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ABSTRACT 

Objectives 

In airway infections, biofilm formation has been demonstrated to be responsible for both 

acute and chronic events, and constitutes a genuine challenge in clinical practice. Difficulty 

in eradicating biofilms with systemic antibiotics has led clinicians to consider the possible 

role of non-antibiotic therapy. The aim of this review is to examine current evidence for the 

use of N-acetylcysteine (NAC) in the treatment of biofilm-related respiratory infections. 

Methods 

Electronic searches of PUBMED up to September 2015 were conducted, searching for 

‘biofilm’, ‘respiratory tract infection’, ‘N-acetylcysteine’, ‘cystic fibrosis’, ‘COPD’, 

‘bronchiectasis’, ‘otitis’, and ‘bronchitis’ in titles and abstracts. Studies included for review 

were primarily in English, but a few in Italian were also selected. 

Results 

Biofilm formation may be involved in many infections, including ventilator-associated 

pneumonia, cystic fibrosis, bronchiectasis, bronchitis, and upper respiratory airway 

infections. Many in vitro studies have demonstrated that NAC is effective in inhibiting 

biofilm formation, disrupting preformed biofilms (both initial and mature), and reducing 

bacterial viability in biofilms. There are fewer clinical studies on the use of NAC in 

disruption of biofilm formation, although there is some evidence that NAC alone or in 

combination with antibiotics can decrease the risk of exacerbations of chronic bronchitis, 

chronic obstructive pulmonary disease, and rhinosinusitis. However, the usefulness of 

NAC in the treatment of cystic fibrosis and bronchiectasis is still matter of debate. Most of 

the studies published to date have used oral or intramuscular NAC formulations. 
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Conclusions 

Evidence from in vitro studies indicates that NAC has good antibacterial properties and the 

ability to interfere with biofilm formation and disrupt biofilms. Results from clinical studies 

have provided some encouraging findings that need to be confirmed and expanded using 

other routes of administration of NAC such as inhalation.  
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Introduction 

Bacteria can exist as single, independent cells (planktonic) or can be organized into 

sessile aggregates called biofilms. A biofilm is a structured community of bacterial cells 

enclosed in a self-produced polymeric matrix and adherent to an inert or living surface. 

Acute infections are assumed to involve planktonic bacteria, which are generally treatable 

with antibiotics, although successful treatment depends on accurate and fast diagnosis, 

and treatment with an appropriate antibiotic. However, in cases where the bacteria 

succeed in forming a biofilm within the human host, the infection is often resistant to 

standard treatment regimes and will therefore develop into a chronic state. Recent 

advances have demonstrated that biofilms account for most human infections [1,2] and are 

related to exacerbation or relapse of symptoms. Characteristic features of chronic biofilm-

based infections are increased resistance to host defenses and decreased susceptibility to 

antimicrobial agents. These features make persistent infections difficult or impossible for 

the immune system to clear and to be eradicated with antibiotics [2, 3].  

In airway infections, biofilm formation has been demonstrated to be responsible for both 

acute and chronic events and is a real challenge in clinical practice [1,2]. The observation 

that systemic antibiotics are not unequivocally effective in eradicating biofilms has led to 

an increased interest in non-antibiotic therapies. In this review, we discuss the role of 

biofilms in respiratory infections and current management strategies, focusing on the 

current evidence regarding the effects of NAC on biofilms. 

 

Literature search methodology 

Literature searches, conducted in the period August-September 2015, were performed 

using the PubMed database (with no date limitations), searching with the terms ‘biofilm’, 

‘respiratory tract infection’, ‘N-acetylcysteine’, ‘cystic fibrosis’, ‘COPD’, ‘bronchiectasis’, 
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‘otitis’, and ‘bronchitis’ in titles and abstracts, and restricting the results primarily to articles 

written in English. A few publications in Italian were also included. The authors examined 

the resulting lists of abstracts and excluded those that did not fit within the scope of the 

present review. 

 

Biofilms in respiratory tract infections 

Device-related infections 

In ventilator-associated pneumonia (VAP), biofilms are responsible for microbial 

persistence and impaired response to treatment. Biofilm formation within the first 24 hours 

after intubation has been demonstrated in 95% of endotracheal tubes. Pseudomonas 

aeruginosa and Acinetobacter baumannii are the most frequent bacteria that colonize the 

devices [4-6].  

 

Tissue-related infections 

Cystic fibrosis (CF) 

In CF, the incidence of bacterial lung infections is high since the mucoid polysaccharidic 

material that accumulates on the respiratory epithelium due to impaired mucociliary 

clearance in the bronchi of such patients favors biofilm formation. P. aeruginosa is the 

most common bacterial species involved in respiratory tract infection in CF patients and 

can be found in about half of all cases and in up to 70% of adults (Cystic Fibrosis 

Foundation Patient Registry. Annual data report 2013 Cystic Fibrosis Foundation, 

Bethesda, MD). The ability of P. aeruginosa to form biofilms is thought to be the primary 

reason for its survival in the CF lung, despite an exuberant inflammatory response and 

intensive antibiotic treatment [7,8]. Other pathogens such as Burkholderia cepacia 

complex, Staphylococcus aureus, Achromobacter xylosoxidans, and Stenotrophomonas 

maltophilia have also been identified in CF and are related to biofilm formation [9]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

Chronic obstructive pulmonary disease (COPD) 

A role of biofilms in patients with COPD has not been directly demonstrated but has been 

hypothesized considering the evidence indicating that the airways of these patients are 

frequently colonized by pathogens such as Haemophilus influenzae, Moraxella catarrhalis, 

and Streptococcus pneumoniae. COPD is characterized by frequent exacerbations and 

resistance to antibiotics. Even if direct evidence of biofilms in vivo is lacking, biofilms may 

reasonably be considered to be involved in the vicious cycle of infection/inflammation 

leading to disease progression in patients with COPD [10-12]. However, the role of 

biofilms in acute exacerbations needs to be further investigated (i.e. acute episodes 

caused by new strains or species compared to those accounting for chronic colonization). 

 

Non-cystic fibrosis bronchiectasis 

In bronchiectasis not due to CF, infections cause a change in the muscular and elastic 

components of the bronchial wall, which become distorted and enlarged. Airways slowly 

become unable to clear mucus, leading to serious lung infections that in turn cause more 

damage to bronchi. Biofilm formation has recently been demonstrated in vivo and is 

assumed to play a relevant role in the pathophysiological cascade of this disease [13-15]. 

Bacterial biofilm formation by P. aeruginosa or Klebsiella pneumoniae is common in 

bronchiectasis and could be an important factor that makes infections in bronchiectasis 

intractable. Other pathogens such as Veilonella sp., Prevotella sp. and Neisseria sp. have 

also been recently identified in patients with bronchiectasis [16,17]. 

 

Bronchitis  

Protracted bacterial bronchitis may be caused by chronic infections of the airways. 

Especially in children, the condition appears to be secondary to impaired mucociliary 
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clearance that creates an environment favorable for bacteria to become established, often 

in the form of biofilms [18]. The most commonly involved bacteria include H. influenzae 

(30-70%), S. pneumonia, and M. catarrhalis. 

 

Upper respiratory infections 

In otitis media, infections are due to both respiratory viruses and bacteria such as S. 

pneumonia (25-40%), non-capsulated H. influenzae (25-40%), M. catarrhalis (20%), 

Streptococcus pyogenes, and S. aureus (<10%), causing the appearance of polymicrobial 

biofilms [19-21]. Biofilms were identified in the sinus tissues of 72% of patients affected by 

chronic rhinosinusitis; the cultured organisms identified included S. aureus (50%), H. 

influenzae (28%), P. aeruginosa (22%), and fungi (22%). The presence of bacterial 

biofilms was strongly associated with persistent mucosal inflammation after endoscopic 

sinus surgery [22]. 

 

Biofilm development and functioning  

Five stages have been identified in biofilm development (Fig. 1). Early attachment is the 

first reversible stage: planktonic microbial cells adhere to the surface through weak, 

reversible van der Waals forces. If the process progresses, the early attachment is 

followed by irreversible late attachment where bacteria firmly attach to the surface through 

fimbrial and nonfimbrial adhesins and begin producing extracellular polymeric substances 

(EPS). Next, early-stage biofilms (third stage: maturation stage I) take form that consist of 

microcolonies immersed in EPS. When the biofilm matures (maturation stage II), it is 

characterized by microcolonies separated by open water channels that act as a primitive 

circulatory system. The mature biofilm begins to release planktonic cells and bacterial 
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aggregates (septic emboli) in the dispersion stage. 

 

Fig. 1. Stages of biofilm development. Each stage in the diagram has been paired with a photomicrograph of a 

developing Pseudomonas aeruginosa biofilm. Adapted from Davies [3] Copyright © 2003, Rights Managed by 

Nature Publishing Group 

This complex process relies on the ability of bacteria to function cooperatively through a 

cell-cell communication process called quorum sensing. Bacterial gene expression is 

regulated by bacterial density leading to either an enhancement or a decrease of their 

virulence factors [2].  

Due to their nature, biofilms are more resistant than planktonic cells to host defenses and 

antibiotics. Resistance to host defenses (phagocytes, complement and antibodies) is 

related to the presence of the EPS, which protect bacteria growing in the biofilm from 

phagocytes and humoral effectors [2,3,20]. Resistance to antibiotics is due to several 

factors including: i) a reduced penetration of drugs across the EPS matrix (demonstrated 

for some antibiotics that may actually be trapped by the EPS matrix, such as 

glycopeptides) [2,3,20]; ii) the physiological state of vegetative cells growing in the biofilm 
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(slow growth, anaerobic environment) that may render them less susceptible to some 

antibiotics (e.g. beta-lactams, aminoglycosides) [2,3,20]; iii) the presence of persister cells 

that, due to their state, are highly resistant to antibiotics and can subsequently regenerate 

vegetative cells within the biofilm [2,3,20].  

Anti-biofilm strategies may act by preventing bacterial adhesion (e.g. modifying roughness 

and physicochemical properties of biomaterials), impairing survival of the attached biofilm 

(e.g. using surfaces covered with Cu/Ag nanoparticles, antibiotics, or other antimicrobial 

agents), inhibiting the quorum-sensing response that is essential to biofilm formation, or 

disrupting the formed biofilm (using enzymes that degrade the matrix such as dispersin, 

DNase I) [2]. A very promising perspective, although still at an early stage of development, 

is the use of substances that are active against persister cells or that sensitize these cells 

to antimicrobial agents [2,23]. 

In respiratory tract infections many strategies have been developed. Antibiotics that 

penetrate the biofilm matrix and have a bactericidal rather than bacteriostatic mode of 

action can be useful. Combined antibiotic therapies seem to be better than monotherapy, 

and high dosages appear to be necessary to disrupt biofilms.  
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Fig. 2. Antibiofilm strategies. EPS=extracellular polymeric substances; ETT=endotracheal tubes; QS=quorum sensing. 

Adapted from Lebeaux et al. [2]. Copyright © 2014, American Society for Microbiology. All Rights Reserved. 

However, antibiotics alone seem unable to resolve the problem of biofilm infections, not 

only because of biofilm resistance, but also because of dispersion limitations posed by the 

biofilm extracellular matrix [2,24,25]. Apart from antimicrobials, several different 

compounds have been investigated in vitro for their potential to reduce biofilm formation. 

For example, non-steroidal anti-inflammatory drugs (NSAIDs) and mucolytics have been 

shown to have inhibitory effects on biofilm production [26-28]. 

 

The role of N-acetylcyseine against biofilms 

In vitro studies 

In vitro studies have indicated a potential role of NAC as an anti-biofilm agent. In fact, NAC 

has been reported to have antimicrobial activity against different microorganisms, and has 

been suggested to play a role in the various steps of biofilm formation: adhesion to inert 
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and living surfaces, matrix production and organization, and dispersal of preformed 

biofilms (see below). 

The ability of NAC to interfere with biofilm formation was first demonstrated by Pérez-

Giraldo and colleagues in 1997 [29]. In that investigation, the authors evaluated the effects 

of different NAC concentrations on bacterial growth and biofilm formation in cultures of 

Staphylococcus epidermidis. This study reported a concentration-related decrease in 

biofilm formation (at concentrations >0.25 mg/ml); furthermore, the inhibitory effect of 2 

mg/ml of NAC on matrix formation was demonstrated by electron microscopy. 

Since then, many other studies have demonstrated the efficacy of NAC in reducing biofilm 

formation induced by a variety of microorganisms (including Gram-negative and Gram-

positive bacteria, and yeasts), and shown its ability to impair matrix architecture and 

promote disruption of biofilm. Table 1 reports a selection of publications on these topics.  

Table 1. In vitro studies demonstrating anti-biofilm activity of NAC against bacterial and fungal 
pathogens. 

Pathogens examined Reference NAC concentrations 
tested (mg/ml) 

Gram-negative bacteria 
Escherichia coli El Feki et al., 2009 [30] 2 and 4 
 Marchese et al., 2003 [31] range 0.007-8 
Klebsiella pneumoniae Mohsen et al., 2015 [32] 2.5 
 Aslam and Darouiche, 2011 [33]  80 
 El Feki et al., 2009 [30] 2 and 4 
 Aslam et al., 2007 [34] 80 
 Olofsson et al., 2003 [35] range 0.25-2 
Enterobacter cloacae Aslam and Darouiche, 2011 [33] 80 
 Olofsson et al., 2003 [35] range 0.25-2 
Proteus spp. Mohsen et al., 2015 [32] 2.5 
 El Feki et al., 2009 [30] 2 and 4 
Pseudomonas aeruginosa Mohsen et al., 2015 [32] 2.5 
 Lea et al., 2014 [36] 12.5 
 Drago et al., 2013 [37] range 3-24 
 Aslam and Darouiche, 2011 [33]  80 
 Zhao et al., 2010 [38] range 0.5-10 
 El Feki et al., 2009 [30] 2 and 4 
Pseudomonas mendocina Olofsson et al., 2003 [35] range 0.25-2 
Acinetobacter baumannii Olofsson et al., 2003 [35] range 0.25-2 
Prevotella intermedia Moon et al., 2015 [39] range 0.375-3 
Gram-positive bacteria 
Staphylococcus aureus Mohsen et al., 2015 [32] 20 
 Drago et al., 2013 [37] range 6-24 
 Aslam and Darouiche, 2011 [33] 80 
 El Feki et al., 2009 [30] 2 and 4 
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One of these studies investigated the effect of NAC on biofilm formation and dispersal with 

a collection of clinical isolates of P. aeruginosa [38], which are known to be among the 

most important opportunistic pathogens that are responsible for biofilm-associated chronic 

respiratory colonization in patients with cystic fibrosis, COPD, and bronchiectasis. The 

results showed that NAC had some antimicrobial activity against planktonic cultures 

(minimum inhibitory concentrations [MIC] for the majority of isolates were ≤40 mg/ml). 

Mature biofilms of P. aeruginosa PAO-1 expressing a green fluorescent protein could be 

detached from glass cover slips at NAC concentrations as low as 0.5 mg/ml, as shown by 

confocal laser scanning microscopy. Using the dimethylthiazol diphenyltetrazolium 

bromide assay for determining viability of biofilm cells, the authors observed a dose-

dependent dispersal of mature biofilms formed by clinical isolates, despite the low 

concentrations of NAC tested (i.e. 0.5−2.5 mg/ml), and a synergistic interaction with 

ciprofloxacin. In addition, EPS production by P. aeruginosa was found to decrease by 27% 

and 44% at NAC concentrations of 0.5 mg/ml and 1 mg/ml, respectively. Recently, NAC 

was also demonstrated to significantly potentiate the efficacy of photodynamic therapy 

against S. aureus biofilms [48]. 

Despite the efficacy of NAC in association with antibiotics in some infections (i.e. urinary 

tract infections, device related infections) [33], few studies to date have been focused on 

 Aslam et al., 2007 [34] 80 
 Roveta et al., 2004 [40] 8 
 Bozzolasco et al., 2002 [41] range 0.007-8 
Staphylococcus epidermidis Leite et al., 2013 [42] 4 and 40 
 Kirmusaoğlu et al., 2012 [43] 0.03, 0.12, 0.5, and 2 
 Gomes et al., 2012 [44] 4 and 40 
 Aslam and Darouiche, 2011[33] 80 
 El Feki et al., 2009 [30] 2 and 4 
 Venkatesh et al., 2009 [45] range 0.5-32 
 Aslam et al., 2007 [34] 80 
 Perez-Giraldo et al., 1997 [29] range 0.003-8 
Enterococcus faecalis Quah et al., 2012 [46] range 12.5-50 
Yeast 
Candida albicans El-Baky et al., 2014; [47] range 0.312-40 
 Venkatesh et al., 2009 [45] range 0.5-32 
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biofilm-associated respiratory tract infections. In particular, Lea and colleagues [36] 

evaluated the effects of ciprofloxacin alone, ciprofloxacin + dexamethasone, NAC alone, 

and NAC + ciprofloxacin on 15 strains of P. aeruginosa isolated from patients with 

suppurative otitis media. While P. aeruginosa strains grew in the presence of ciprofloxacin 

+ dexamethasone and ciprofloxacin alone, no growth was found in the sessile or 

planktonic state among all 15 strains when NAC (≥ 5 mg/ml) was used either alone or in 

combination with ciprofloxacin. Another study [49] assessed the ability of 11 

pneumococcal strains (serotypes 3, 6B, 9V, 19F, and 23F) to form biofilms on polystyrene 

plates. Human serum albumin at 25,000 µg/ml and ibuprofen at 128 µg/ml both 

significantly reduced biofilm formation in 7 and 5 strains, respectively. Amoxicillin, 

erythromycin, and levofloxacin at concentrations above the MIC were very active against 

planktonic cells of 3 strains, but less or no active against biofilms. NAC alone had little 

activity against planktonic and sessile cultures, but when combined with the 3 antibiotics, a 

slightly enhanced activity against biofilms was observed in some strains. 

Some in vitro studies have also demonstrated the ability of NAC to affect adherence to 

respiratory epithelial cells of relevant respiratory pathogens [50,51]. Riise and colleagues 

[50] studied the effects of four compounds (NAC, lidocaine, hydrocortisone, and 

terbutaline) on bacterial adherence of oropharyngeal epithelial cells after short-term 

exposure and long-term incubation. S. pneumoniae and H. influenzae were the target 

bacteria. Following short-term exposure, NAC had an inhibitory effect on H. influenzae 

adhesion and was seen to be effective in inhibiting adherence even after long-term 

incubation. Both NAC and hydrocortisone lowered adherence of both strains in a 

concentration-dependent manner. NAC was also effective at inhibiting bacterial adhesion 

in the majority of H. influenzae (3 of 4) and all S. pneumoniae (n=3) strains. Zengh and 

colleagues demonstrated a significant reduction in the attachment to human pharyngeal 

epithelial cells by M. catarrhalis after exposure to mucoregulating drugs, including NAC 
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[51]. In this study, three strains of M. catarrhalis isolated from sputum of patients with 

respiratory infections were treated with NAC or S-carboxymethylcysteine and their ability 

to attach to pharyngeal epithelial cells was measured thereafter. A statistically significant 

reduction in attachment for both drugs was seen that was concentration-dependent. 

Taken together, in vitro studies suggest that NAC has a promising anti-biofilm activity. The 

mechanisms accounting for the antimicrobial and anti-biofilm activity of NAC, however, are 

still largely unknown and deserve further investigation to fully understand the potential for 

NAC in the management of biofilm-related infections. It has been suggested that the 

antimicrobial activity of NAC could be related to: i) competitive inhibition of cysteine 

utilization; ii) reaction of the NAC sulfhydryl group with bacterial proteins; and iii) 

perturbation of the intracellular redox equilibrium with potential indirect effects on cell 

metabolism and intracellular signal transduction pathways [35,38]. The perturbation of 

microbial physiology induced by NAC might, in turn, represent the key factor accounting 

for NAC-mediated inhibition of biofilm formation, since the processes leading to the switch 

from planktonic to sessile mode of growth are known to be controlled by complex 

regulatory networks [2]. The reported activity of NAC in promoting dispersal of preformed 

biofilms could be related either to perturbation of microbial physiology or to a direct effect 

of NAC in affecting biofilm matrix architecture (e.g. by chelation of calcium and magnesium 

or interaction with crucial components in the matrix) [35,38]. 

The multifactorial activity of NAC against microbial biofilms that has been hypothesized 

represents a strength for its potential use as an anti-biofilm agent. In particular, if further 

studies reinforce the available data, NAC may indeed be a promising candidate for 

prevention of biofilm formation and for potentiating conventional anti-biofilm treatments 

(including antimicrobial drugs and photodynamic therapy approaches). In addition, the 

non-antibiotic nature of NAC and the relevance of biofilms in many technical systems (e.g. 

paper mills) have raised a multidisciplinary interest for this molecule [35,52]. In this 
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perspective, further in vitro studies on this molecule are warranted in order to overcome 

important knowledge gaps and try to understand some apparent inconsistences in the 

available data, which are possibly related to the complex and still unclear mechanisms of 

NAC activity and to the difficulties and lack of standardization of in vitro biofilm models. 

 

Clinical studies 

Most studies have been conducted using oral or intramuscular NAC formulations. 

Cystic fibrosis 

The role of NAC in CF is still debated: a recent review [53] on the use of thiol derivates 

such as NAC concluded that there was not enough evidence to support the use of these 

compounds in clinical practice, but further studies were encouraged. Recently, Skov and 

colleagues [54] evaluated the effect of 4 weeks of treatment with oral NAC (2400 mg/day 

divided into two doses) on biochemical parameters of oxidative stress in an open-label, 

controlled, randomized trial on 21 patients (11 patients in the NAC group and 10 in the 

control group). Significantly decreased levels of oxidized vitamin C and increased vitamin 

C levels were seen in the NAC group; this group also had an improvement, though not 

significant, in lung function. 

In another study [55], 70 CF subjects received NAC or placebo orally three times daily for 

24 weeks. Oral NAC (900 mg x 3) maintained stable or slightly increased lung function in 

the treated group, while the control group showed a reduction in spirometric parameters. 

However, no change was observed in selected biomarkers of neutrophilic inflammation. 

These promising preliminary results suggest that further studies are required to better 

understand the role of NAC in treating patients with CF.  

 

COPD and chronic bronchitis 
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The role of NAC in preventing exacerbations of patients with COPD and chronic bronchitis 

has been the basis of a recent meta-analysis by Cazzola and colleagues [56]. From the 

data of 13 studies (of 48 eligible full text articles), the records of 4155 COPD patients 

(1933 treated with NAC and 2222 placebo or control) were analyzed. It was seen that 

patients treated with NAC had a decreased risk of exacerbations of chronic bronchitis or 

COPD, but the effect was higher in patients with an absence of airway obstruction. NAC 

was well tolerated and the risk of adverse effects was not significantly higher at the higher 

dose. Furthermore, the data showed that in the case of airway obstruction, higher doses 

(≥1200 mg per day) are needed to prevent exacerbations[51, 57], while regular doses (600 

mg per day) are sufficient in patients with chronic bronchitis. [58,59] 

A multicenter double blind study [60] on 180 patients with acute bronchitis, tracheo-

bronchitis, or acute exacerbations of chronic bronchitis compared the effects of 

thiamphenicol glycinate acetylcysteinate (TGA;n=92) and thiamphenicol glycinate (TG; 

n=88), both administered by aerosol. Both groups received the equivalent of 500 mg of 

thiamphenicol. Symptoms improved in both groups in terms of reduced frequency and 

cough severity and difficulties in expectoration. Furthermore, TGA was significantly more 

effective in eliminating cough within 6 days of treatment (82% versus 65%). Treatment 

efficacy was judged as “very good” (the maximum rating) by physicians in 37% of TGA-

treated patients and in 28% of TG-treated patients. Both treatments were well tolerated. 

 

Bronchiectasis 

In bronchiectasis, intervention should ideally target bacterial colonization, airway 

inflammation, and impaired mucociliary clearance at the same time. NAC seems to be 

useful in this latter process, but the evidence to date is not sufficiently supported by clinical 

studies [15,61]. 
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Other airway infections 

A large study by Serra and colleagues [62] enrolled 398 patients (age 18−75 years) with 

recurrent infections of the upper airways (rhinosinusitis, pharyngotonsillitis, and acute otitis 

media), and assessed the effect of TGA in 149 patients versus other oral antibiotics. TGA 

was administered by aerosol (500 mg ½ ampoule daily for 6−10 days); antibiotics used in 

other groups (amoxicillin/clavulanate, cefixime, cefaclor, clarithromycin, levofloxacin, 

moxifloxacin, or telithromycin) were administered orally in accordance with the standards 

of the trial center. The etiological agents isolated included S. pyogenens (up to 75% in 

pharyngotonsillitis), S. pneumoniae (up to 50% in otitis), H. influenzae (up to 35% in 

rhinosinusitis), and M. catarrhalis (up to 20% in rhinosinusitis). The clinical results showed 

symptom disappearance in 88% of patients with pharyngotonsillitis, 91.7% in otitis media, 

and 87% of rhinosinusitis in patients treated with inhaled TGA. In patients treated with oral 

antibiotics, percentages of symptom resolution were generally lower, although the 

differences were not statistically significant. In patients with rhinosinusitis, topical NAC 

(nasal douche) associated with flunisolide has been demonstrated to be more effective 

than ambroxol plus flunisolide in terms of symptom improvement and number of 

exacerbations at 3 and 6 months. Moreover, the time to first exacerbation was significantly 

increased with NAC compared with ambroxol [63]. The results of this study confirm that 

NAC added to standard flunisolide treatment via atomized nasal douche is an effective 

strategy to break the vicious circle of recurrent acute rhinosinusitis and improve patients’ 

conditions for up to 6 months following the end of treatment (Fig. 3). 
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Fig. 3. Results of Kaplan-Meier analysis showing time to first exacerbation after stopping treatments in the study by 

Macchi et al. [60]  

Further evidence for the efficacy of NAC in rhinosinusitis comes from the review by Smith 

and colleagues [64] where TGA was shown to be effective in treating chronic rhinosinusitis 

and eradicating bacterial biofilms. 

 

Discussion 

In the respiratory infection field, the available data indicate that NAC has good antibacterial 

properties and suggest that this drug has the ability to interfere with biofilm formation and 

to disrupt biofilms. In vitro studies strongly support this assumption, although more clinical 

evidence is required. 

NAC is usually given orally, with several formulations and dosage forms available for both 

short- and long-term treatment of respiratory diseases, but an inhalation route might also 

be considered a practical option. In particular, topical NAC causes a clear mucolytic effect 

by passing into the mucus and changing its physiochemical properties. The use of topical 

drugs has the advantage to reach the right anatomical target, at high concentrations, thus 

avoiding that the drug is metabolized by liver and intestines.  
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Therefore, the use of topical NAC in respiratory airway diseases may help in clinical 

practice, not only because of its efficacy [60,62], but also because it can reach the 

anatomical target thus paving the way for enhanced antibiotic action within the lung. 

Furthermore, inhaled formulations of NAC have been demonstrated to be effective when 

used in association with antibiotics, possibly because of the ability of NAC to inhibit biofilm 

formation and cause biofilm disruption [28; 29; 43,30, 50]. The use of inhaled NAC may be 

limited by the individual susceptibility to bronchoconstriction because of its acidic 

properties however, this would not be the case of every patient therefore it is a therapeutic 

option to be considered case by case.   Furthermore, NAC may help antibiotics to 

penetrate biofilms, allowing improved accessibility to bacteria. 

Since NAC has been demonstrated to reduce bacterial attachment [51], it could also be 

considered as a prophylactic agent in respiratory infections where topical administration of 

the drug to the upper respiratory tract may be a choice even for patients where prevention 

of respiratory infections, rather than expectoration of sputum, is the primary reason for 

treatment. 
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HIGHLIGHTS 
 
Bacteria can exist as single, independent cells (planktonic) or can be organized into 
sessile aggregates called biofilms. Recent advances have demonstrated that biofilms 
account for most human infections and are related to exacerbation or relapse of 
symptoms. 
 
The observation that systemic antibiotics are not unequivocally effective in eradicating 
biofilms has led to an increased interest in non-antibiotic therapies. 
 
In the respiratory infection field, the available data indicate that NAC has good 
antibacterial properties and suggest that this drug has the ability to interfere with biofilm 
formation and to disrupt biofilms. In vitro studies strongly support this assumption, 
although more clinical evidence is required.  
 
The multifactorial activity of NAC against microbial biofilms that has been hypothesized 
represents strength for its potential use as an anti-biofilm agent. In particular, if further 
studies reinforce the available data, NAC may indeed be a promising candidate for 
prevention of biofilm formation and for potentiating conventional anti-biofilm treatments 
(including antimicrobial drugs and photodynamic therapy approaches). 
 
The inhalation route might be considered a practical option for NAC. In particular, topical 
NAC causes a clear mucolytic effect by passing into the mucus and changing its 
physiochemical properties. The use of topical drugs has the advantage to reach the right 
anatomical target, at high concentrations, thus avoiding that the drug is metabolized by 
liver and intestines.  
 
 


