) = [1 0 0 0]T .

Please refer to [21] for more information about the perfor-

mance of the proposed algorithm.

Let WqH(t) be the quaternion that define the orientation

of the frame associated to the head, and Wq0 be the offset

quaternion estimated during the initialization, both with re-

spect to the global reference frame W . Thus, the orientation

of the cap with respect to the new reference position is

computed as

0qH(t) = 0qW (t)⊗ WqH(t).

being 0qW (t) the conjugate quaternion of Wq0(t).
The cap orientation described by the quaternion 0qH(t)

can be converted into Euler angles representation and there-

fore the tilt estimation results straightforward. The reference

system and the rotations with respect to the initial orientation

are shown in Fig. 4. These values are processed by the

controller to actuate the robot, as explained in Section II

Fig. 4. Cap reference frame. We decide to use only Roll and Pitch rotation
since the Yaw rotation is not desirable for people with impairments.

IV. EMG SIGNAL DETECTION

Assistive devices aim at reproducing natural motion of the

human arm, and usually can be controlled in three different

modes: translation of the end effector along the three axis

of the space, wrist rotation, and fingers opening/closing. To

swap between one modality to another, we exploit the EMG

interface substituting buttons and switches. Following the

approach described in [23] we focused on the acquisition

of the EMG signal generated when the user contracts the

frontalis muscle. Thanks to its bilateral representation in the

brain cortex the frontalis muscle is always spare, also in

case of stroke, becoming a suitable candidate for substi-

tuting the aforementioned button functions [24]. An EMG

interface measures the electrical potential between a ground

and a signal electrode. The EMG signal can be measured

either invasively, with wire or needle electrodes, or non-

invasively with surface electrodes. The former consists of



Fig. 5. Bottom: Example of three activations (event e3) in a time window
of 2, 5 seconds. Top: raw EMG signal. Bottom: processed EMG signal after
the operations of rectification, normalization and filtering (blue); threshold
(red).

a wire electrode that is inserted into the muscle, whereas

the latter consist in electrodes placed on the intact skin

surface over the subjects’ muscle. In the proposed approach

we used the second method, i.e., surface EMG, in particular

we used non-gelled reusable silver/silver-chloride surface

electrodes. They present the lowest noise interface and are

recommended for biopotentials recording [25]. For acquiring

the signals, we designed and developed a custom acquisition

board, fulfilling requirements on bandwidth, dynamic range,

and physiological principles. A typical EMG waveform is

characterized by a spectral content between 10 to 250 Hz

with an amplitude up to 5 mV depending on the particular

muscle [26]. The microcontroller samples the EMG signal

at 1 kHz to avoid aliasing. The reference value of received

EMG is normalized using the maximum voluntary contrac-

tion (MVC) technique [20]. Fig. 5 shows a representative

raw EMG signal and its filtered values. The trigger signal is

obtained using a single-threshold value defined as the 50%
of the MVC, a level that was repeatable and sustainable for

the subject without producing undue fatigue during the use

of the interface. More in detail, to prevent false activations

due to glitches or to spontaneous spikes, a trigger is detected

only if the captured signal exceeds the threshold for at least

50 ms [27]. Moreover to generate multiple-contractions event

we set a time window of 2, 5 seconds starting from the

first threshold overtaking. Thus, events e1, e2, e3 correspond

to one, two or three muscle contractions in the same time

window, respectively.

V. EXPERIMENTAL SETUP

In this section, we present the experimental evaluation

performed to assess the feasibility and functionality of our

(a)

Hole1
Hole2

(b)

Fig. 6. Experimental setup. The user with his own wheelchair. He wears
the hat and is able to control the robotic arm tilting the head. For the sake
of simplicity in the experimental phase the robot was fixed to a table.

approach. We validated the proposed system in two different

scenarios. In the first scenario, users were asked to fill a glass

with a bottle of water. In this scenario, we tested the usability

of the interface for ADL and its capacity in performing tasks

with multiple translations and wrist rotations. We defined

this scenario as S1. The second scenario is a pick and place

task. This choice was adopted to highlight the capability of

the system in performing fine rotations and translation. We

refer to this scenario as S2. Users repeated the experiments

in two different modalities. In the first modality (I), users

wore the hat and controlled the robot with the proposed

interface. In the second modality (J) users used 2 axis and

6 buttons joystick to control the robot. The MICO2 robotic

manipulator was mounted on a table, close to the left side

of the wheelchair to provide users with disabilities more

capabilities to interact and manipulate the objects in the

environment. Ten subjects (age range 24-51, eight males)

were involved in these tests, eight of them were healthy

subjects while one of the participants reported serious limited

mobility both to the upper and lower limbs, and another one

had limited lower limbs mobility. The participants signed

informed consent forms. All of them were informed about

the purpose of the experiment, were able to discontinue

participation at any time, and no payment was offered for

the participation. A familiarization period of 5 minutes for

each modality was provided to participants to acquaint them

with the system. In the first scenario (S1), each user wore

the cap and performed the proposed task. A representative

user wearing the system and performing S1 is shown in

Fig. 6(a). In S2 users were asked to pick a peg from a

hole in the support base and place it inside another one

with a different orientation (see Fig. 6(b)). The peg was

a 3D-printed parallelepiped with a 2 × 5 cm base and 20
cm height. The size of the holes in the support base was

2.5×5.5 cm, while the board was 3.5 cm high. The final hole

(hole2) was rotated of 20 degrees with respect to starting hole

(hole1) about the direction perpendicular to the punctured

board surface.

In both scenarios, users tried the two modalities four times,

an exception was made for the upper limb impaired user that

performed only the I modality. The J modality was used as a
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Fig. 7. Results of the experimental validation, divided by scenario: we
report mean time (±standard deviation) to fill a glass of water and to
complete the pick and place task for S1 and S2, respectively. Blue bars
represent data where users used the proposed interface (I), whereas green
bars represent data where users controlled the robot with the joystick (J).

gold metric for evaluating the functionality of our approach.

The average task completion times are summarized in Fig 7.

Results shows the effectiveness of the proposed approach.

An additional comparison metric can be found in [11], where

the authors evalueted their interface on a task similar to S1;

results of [11] undertook more than 200 seconds. At the

end of the trials, an online survey based the Usability and

User Experience (USE) [28] in the form of a bipolar Likert-

type was proposed to the subjects. The USE questionnaire

evaluates four dimensions of usability: usefulness, ease of

use, ease of learning, and satisfaction. Each dimension is

assessed with a number of items which subjects respond to

with a seven-point scale (1 = strongly disagree, 7 = strongly

agree) for the overall system. Results are shown in Table II.

TABLE II

QUESTIONNAIRE FACTORS AND RELATIVE MARKS.

Questionnaire factors Mean (SD)

Usefulness 5.9(0.3)
Ease of use 5.5(0.5)
Ease of learning 5.6(0.6)
Satisfaction 6.1(0.3)

Mark ranges from “1 = strongly disagree” to “7 = strongly agree”.

Mean and standard deviation (Mean (SD)) are reported.

From Table II, we can assert that the subjects rated

positively the system. In particular the satisfaction after the

trials results very high. On the other hand, the easiness of

the interface use and learning is the weakest point. This

is probably due to the limited familiarization time before

the trials. The high variance is symptomatic of different

perceptions between the users depending on their motor

abilities.

VI. CONCLUSION AND FUTURE WORK

Results of the users evaluation and time comparison,

confirm the feasibility and greater usability of the proposed

interface (see Table II) that implements in a wearable way a

MEMS tilt estimation and an EMG signal detection to control

a 6 DoF lightweight arm. A cap, instrumented with a nine

axis MARG and three EMG sensors, is used both to move

and control the opening/closing of the end-effector. The

results of the user study show that individuals with severe

motor impairments can operate assistive robotic manipula-

tors using the proposed system interface. Moreover patients

confirmed its ease of use and performances comparable with

a joystick based controller (cf. Fig 7). In future work we

will design a more compact electronic system, and a force

feedback techniques will be evaluated to improve control

performance.
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