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Abbreviations 

AD: Alzheimer’s disease 

AChE: acetylcholinesterase 

BuChE: butyrylcholinesterase  

CFP: Circular Fingerprint  

3D-QSAR – 3D-quantitive structure-activity relationship 

EDTA: ethylenediaminetetraacetic acid 

FP: false positive 

GSK-3: glycogen synthase kinase 3  

HMT: histamine N-methyltransferase 

H3R: histamine H3-receptor  

5-HT1a: 5-hydroxytryptamine-1a (serotonin) 

5-HT2a: 5-hydroxytryptamine-2a (serotonin) 

5-HT2c: 5-hydroxytryptamine-2c (serotonin) 

MAO-A: monoamine oxidase A  

MAO-B: monoamine oxidase B 

MCC: Matthews Correlation Coefficient 

MTDL: multi-target-directed ligand  

NMDA receptors: N-methyl-D-aspartate receptor 

nAChRs: nicotinic acetylcholine receptors 
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8-OH-DPAT: (±)-8-Hydroxy-2-dipropylaminotetralin 

PDE-4: phosphodiesterase 4  

PD: Parkinson’s disease 

RMSEE: Root Main Square Error of Estimation  

RMSEP: Root Main Square Error of Prediction 

SERT: serotonin transporter 

TP: true positive 

Tris: tris(hydroxymethyl)aminomethane 

WADA: World Anti-Doping Agency 

 

Abstract 

 

Recently developed multi-targeted ligands are novel drug candidates able to interact with 

monoamine oxidase (MAO) A and B; acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE); or with histamine N-methyltransferase (HMT) and 

histamine H3-receptor (H3R). These proteins are drug targets in the treatment of 

depression, Alzheimer’s disease, obsessive disorders, and Parkinson’s disease.  

A probabilistic method, the Parzen-Rosenblatt Window approach, was used to build a 

“predictor” model using data collected from the ChEMBL database. The model can be 

used to predict both the primary pharmaceutical target and off-targets of a compound 

based on its structure. Molecular structures were represented based on the circular 

fingerprint methodology. The same approach was used to build a “predictor” model from 

the DrugBank dataset to determine the main pharmacological groups of the compound. 

The study of off-target interactions is now recognised as crucial to the understanding of 

both drug action and toxicology. Primary pharmaceutical targets and off-targets for the 

novel multi-target ligands were examined by use of the developed cheminformatic 

method.  
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Several multi-target ligands were selected for further study, as compounds with possible 

additional beneficial pharmacological activities. The cheminformatic targets 

identifications were in agreement with four 3D-QSAR (H3R/D1R/D2R/5-HT2aR) models 

and by in vitro assays for serotonin 5-HT1a and 5-HT2a receptor binding of the most 

promising ligand (71/MBA-VEG8). 

 

 

 

 

Introduction 

The diverse cerebral mechanisms implicated in neurodegenerative disorders [1] and 

neurological diseases [2-6] and the heterogeneous but overlapping nature of phenotypes 

indicated that multitarget strategies may be appropriate for the improved treatment of 

complex brain diseases. It is now accepted that drug action can involve plural targets and 

that polypharmacology – interacting with multiple targets to address disease in more 

subtle and effective ways – will be a key pharmacological concept in future.  

MTDL approach [7-9] has been applied for development of CNS drugs with improved 

efficacy compared to their precursors, such as dopamine D2/D3/5-HT2A antagonism plus 

5-HT1A partial agonism or dual PDE-4/ GSK-3 inhibitors for therapy of schizophrenia 

[10-12], monoamine reuptake inhibition plus 5-HT2C antagonist properties for tricyclic 

antidepressants [13-15], multi-target AChE/BuChE/MAO-A/MAO-B inhibitors for 

therapy of neurodegenerative Alzheimer’s (AD) and Parkinson’s diseases (PD) [7, 16, 

17], and range of CNS drug candidates with additional activity on various targets [18-20]. 

The potential clinical advantages of novel classes of multi-target agents are efficacy and 

speed of action, improved tolerance, and therapeutic range [8, 9, 13]. Therefore, 

development of multi-targeted compounds, with selective ranges of cross-reactivity, as 

novel drug candidates against neurological diseases was one of the main aims of 

our recent studies [21-35]. 

Understanding how the neurotransmitter systems interact is also important in optimizing 

therapeutic strategies. Pharmacological intervention on one will often influence another, 

such as the well-established serotonin-dopamine interaction [36, 37] or the dopamine-
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glutamate interaction [38, 39]. This is a second reason to design compounds with 

specific, known cross-reactivity. An example of a drug with activity on different 

neurotransmitter systems is the cognitive enhancer, memantine, that binds as an 

uncompetitive antagonist at glutamatergic NMDA receptors [40] inhibiting the influx of 

Ca
2+

 ions that would result in neuronal excitotoxicity. Memantine also acts as a non-

competitive antagonist at the 5-HT3 receptor and binds to dopamine D2 receptors and 

nAChRs [41]. 

Many compounds already in databases have been investigated for multiple targets as part 

of drug-discovery programs. Mining this information can provide experimental 

information useful for building pharmacophores. Data for three groups of new dual or 

multi-target compounds were also used in this process and to develop 3D-QSAR models 

for activity evaluation at the selected targets. The first group contains novel carbonitrile-

aminoheterocyclic inhibitors of both MAO A and B enzymes [21]. More selective MAO 

A inhibition was observed for dicarbonitrile aminofuran derivatives of the dataset [21].  

The second group includes acetylene/indol/piperidines [22-25] and pyridine derivatives 

[26, 27], as compounds with appreciable inhibitory profile for MAO, AChE, and BuChE. 

These agents are potentially effective multi-targeted ligands in therapy for Alzheimer’s 

disease [42, 43].  

The third group contains the recently synthesised multipotent histamine H3R antagonists 

that simultaneously possess strong inhibitory potency on catabolic HMT enzyme [28, 

29]. These compounds are dual acting procognitive agents with possible beneficial effects 

in many psychiatric and neurodegenerative diseases [34, 35].  

We have previously demonstrated that prohibited substances can be classified into 

athletic performance-enhancing classes using MACCS, CDK, and UFS-MACCS hybrid 

cheminformatics descriptors and machine learning methods including Random Forest, k-

Nearest Neighbours and Naive Bayes [44-46].  In silico prediction of protein targets is a 

new research area useful for understanding molecular bioactivities, performance-

enhancing effects of molecules, target predictions in early drug development and 

toxicology [47-54], allowing the determination of both the primary pharmaceutical target 

and the off-targets from the structure of a compound. In silico ligand-target prediction 

helps us both to infer and to understand molecular bioactivities of test compounds. As 
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well as being valuable for understanding the primary pharmaceutical roles of molecules, 

prediction of ligand-target associations facilitates both in silico polypharmacology and 

toxicology. Our interest is in predicting ligand-target associations that will allow us to 

define binding profile of ligand and in suggesting theoretical and experimental 

approaches directed towards gaining a deeper understanding of possible pharmacological 

effects. Our novel methodology, based on Circular Fingerprint (CFP) descriptors of 

compounds [55] and information data mined in the ChEMBL database, was very 

successfully applied in prediction of unexplored compound-to-target associations using a 

set of the WADA prohibited compounds [56]. A similar approach [56] was now applied 

to determine primary pharmaceutical targets and off-targets for our novel multi-target 

ligands (1-134) [21-29] as a crucial step in understanding the pharmacological and 

toxicological profiles of these novel compounds. Incorporation of target predictions into 

our drug design workflow represents one of the main advances of this study.  

The publicly available ChEMBL database [57] contains bioactivity data for hundreds of 

thousands of different molecules on thousands of protein targets. When this information 

is combined with data from sources such as DrugBank [58], results can also be associated 

with specific biological and pharmacological activities. One of the first steps of our 

methodology is to apply a clustering algorithm capable of identifying structurally 

different groups of ligands and finding the optimum number of clusters for a given 

database. Those molecules, which have been examined in different assays, may have 

activities for more then one target. The target prediction methods presented here can 

predict unexplored compound-to-target associations and patterns of activity against the 

whole set of targets to be assessed. Our approach allows identification of novel 

compounds associated with a given pharmacological function.  

These predictions can help to early identify any potential beneficial pharmacological 

effects, or unwanted side effects, of the novel multi-target agents [21-29] examined in 

this study. The compounds with better pharmacological activity profiles can be further 

examined by 3D-QSAR for their interaction with the targets, and then selected for 

experimental testing. Application of these cheminformatic and 3D-QSAR methods in 

early stage of drug discovery could significantly reduce the need for animal or human 

experiments. Our results can be interpreted as a quantitative assessment of protein-target 



 7 

interactions that will prevent unpromising novel compounds being examined in vitro and 

in vivo. 

 

Methods 

Filtered and Refined families of the ChEMBL Dataset 

The ChEMBL database presently has 8,845 targets and 1,059,559 unique compounds, 

which are connected with the targets, based on experimental activity data derived from 

44,682 publications. Each of the targets has compounds associated with it. Each such 

association comes from the experimental data indicating activity of the molecule against 

the target. However, some molecules are found to be inactive. A compound in ChEMBL 

database can be associated with more then one target family. In order to predict whether a 

given molecule will be active against a particular target, we first applied a number of 

rules on the ChEMBL dataset in order to generate sets of molecules that are 

experimentally determined to be bioactive (IC50 (≤50 μM), Ki (<20 μM), Kd (≤10 μM), 

EC50 (≤40 μM), ED50 (≤40 μM), potency (≤10 μM), activity (≥40%), inhibition (≥45%)). 

These rules depend on the ranges of values against that target and the distribution of 

values of the relevant quantity within ChEMBL [54, 56]. This process generates 

bioactivity based filtered families. Our recently developed PFClust clustering [59] was 

applied to all the filtered ChEMBL families, which subdivided each family into smaller 

groups based both on ligand structure and their proven activity on a given protein target 

[54, 56]. The compounds were clustered on the basis of their chemical structures, 

described by Circular Fingerprints (CFP) [55]. This leads to a set of refined families, each 

consisting of a group of molecules, which share similar chemical structure and 

bioactivity. The refined families of the ChEMBL dataset will allow us to identify the 

different sets of ligands [54, 56, 59].   

Molecular fingerprints and similarities 

The studied molecules are represented as CFP vectors [55]. Pairwise similarity between 

two molecules is calculated by Tanimoto similarity scores [60]. The obtained Tanimoto 

similarity scores are then transformed into probabilities (pairwise p-values) using an 
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appropriate kernel function. The Gaussian distribution was proven to be the best suited 

kernel function for the refined ChEMBL dataset [56]. In order to predict molecule-target 

pairs, we had to calculate how similar a given molecule xi is to the members of family ω 

= {x1, x2, … , xn} using the refined ChEMBL dataset. We first calculated the distribution 

of p(t[xi,ω]) between molecule xi and the known members of ω. The probability density 

function of p(t[xi,ω]) is then estimated by use of the Parzen-Rosenblatt (PR) [61, 62] 

kernel density estimation method.  

Methodology validation 

Our methodology is further validated by use of a fivefold Monte Carlo cross-validation 

for: the original ChEMBL dataset with all the compounds assigned to their label based 

ChEMBL families; the bioactivity-based filtered ChEMBL families; and finally the 

refined ChEMBL families obtained by PFClust clustering of the filtered dataset. In each 

cross-validation, we remove 10% of the members of each family, which are then used as 

a test set of queries. To investigate the relative performances using the three different 

definitions of families, we calculated two validation metrics. To investigate the relative 

performance of each methodology, we classified as a true positive (TP) a hit to the parent 

family from which the query compound was taken, and as false positives (FP) hits to all 

other families. The TPs and FPs obtained in the first four top hits for each query in all the 

cross-validation runs for each of the three definitions of families were used to calculate 

the Matthews Correlation Coefficient (MCC) [63], as a measure of prediction success. 

The results of the fivefold Monte Carlo cross-validation proved that the best performing 

model was the one based on the refined families [56]. 

Identifying the off-targets of the novel multipotent compounds  

We used 134 novel drug candidates (1-134) (Figure 1) able to interact with MAO A and 

B; AChE and BuChE; or with HMT and histamine H3-receptor (Table 1), as queries 

against the refined ChEMBL dataset [56]. 

Figure 1. General structural formulas of the examined compounds 1-134 [21-29]. 

Stereocenters are indicated with a star (*).  
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Table 1. Compounds examined in this study [21-29]. 

Figure 2.  Target prediction methodology applied for a query compound (1-134) using 

the refined ChEMBL dataset. 

For the three classes of compounds (Figure 1: 1-134) we used our cheminformatic 

workflow (Figure 2) to retrieve from the refined ChEMBL dataset the most significant 

families having p-values less then 0.10 (PR-score  0.10). This allows us to identify 

relevant biological targets for each group of studied compounds. To validate the 

methodology, we first checked whether these molecules have experimentally determined 

activities against these targets in ChEMBL. We created a matrix in which the rows were 

the examined compounds, the columns were the relevant families retrieved from 

ChEMBL, and the values were the relevant values of the Parzen-Rosenblatt function 

f(xi,ω). Each row of this matrix was considered as a vector and we calculated the pairwise 

Euclidean distances between the points. The calculated distances were further used to 

allow PFClust to cluster the examined compounds. For each class of ligands, we 

performed a ChEMBL database search and a vector of PR-scores against the refined 

families was retrieved. Using these position vectors for each compound, we calculated 

the Euclidean distances between the resulting points and a similarity matrix was created. 

Finally, we clustered the vectors using PFClust [59]. 

3D-QSAR modeling 

Based on the ranges and distribution of obtained PR-scores for the MAO/ChE inhibitors 

against the refined ChEMBL dataset was decided to examine by 3D-QSAR studies all 

compounds with target’s PR-score  0.17, in order to allow for cases missed from 2D 

structural fingerprints. The group of compounds with the top predictions of the 

H3R/dopamine-D1R/dopamine-D2R/serotonine-5-HT2a targets (PR-score  0.17) was 

further evaluated by the corresponding 3D-QSAR (H3R/D1R/D2R/5-HT2a) models. The 

H3R (pKi: 5.9-10.1) activities of 35 quinoline/piperidine derivatives (Figure 1: 101-134) 

[28, 29], were used for the 3D-QSAR(H3R) model building.   
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Also, dopamine D1R (pKi: 4.8-8.5), dopamine D2R (pKi: 5.1-8.6), and serotonin 5-HT2a 

(pKi: 4.0-9.7) antagonistic activities of haloperidol, clozapine, and 11 novel indol 

derivatives (Figure 3) [64], were used for 3D-QSAR(D1R), 3D-QSAR(D2R), and 3D-

QSAR(5-HT2a) modeling.  

Figure 3. General structural formula of the indol derivatives used for 3D-QSAR(D1R), 

3D-QSAR(D2R), and 3D-QSAR(5-HT2a) modeling. 

Dominant forms of all the compounds at physiological pH [65] were further used for 

geometry optimisation by the Hartree-Fock/3-21G method [66, 67]. The 3D-QSAR 

studies of the optimised molecular models were performed by use of the Pentacle 1.0.6 

program [68]. The quality of the obtained 3D-QSAR (H3R/ D1R/ D2R/5-HT2a) models 

was examined by use of: leave-one-out cross-validation (Q
2
), correlation coefficient 

(R
2

Observed vs. Predicted), RMSEE of training set, and external validation – RMSEP of test set 

[69, 70]. 

In Vitro Receptor Binding  

General procedures 

The compound 71/MBA-VEG8 was tested for in vitro affinity for serotonin 5-HT1A, 5-

HT2A and 5-HT2C receptors by radioligand binding assays. The compound was dissolved 

in 5% DMSO. The following receptors, their tissue sources, and specific radioligands 

were used: (a) rat brain cortex serotonin 5-HT1A receptor, [
3
H]-8-OH-DPAT; (b) rat brain 

cortex serotonin 5-HT2A receptor, [
3
H]ketanserin; (c) rat brain cortex serotonin 5-HT2C 

receptor, [
3
H]mesulergine. Total and non-specific binding were determined and specific 

binding calculated as the difference between total and non-specific binding. Blank 

experiments were carried out to determine the effect of 5% DMSO on the binding and no 

effects were observed. Competition experiments were analyzed by PRISM 5 

(GraphPadPrism
®
, 1992-2007, GraphPad Software, Inc., La Jolla, CA, USA) to obtain 

the concentration of unlabeled drug that caused 50% inhibition of ligand binding (IC50), 

with six concentrations of test compound, each performed in triplicate. The IC50 values 

obtained were used to calculate apparent inhibition constants (Ki) by the method of 

Cheng and Prussoff [71], from the following equation: Ki = IC50/(1+S/KD) where S 
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represents the concentration of the hot ligand used and KD its receptor dissociation 

constant (KD values, obtained by Scatchard analysis [72], were calculated for each 

labeled ligand). 

5-HT1A binding assay 

Radioligand binding assays were performed following a published procedure [73]. 

Cerebral cortex from male Sprague-Dawley rats (180–220 g) was homogenized in 20 

volumes of ice-cold Tris-HCl buffer (50 mM, pH 7.7) with a Polytron PT10, Brinkmann 

Instruments (setting 5 for 15 sec), and the homogenate was centrifuged at 50000 g for 

10 min. The resulting pellet was then resuspended in the same buffer, incubated for 

10 min at 37 °C, and centrifuged at 50000 g for 10 min. The final pellet was resuspended 

in 80 volumes of the Tris-HCl buffer containing 10 M pargyline, 4 mM CaCl2, and 

0.1% ascorbate. To each assay tube was added the following: 0.1 mL of the drug dilution 

(0.1 mL of distilled water if no competing drug was added), 0.1 mL of [
3
H]-8-hydroxy-2-

(di-n-propylamino)tetralin ([
3
H]-8-OH-DPAT) (170.0 Ci/mmol, Perkin Elmer Life 

Sciences, Boston, MA, USA) in the same buffer as above to achieve a final assay 

concentration of 0.1 nM, and 0.8 mL of resuspended membranes. The tubes were 

incubated for 30 min at 37°C, and the incubations were terminated by vacuum filtration 

through Whatman GF/B filters (Brandel Biomedical Research and Laboratories Inc., 

Gaithersburg, MD, USA). The filters were washed twice with 5 mL of ice-cold Tris-HCl 

buffer, and the radioactivity bound to the filters was measured by liquid scintillation 

spectrometer (Packard TRI-CARB


 2000CA - Packard BioScience s.r.l., Pero, Milan, 

Italy). Specific [
3
H]-8-OH-DPAT binding was defined as the difference between binding 

in the absence and presence of 5-HT (10 M). 

5-HT2A and 5-HT2C binding assays 

Radioligand binding assays were performed as previously reported by Herndon et al [74]. 

Briefly, frontal cortical regions of male Sprague-Dawley rats (180-220 g) were dissected 

on ice and homogenized (1:10 w/v) in ice-cold buffer solution (50 mM Tris HCl, 0.5 mM 

EDTA, and 10 mM MgCl2 at pH 7.4) with a Polytron PT10 (setting 5 for 15 sec) and 

centrifuged at 3000 g for 15 min. The pellet was resuspended in buffer (1:30 w/v), 
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incubated at 37 °C for 15 min and then centrifuged twice more at 3000 g for 10 min (with 

resuspension between centrifugations). The final pellet was resuspended in buffer that 

also contained 0.1% ascorbate and 10
–5

 M pargyline.  

Assays were performed in triplicate in a 2.0 mL volume containing 5 mg wet weight of 

tissue and 0.4 nM [
3
H]ketanserin hydrochloride (88.0 Ci/mmol; Perkin Elmer Life 

Sciences, Boston, MA, USA) for 5-HT2A receptor assays, and 10 mg wet weight of tissue 

and 1 nM [
3
H]mesulergine (87.0 Ci/mmol; Amersham Biosciences Europe GmbH) for 5-

HT2C receptor assays. Cinanserin (1.0 M) was used to define nonspecific binding in the 

5-HT2A assay. In the 5-HT2C assays, mianserin (1.0 M) was used to define nonspecific 

binding, and 100 nM spiperone was added to all tubes to block binding to 5-HT2A 

receptors. Tubes were incubated for 15 min at 37°C, filtered on Schliecher and Schuell 

(Keene, NH, USA) glass fibre filters presoaked in polyethylene imine, and washed with 

10 mL of ice-cold buffer. Filters were counted at an efficiency of 50%.  

 

Results  

Identifying the targets of the query molecules 

The TPs and FPs obtained in the first four top-ranked positions for each query compound 

in all the cross-validation runs for each of the three definitions of families confirmed 

previous observations that the refined families gave a significantly better predictivity 

(MCC: 0.66) [56]. Thus, for each of the four classes of compounds (Figure 1: 1-134), we 

examined the refined ChEMBL families using every such compound as a query. Relative 

performance of the cheminformatic methodology was further tested with true positives 

(TPs) and false positives (FPs) ligands, selected from the examined data set. Selective 

and potent ligands were used as TPs in the study: tacrine/donepezil (AChE/BuChE), FA-

73 (MAO-B), clorgiline (MAO-A), and 18-Hetero (HMT/H3-R). As FPs were used 

compounds with no activity on the specific target such as: clorgiline (AChE/BuChE), 

tacrine/donepezil (MAO-B), tacrine/donepezil (MAO-A), and clorgiline (HMT/H3-R). 

For all compounds, we calculated heat map with the top predictions (PR-score  0.10) 

that summarizes the experimental validation for the most confident predictions (PR-
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scores  0.10). The selected TPs and FPs confirmed very high predictive potential of the 

developed method. The top targets predictions for all examined compounds (Figure 1: 1-

134) by applying the cheminformatic methodology against the refined families ChEMBL 

are shown in Figure 4 and Supplementary Table 1. The same procedure is repeated for 

the queried compounds against DrugBank [58] dataset. The obtained results 

(Supplementary Figure 1) are then compared with ChEMBL results with the goal of 

associating specific biological/pharmacological activities with ligand-target interactions. 

 

Figure 4. Ligand-target associations for all examined compounds (1-134), obtained by 

querying the 134 compounds against the refined ChEMBL dataset. 

Supplementary Figure 1. Ligand-pharmacological group associations for all examined 

compounds (1-134), obtained by querying the 134 compounds against the refined 

DrugBank dataset. 

MAO-inhibitors 

For the first group of novel carbonitrile-aminoheterocyclic MAO inhibitors (Figure 1: 1-

17) [21] were not predicted to interact with MAO within the top predictions (PR-score  

0.10) by querying the 17 ligands against the refined ChEMBL families (Figure 4, 

Supplementary Table 1). Since the structures and activities of the novel class of MAO 

inhibitors (Figure 1: 1-17) [21] have just recently been published and still are not 

included in the ChEMBL dataset our cheminformatic method couldn’t find significant 

similarity between the query compounds (Figure 1: 1-17) and the refined ChEMBL 

dataset. 

For the carbonitrile-oxazole derivatives (Figure 1: 1/CN-D1a, 2/CN-D1b, 3/CN-D1c 

4/CN-D1d, 5/CN-D1e, 6/CN-D1f, 7/CN-D2b) [21] affinity was predicted with a good 

PR-score (PR-score  0.10) for caspase-1 and caspase-7 families. These MAO inhibitors 

were also classified as folic acid antagonists, antimetabolites-antineoplastics or protein 

kinase inhibitors by applying the cheminformatic methodology against the DrugBank 
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dataset (Supplementary Figure 1, Supplementary Table 2).  The targets retrieved from the 

ChEMBL data base (caspase families) were in accordance with the DrugBank results. 

 

MAO/ChE-inhibitors 

The MAO/ChE inhibitors are clustered by structure into three subgroups: acetylene/indol 

derivatives as potent inhibitors of MAO A and MAO B (Figure 1: 44-55) [25], the 

acetylene/indol/piperidines as MAO A, MAO B, AChE, and BuChE inhibitors (Figure 1: 

18-43, 56-77, 79-85) [22-24], while the pyridine derivatives are AChE and BuChE 

inhibitors (Figure 1: 78, 86-100) [26, 27].  

The top targets predictions for examined MAO/ChE inhibitors (Figure 1: 44-100) by 

applying the cheminformatic methodology against the refined ChEMBL dataset are 

shown in Figure 4 and Supplementary Table 1. 

The compounds in the subgroup of acetylene/indol derivatives (Figure 1: 44-55) [25] are 

identified as MAO inhibitors; the acetylene/indol/piperidines (Figure 1: 18-43, 56-77, 79-

85) [22-24] are identified as MAO/ChE inhibitors; and the subgroup of pyridine 

derivatives (Figure 1: 78, 86-100) [26, 27] as ChE inhibitors within the top predictions 

(PR-score  0.10) (Table 2). TP control were tacrine/donepezil (AChE/BuChE), FA-73 

(MAO-B), and clorgiline (MAO-A), while clorgiline (AChE/BuChE), tacrine/donepezil 

(MAO-B), and tacrine/donepezil (MAO-A) were used as FPs. Good agreement obtained 

between the theoretical and the experimental results represents experimental confirmation 

of reliability and accuracy of the applied cheminformatic methodology. 

 

Table 2. Experimental validation of the top ranked targets (PR-Scores≤0.10) for the 

MAO/ChE inhibitors class (44-100). a) PR-Scores are derived by applying the 

cheminformatic methodology against the refined ChEMBL dataset. 

Compounds 31/PF96-Donz-D8, 33/PF96-Donz-D10, 34/PF96-Donz-11, 36/PF96-

Donz-D13, 60/Donz-D6, 62/Donz-D8, 63/Donz-D9, and 68/MBA-71, are identified as 

ligands for the histamine H3 receptor by applying the cheminformatic methodology 

against the refined ChEMBL dataset (Table 3).  
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Compounds 62/Donz-D8, 63/Donz-D9, 67/MBA-50, 70/MBA-73, and 71/MBA-VEG8 

are determined as ligands for dopamine D1 receptors by applying the cheminformatic 

methodology against the refined ChEMBL dataset (Figure 5, Table 3). 

Compound 63/Donz-D9 is identified as a ligand for dopamine D2 receptors by applying 

the cheminformatic methodology against the refined ChEMBL dataset (Figure 5, Table 

3). 

Figure 5. Target prediction for 63/Donz-D9. 

 

Compounds 57/Don-D3, 58/Don-D4, 59/Don-D5, 60/Don-D6, 69/MBA-72, 71/MBA-

VEG8, 82/TC4-MBA-91, 83/MBA-98F1, 84/MBA-98F2, and 85/MBA-101 are 

identified as good ligands for serotonin 5-HT2aR receptors. Additionally, 71/MBA-VEG8 

is determined as a very good ligand for 5-HT1aR, 5-HT2cR, and 5-HT5aR by applying the 

cheminformatic methodology against the refined ChEMBL dataset (Figure 6, Table 3). 

Based on the ranges and distribution of PR-scores obtained for the MAO/ChE inhibitors 

against the refined ChEMBL dataset, was decided to increase the upper PR-score limit to 

0.17 for further studies. A group of the selected compounds with the top predictions of 

the H3R/D1R/D2R/5-HT2aR targets (PR-score  0.17) were further evaluated by 3D-

QSAR (H3R, D1R, D2R, 5-HT2aR) studies and by in vitro 5-HT1aR, 5-HT2cR, and 5-

HT2aR binding assays of the most promising ligand (71/MBA-VEG8) (Figure 5). The top 

ranked targets of the ligands obtained by the cheminformatic method were in good 

accordance with the corresponding activities of ligands predicted by the 3D-QSAR 

(H3R/D1R/D2R/5-HT2aR) models (Figure 6, Table 3). These predictions are testable by 

future experiments. 

Table 3. Experimental and 3D-QSAR validation of the top ranked targets for the 

MAO/ChE inhibitors class (44-100). a) PR-Scores are derived by applying the 

cheminformatic methodology against the refined ChEMBL dataset. b) pKi = log(1/Ki), Ki 
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[M], c) Ki(5-HT1aR)= 1.08 x 10
-7

 ± 0,04 M, IC50(5-HT1aR) = 2.40 x 10
-7

 ± 0,10 M, Ki(5-

HT2aR)= 1.42 x 10
-8

 ± 0.57 M, IC50(5-HT2aR) = 1.92 x 10
-8

 ± 0.77 M. 

 

Figure 6. Target prediction for 71/MBA-VEG8. 

 

The in vitro 5-HT1aR and 5-HT2aR binding assay for 71/MBA-VEG8 determined the Ki 

for 5-HT1aR as 108 nM and the Ki for 5-HT2aR as 14.2 nM (Figure 7).  

Figure 7. Concentration-response curves of compound 71/MBA-VEG8 in in vitro assays 

for 5-HT1a (IC50 2.40 x 10
-7

± 0.10) (A) and for 5-HT2a (IC50 1.92 x 10
-8

±0.77) (B) 

receptor binding. The curves were generated by non-linear regression to determine the 

IC50 values. Data points are the mean ± SD of triplicate values as described in Methods. 

 

These results experimentally confirmed high prediction capacity of the applied 

cheminformatic methodology. The in vitro binding assay of 71/MBA-VEG8 on 5-HT2cR 

determined no affinity. This result can be explained by the higher PR-score for 71/MBA-

VEG8 on 5-HT2cR, then on 5-HT1aR and 5-HT2aR. 

The MAO/ChE inhibitors were classified as serotonin antagonists and dopamine agonists 

by applying the cheminformatic methodology against DrugBank dataset (Supplementary 

Figure 1, Supplementary Table 2). The main targets retrieved from the ChEMBL data 

base (5-HT1, 5-HT2, D1, D2 receptors) were in agreement with the DrugBank results for 

the MAO/ChE inhibitors. 

 

H3R/HMT/ChE ligands 

The third group (101/1-Hetero-134/34-Hetero) contains multipotent histamine H3 

receptor (H3R) antagonists with inhibiting activity on HMT enzyme [28, 29]. For several 

ligands of the third group, 109/9-Hetero, 128/28-Hetero, 131/31-Hetero, 133/33-
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Hetero, 134/34-Hetero, is experimentally determined inhibiting activity on 

AChE/BuChE enzymes too [29].  

The top targets predictions for examined H3R/HMT/ChE ligands (Figure 1: 101/1-

Hetero-134/34-Hetero) by applying the cheminformatic methodology against the refined 

ChEMBL dataset are shown in Figure 4 and Supplementary Table 1. 

The piperidine/quinoline derivatives (Figure 1: 101/1-Hetero-134/34-Hetero) [28, 29] 

are defined as H3R/HMT ligands within the top predictions (PR-score  0.10) (Table 4). 

The 109/9-Hetero, 131/31-Hetero, and 133/33-Hetero compounds are also identified as 

AChE/BuChE inhibitors by applying the cheminformatic methodology against the 

refined ChEMBL dataset (Table 4). 

Table 4. Experimental validation of the top ranked targets (PR-Scores≤0.10) for the 

H3R/HMT/ChE ligands (101/1-Hetero-134/34-Hetero). a) PR-Scores are derived by 

applying the cheminformatic methodology against the refined ChEMBL dataset. 

 

For all top ranked targets (PR-Scores≤0.10) of the H3R/HMT/ChE ligands are 

experimentally confirmed strong ligand-target affinities (Table 4). The accordance 

between the predicted pharmacological targets and the in vitro activities of the 

H3R/HMT/ChE ligands (Table 4) has proved high accuracy and reliability of the applied 

cheminformatic methodology against the refined ChEMBL dataset.  

Table 5. List of the top ranked targets predictions (PR-Scores≤0.10) for the 

H3R/HMT/ChE ligands (101/1-Hetero-134/34-Hetero). a) PR-Scores are derived by 

applying the cheminformatic methodology against the refined ChEMBL dataset. 

 

Based on the identified off targets (Table 5) the compounds 102/2-Hetero, 131/31-

Hetero, 132/32-Hetero, and 133/33-Hetero are selected for further experimental study 

as promising novel agents with possible beneficial effects in treatment of depression, 

Alzheimer’s disease, and obsessive disorders. 
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Compounds 111/111-Hetero–124/124-Hetero are identified as potential antiproliferative 

compounds against colon adenocarcinoma cells, erythroleukemia cells, lymphoma cells, 

and lymphocytic leukemia cells. 

The H3R/HMT/ChE ligands were classified as dopamine/histamine antagonists 

(antipsychotic agents), serotonin antagonists (antiemetic or antipsychotic agents) by 

applying the cheminformatic methodology against the DrugBank dataset (Supplementary 

Figure 1, Supplementary Table 2.).  The targets retrieved from the ChEMBL data base 

(H1, H3, NMDA, and D2 receptors) accorded well with the DrugBank results. 

 

Discussion 

Our current methodology has confirmed to enhance the predictive power of the CFP 

representations, and that the filtering and refinement of ChEMBL families enriches our 

results. The refined ChEMBL dataset and our protein target prediction approach could 

serve as a baseline for further methodologies. The developed workflow represents a truly 

portable methodology that can easily be used in initial phase of drug design process. 

Having thus fivefold cross-validated cheminformatic approach, we used it to identify the 

protein targets associated with the 134 multipotent compounds against neurological 

diseases able to interact with MAO A and B; AChE and BuChE; or with HMT and 

histamine H3-receptor. Across the three classes considered, we find a combination of 

expected and unexpected protein targets for the examined ligands. Good agreement 

between the predicted pharmacological targets and the experimental results for the 

MAO/ChE and H3R/HMT/ChE ligands (Table 2 and 4) has proved high reliability and 

accuracy of the applied cheminformatic methodology.  

For the MAO/ChE inhibitor, compound 71/MBA-VEG8, the cheminformatic method has 

determined serotonin 5-HT1aR, 5-HT2aR, 5-HT2cR, 5-HT5aR, and D1R as possible off-

targets. The compound 71/MBA-VEG8 with the top prediction of the 5-HT2aR and 5-

HT1aR targets was further examined by the in vitro 5-HT2aR and 5-HT1aR binding assay. 
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The binding study has confirmed relatively strong affinity of the 71/MBA-VEG8: Ki(5-

HT2aR) = 14.2 nM and Ki(5-HT1aR) = 108 nM for the receptors.  

Also, for set of compounds (ID: 31, 33, 34, 36, 57-60, 62, 63, 67-71, 82-85, 102) with the 

top prediction of H3R/D1R/D2R/5-HT2aR off-targets, we made 3D-QSAR bioactivity 

evaluation, obtaining a very good accordance between the cheminformatic and 3D-QSAR 

(H3R/D1R/D2R/5-HT2aR) results.  

The observed or predicted affinities of 63/Donz-D9, 71/MBA-VEG8, 102/2-Hetero 

ligands for 5-HT2aR, D1R, D2R could be explained with similarity between 63/Donz-D9 

and clozapine chemical scaffolds, as well as between 71/MBA-VEG8, 102/2-Hetero and 

haloperidol chemical scaffolds (Figure 8). 

Figure 8.  Chemical scaffolds of 63/Donz-D9, 71/MBA-VEG8, 102/2-Hetero, 

haloperidol, and clozapine.  

Serotonin (5-HT) plays a major role in the pathophysiology and treatment of depression, 

anxiety, schizophrenia, and various forms of dementia including Alzheimer's disease 

[75]. Therefore, serotonin 5-HT1a partial agonists/antagonists and 5-HT2a antagonists 

have shown effectiveness in improving cognition in depression [8, 13, 15, 75], 

schizophrenia [14, 76-78], Alzheimer's and Parkinson’s diseases [79-82].   

Based on results of previous studies [76, 83] it was proposed that drugs with potent 

serotonin 5-HT1a or 5-HT2a antagonistic actions may improve cognition in various 

neurodegenerative disorders due to a association with NMDA receptors [84, 85]. 

Few recent studies of memantine, as a non-competitive antagonist of glutamatergic 

NMDA receptors [86, 87], demonstrated that this drug for treatment of AD also 

competitively inhibits both MAO-A and MAO-B in nanomolar range and inhibits the 

reuptakes of both DA and 5-HT. The mamantine induce 5-HT2a receptor-mediated head-

twitch response (HTR) and head-weaving side effects [88, 89]. These abnormal 

behaviours developed during mamantine therapy of AD were inhibited by co-

administration of haloperidol (D1/D2/5-HT2a antagonist) or ketanserine (5-HT2a 

antagonist) [86].  
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Based on all these findings is assumed that multi-potent ligands targeting AChE/MAO-

A/MAO-B and also D1/D2/5-HT2a/H3, such as 63/Donz-D9 and 71/MBA-VEG8, are 

promising novel drug candidates with improved efficacy and safety in treatment of 

Alzheimer’s and related diseases. 

Also, numerous pharmacological, preclinical and clinical studies proved that histamine 

H3R antagonists/inverse agonists facilitate the corticolimbic liberation of acetylcholine, 

noradrenaline, dopamine, glutamate, and serotonin [2, 3, 5] and therefore demonstrate 

efficacy in diverse preclinical models of cognitive deficits [90]. 

Therefore, H3/HMT multi-target ligands with additional affinities for D2/5-

HT2a/SERT/NMDA, such as 102/2-Hetero, 131/31-Hetero, 132/32-Hetero, and 133/33-

Hetero, are promising novel procognitive agents with beneficial effects in treatment of 

various neurodegenerative diseases. 

Experimental 

The computations described in Methods were carried out on a custom-built computer 

using an Intel i3 processor @ 3.10Ghz with 4GB of RAM. 
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ID Chemical scaffold Experimentally determined activity on Target 

1-17 carbonitrile, 

aminoheterocycles 

MAO-A, MAO-B [7] 

18-77,  

79-85 

acetylene, indol, piperidine MAO-A, MAO-B, AChE, BuChE [8-11] 

78, 86-100 pyridine AChE, BuChE [12, 13] 

101-134 quinoline, piperidine H3R, HMT,  

AChE/BuChE (ID: 109, 128, 131, 133-134) [14, 15] 

 

Table 1. Compounds examined in this study [21-29]. 
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ID Compound  Target (ChEMBL ID) PR-Score 
a Experimental - Ki [nM] Experimental IC50 [nM] 

45 FA-97 MAO-B (2993) 0.00712 2.9 [11]  

   MAO-A (3358) 0.06270 18.8 [11]  

48 FA-66 MAO-B (2993) 0.01187 2.4  [11]  

   MAO-A (3358) 0.06659 5.4  [11]  

52 FA-65 MAO-B (2993) 0.00194 9.4  [11]  

   MAO-A (3358) 0.04900 18.0 [11]  

54 FA-67 MAO-B (2993) 0.02568 1.2  [11]  

   MAO-A (3358) 0.07348 26.5 [11]  

55 FA-73 MAO-B (2993) 0.00009 0.75 [11]  

56 Donepezil AChE(4768) 0.00061 6.7 [10]  

   BuChE (5077) 0.00001 7400 [10]  

58 DonzD-4 MAO-A (3254) 0.04951  6.7 [10] 

  MAO-B (2993) 0.01214  130 [10] 

   AChE (220) 0.08021 420 [10]  

59 DonzD-5 MAO-A (3254) 0.05683  5.2 [10] 

  MAO-B (2993) 0.01517  43 [10] 

   AChE (220) 0.09698 350 [10]  

59 DonzD-6 MAO-A (3254) 0.06466  10 [10] 

  MAO-B (2993) 0.01864  2700 [10] 

   AChE (220) 0.07038 260 [10]  

78 Tacrine AChE (3198) 0.00003 105 [15]  

   BuChE (3403) 0.00368 64 [15]  

93 TP-8 AChE (220) 0.02822  71 [13] 

95 TP-10 AChE (220) 0.02542  58 [13] 

98 TP-12 AChE (220) 0.02580  45 [13] 

 

Table 2. Experimental validation of the top ranked targets (PR-Scores≤0.10) for the 

MAO/ChE inhibitors class (44-100). a) PR-Scores are derived by applying the 

cheminformatic methodology against the refined ChEMBL dataset. 
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Table 3. Experimental and 3D-QSAR validation of the top ranked targets for the 

MAO/ChE inhibitors class (44-100). a) PR-Scores are derived by applying the 

cheminformatic methodology against the refined ChEMBL dataset. b) pKi = log(1/Ki), Ki 

[M], c) Ki(5-HT1aR)= 1.08 x 10
-7

 ± 0,04 M, IC50(5-HT1aR) = 2.40 x 10
-7

 ± 0,10 M,  

Ki(5-HT2aR)= 1.42 x 10
-8

 ± 0.57 M, IC50(5-HT2aR) = 1.92 x 10
-8

 ± 0.77 M. 

ID Compound  Target (ChEMBL ID) PR-Score
a 

3D-QSAR predicted – pKi 
b
 or 

Experimental-pKi 
c 

31 PF96-Donz-D8 H3R (264) 0.07922 9.509 
b 

33 PF96-Donz-D10 H3R  (264) 0.11912 10.137 
b 

34 PF96-Donz-D11 H3R  (264) 0.05243 9.001
 b
 

36 PF96-Donz-D13 H3R (264) 0.09145 10.472 
b
 

57 DonzD-3 5-HT2aR (322) 0.14887 7.999 
b
 

58 DonzD-4 5-HT2aR (322) 0.13293 7.057 
b
 

59 DonzD-5 5-HT2aR (322) 0.14436 7.056 
b
 

60 DonzD-6 5-HT2aR (322) 0.15002 7.522 
b
 

  H3R  (264) 0.14232 8.643 
b
 

62 DonzD-8 D1R (265) 0.16686 6.928 
b
 

  H3R  (5299) 0.13534 9.646 
b
 

63 DonzD-9 5-HT2aR (322) 0.11140 6.907 
b
 

  D1R (265) 0.09508 6.903 
b
 

  D2R (217) 0.07044 7.647 
b
 

  H3R  (264) 0.07044 10.105 
b
 

67 MBA-50 D1R (265) 0.16648 6.448 
b
 

68 MBA-71 H3R  (4124) 0.10730 8.746 
b
 

69 MBA-72 5-HT2aR (322) 0.10140 7.974 
b
 

70 MBA-73 D1R (265) 0.12300 6.079 
b
 

71 MBA-VEG8 
 

5-HT1aR (273) 0.01827 6.967 
c
 

  5-HT2aR (322) 0.02139 7.848 
c
 

  D1R (265) 0.01073 6.580 
b
 

82 TC4-MBA-91 5-HT2aR (322) 0.10597 7.566 
b
 

83 TC5-MBA-98F1 5-HT2aR (322) 0.13397 7.360 
b
 

84 TC-MBA-98F2 5-HT2aR (322) 0.13397 8.632 
b
 

85 TC7-MBA-101 5-HT2aR (322) 0.12105 8.027 
b
 



 32 

 

 

Table 4. Experimental validation of the top ranked targets (PR-Scores≤0.10) for the 

H3R/HMT/ChE ligands (101/1-Hetero-134/34-Hetero). a) PR-Scores are derived by 

applying the cheminformatic methodology against the refined ChEMBL dataset. 

ID Compound  Target (ChEMBL ID) PR-Score 
a 

E-Value 

106 6-Hetero HMT (3241) 0.01022 IC50=16 nM [14] 

  H3R (264) 0.01998 Ki=411 nM [14] 

107 7-Hetero HMT (3241) 0.00887 IC50=49 nM [14] 

  H3R (264) 0.01514 Ki=1130 nM [14] 

108 8-Hetero HMT (3241) 0.00704 IC50=590 nM [14] 

  H3R (264) 0.00795 Ki=70 nM [14] 

109 9-Hetero AChE (4078) 0.00036 Ki=40.0 μM [15] 

  BuChE (5077) 0.00031 Ki=25.4 μM [15] 

  HMT(3241) 0.01466 IC50=45 nM [14] 

  H3R (264) 0.01795 Ki=34 nM [14] 

118 18-Hetero HMT(3241) 0.00626 IC50=340 nM [14] 

  H3R (264) 0.00965 Ki=3.6 nM [14] 

129 29-Hetero HMT (3241) 0.00046 IC50=420 nM [14] 

  H3R (264) 0.01789 Ki=0.53 nM [14] 

130 30-Hetero HMT (3241) 0.00067 IC50=31 nM [14] 

  H3R (264) 0.01424 Ki=0.75 nM [14] 

131 31-Hetero AChE (4078) 0.00789 IC50=8.6 nM [15] 

  BuChE (5077) 0.00750 IC50=10.0 nM [15] 

  HMT (3241) 0.01535 IC50=95 nM [14] 

  H3R (264) 0.07511 Ki=1.4 nM [14] 

133 33-Hetero AChE (4078) 0.00235 IC50=3.1 nM [15] 

  BuChE (5077) 0.00297 IC50=9.4 nM [15] 

  HMT (3241) 0.01691 IC50=48 nM [14] 

  H3R (264) 0.03693 Ki=1.8 nM [14] 
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Table 5. List of the top ranked targets predictions (PR-Scores≤0.10) for the 

H3R/HMT/ChE ligands (101/1-Hetero-134/34-Hetero). a) PR-Scores are derived by 

applying the cheminformatic methodology against the refined ChEMBL dataset. b) pKi = 

log(1/Ki), Ki [M]. 

 

ID Compound  Target (ChEMBL ID) PR-Score 
a 

3D-QSAR predicted – pKi 
b
 

102 2-Hetero 5-HT2aR (322) 0.04929 6.488 
b 

  D2R (339) 0.06299 6.715 
b 

  Serotonin transporter (313) 0.06639 - 

106 6-Hetero H1R (231) 0.05799 - 

107 7-Hetero H1R (231) 0.04352 - 

108 8-Hetero H1R (231) 0.02623 - 

111 11-Hetero H1R (231) 0.01920 - 

118 18-Hetero H1R (231) 0.02817 - 

119 19-Hetero H1R (231) 0.00283 - 

130 30-Hetero H1R (231) 0.04670 - 

131 31-Hetero Beta amyloid A4 protein (2487) 0.01596  

  Glutamate [NMDA]R subunit zeta-1 (2015) 0.00374  

132 32-Hetero H1R (231) 0.00760 - 

  Beta amyloid A4 protein (2487) 0.00813 - 

  Glutamate [NMDA]R subunit zeta-1 (2015) 0.00143  

133 33-Hetero Beta amyloid A4 protein (2487) 0.00382 - 

   Glutamate [NMDA]R subunit zeta-1 (2015) 0.00143   
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Figure 1. General structural formulas of the examined compounds 1-134 [21-29]. 

Stereocenters are indicated with a star (*).  

 

Figure 2.  Target prediction methodology applied for a query compound (1-134) using 

the refined ChEMBL dataset. 

 

Figure 3. General structural formula of the indol derivatives used for 3D-QSAR(D1R), 

3D-QSAR(D2R), and 3D-QSAR(5-HT2a) modeling. 

 

Figure 4. Ligand-target associations for all examined compounds (1-134), obtained by 

querying the 134 compounds against the refined ChEMBL dataset. 

 

Figure 5. Target prediction for 63/Donz-D9. 

 

Figure 6. Target prediction for 71/MBA-VEG8. 

 

Figure 7. Concentration-response curves of compound 71/MBA-VEG8 in in vitro assays 

for 5-HT1a (IC50 2.40 x 10
-7

± 0.10) (A) and for 5-HT2a (IC50 1.92 x 10
-8

±0.77) (B) 

receptor binding. The curves were generated by non-linear regression to determine the 

IC50 values. Data points are the mean ± SD of triplicate values as described in Methods. 

 

Figure 8.  Chemical scaffolds of 63/Donz-D9, 71/MBA-VEG8, 102/2-Hetero, 

haloperidol, and clozapine.  
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