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Abstract—In this paper, we present a novel cooperative navi-
gation control for human-robot teams. Assuming that a human
wants to reach a final location in a large environment with the
help of a mobile robot, the robot must steer the human from the
initial to the target position. The challenges posed by cooperative
human-robot navigation are typically addressed by using haptic
feedback via physical interaction. In contrast to that, in this paper
we describe a different approach, in which the human-robot
interaction is achieved via wearable vibrotactile armbands. In
the proposed work the subject is free to decide her/his own pace.
A warning vibrational signal is generated by the haptic armbands
when a large deviation with respect to the desired pose is detected
by the robot. The proposed method has been evaluated in a large
indoor environment, where fifteen blindfolded human subjects
were asked to follow the haptic cues provided by the robot. The
participants had to reach a target area, while avoiding static
and dynamic obstacles. Experimental results revealed that the
blindfolded subjects were able to avoid the obstacles and safely
reach the target in all of the performed trials. A comparison is
provided between the results obtained with blindfolded users and
experiments performed with sighted people.

Index Terms—Human-robot team, Human-robot interaction,
Haptic feedback, Formation control, Autonomous vehicles, Hu-
man body tracking, Psychophysics.

I. INTRODUCTION

LET us assume that a human wants to reach a location

in a large environment with the help of a mobile robot

(Fig. 1). Such situation may involve: (i) assisting an elderly or

a visually-impaired person; (ii) helping a person who is in a

dangerous situation with poor visibility, and hearing severely

reduced due to environmental noise; (iii) human-robot coop-

erative tasks, e.g., holding and transporting a heavy and/or

large object where the human’s pose should be corrected to

avoid robot singularities and improve task performance. In

our approach, the human is free to select the desired walking

speed, and the robot does not force her/him to its pace as long

as environmental obstacles are avoided and she/he is able to

safely reach the target location. The robot guides the human

only by adjusting her/his heading, in a way that the person
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Fig. 1. Cooperative human-robot navigation from an initial to a target location
(top view). The goal is to guide a human in a large environment with the
help of a mobile robot. The human is free to select the walking speed. The
interaction between the user and the robot is obtained via wearable haptic
interfaces. They provide the user with directional cues in order to reach the
target, while avoiding static and dynamic obstacles. The robot and the human
are respectively equipped with a vision sensor and vibrotactile armbands. The
field of view of the vision sensor is shaded.

always remains in charge of the final decision to take. The user

can always override the suggestions given by the system. The

type of correction provided by the robot has to be perceived

as very soft, and unnatural stimulations must be avoided as

much as possible.

In this work, we use haptic signals provided by tactile

devices to correct the human’s pose. In real world scenar-

ios, visual and auditory perception may be overloaded with

information, thus resulting in a rapid error increase and in

an overall reduction of user performance, if directional cues

are provided through these channels. A possible solution is to

deliver this information through an underutilized sense, i.e.,

the sense of touch. Similarly to sound, a tactile stimulus is

made up of a signal with varying frequency and amplitude.

Different from the auditory feedback, tactile stimuli directly

engage human motor learning system [1] with extraordinary

sensitivity and speed [2]. Moreover, tactile communication

can be used in situations where visual or auditory stimuli are

distracting, impractical, unavailable or unsafe.

The main source of inspiration for this work came from [3],

where a passive approach inspired by the classical “Cobot”

philosophy [4] was adopted for guiding an elderly person using

the brakes of a commercial walker, and from [5] where the

authors proposed a leader-follower formation control strategy,

which in this paper has been adapted to our particular human-

robot setup.

A large body of literature exists on the theme of assistive

robotics and human-robot cooperation/navigation. Strictly re-

lated to our work is the study presented in [6]. The authors

investigated the design of a stiff handle to enhance human trust
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and confidence in cooperative human-robot tasks. Their final

design consisted of a rigid handle attached to a mobile robot

via a mechanical feedback spring system at the base. When

the user was aligned with the robot, the spring system had

zero tension. When the handle was rotated, the spring system

introduced tension on the device, which increased with the

rotation angle. In [7], the authors developed an assistive-guide

robot to help visually-impaired people to navigate through

unfamiliar areas. The human-robot interaction was achieved

using a leash. In these works, the robot control did not take

into account the motion of the user. Moreover, the authors

did not focus on the way the human had interacted with the

robot. In [8], [9], the authors presented the identification of the

human-human interactions via a rigid handle along a given

path. The derived interaction model can be used to design

human-robot guidance policies for helping people move in

dangerous situations, where they cannot use their principal

sensory modalities.

In the aforementioned works, the human-robot interaction

was achieved via kinesthetic feedback (haptic feedback per-

ceived by sensors in the muscles, joints, tendons). While

kinesthetic feedback is common in haptic systems, in this

work we use vibrotactile interfaces. The motivation is that

tactile devices are generally more portable, less encumbering

and have a wider range of action than the kinesthetic ones [10].

Different from the works mentioned above, our approach does

not require physical interaction between the human and the

robot. In fact, although the kinesthetic feedback can be used

to guide the human subject in a more effective way than by

using vibrotactile stimuli, we consider the physical interaction

limiting: (i) the user has her/his hands busy, thus other physical

tasks may not be accomplishable; (ii) it is difficult to extend

the physical interaction to multiple users. Moreover, since we

use wearable devices, the proposed approach can be extended

to other body parts. It can be combined/extended to guide

the arms of the user along feasible trajectories in cooperative

manipulation/transportation tasks. Different from [6], [7], we

design a control policy that adjusts the linear velocity of the

robot according to the walking speed of the user.

Haptic feedback for human guidance was considered in [11].

The authors used a grounded haptic manipulator to apply

kinesthetic force and position signals to the user’s hand, to

assist the operator in reaching a desired position in large

remote environments. Wearable haptic devices were used

in [12], where a haptic belt was used for waypoint navigation.

The system relied on vibrotactile stimuli and GPS information.

A similar approach was used in [13], where the authors

presented a navigation system that guided a human toward

a goal area via a vibrotactile belt. Similarly to our work,

they modeled the human as a nonholonomic robot. However,

they used a different way to provide vibrotactile stimuli to

the user. They also did not considered haptic stimuli for

human-robot cooperative navigation, and they did not present

a human-robot formation control algorithm. Finally, in [14],

the authors proposed a mobile device for human navigation

using multimodal communication (audio, visual, vibrotactile

and directional skin-stretch stimuli).

For human-robot cooperation, recent studies have proved

the importance of haptic feedback for role negotiation in

human-robot co-manipulation tasks (cf. [15], [16]). Similarly,

in [17] the authors proposed an approach that exploited the

arm compliance of a humanoid robot to follow the human

guidance in a physical human-robot cooperative task.

A. Original contributions and organization

Our setup consists of a mobile robot equipped with a vision

sensor, e.g., a Red-Green-Blue-Depth (RGB-D) camera, and

a human subject wearing custom-design vibrotactile inter-

faces. In this work, we assume that the robot has a map of

the environment. The robot autonomously localizes its pose

within the map and guides the user along obstacle-free paths.

Obstacle-free paths are computed for both the robot and the

user and updated as soon as new obstacles are detected by

the robot. Since a predefined distance and orientation should

be maintained between the human and the robot at all times,

the leader-follower formation control strategy proposed in [5]

has been adapted to our human-robot setup. In fact, recent

studies [18] have shown a close relationship between the shape

of human locomotor paths in goal-directed movements, and

the simplified kinematic model of a wheeled mobile robot.

In particular, the authors have shown that the shoulders can

be considered as a steering wheel that drives the human

body. This observation indicates that humans mostly perform

smooth paths and the direction of their body is tangent to the

trajectories they perform.

In our scenario the human should always be able to freely

select her/his walking speed. Nevertheless, a specific haptic

feedback is sent to the user in order to adjust her/his heading

according to the formation specifics. In this work, our goal is

to send easily processable signals to the human (by exploiting

the simplified model of her/his walking motion), so that she/he

can promptly respond to the stimuli of the guiding robot.

The rest of the paper is organized as follows. Sections II

and III present our control strategy and the haptic-feedback

generation mechanism, respectively. Section IV describes our

human visual detection algorithm and Section V reports the

results of experimental validations. In Section VI conclusions

are drawn and possible subjects of future research are outlined.

II. PROBLEM FORMULATION AND CONTROL DESIGN

In this section, we briefly review the leader-follower for-

mation control strategy for nonholonomic robots. Then, we

show how to adapt it to our human-robot setup. Note that,

since in goal-directed paths the human can be modeled as a

unicycle robot [18], leader-follower formation control can also

be applied (with suitable modifications) to a mixed human-

robot formation (cf. [19], [20]).

A. Leader-follower formation control for nonholonomic robots

Let us consider a robot whose kinematics can be abstracted

as a unicycle model,

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, (1)

where R = (x, y, θ)T ∈ R
2 × S

1 is the pose of the robot

and (v, ω)T is the velocity control input. By P = (x, y)T we

denote the position of the robot, while θ represents its heading.
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Fig. 2. Human-robot setup: ld and ψd represent the desired distance and
orientation between the robot and an off-axis reference point Ph on the human
with offset d. The human and the robot move with linear and angular velocity
(vh, ωh)

T and (vr , ωr)T , respectively.

With these definitions at hand, let us briefly review the

leader-follower formation control for unicycles [5]. In [5],

robot Rh (in our framework a human) must follow the

robot Rr with a desired separation ld and desired relative

bearing ψd (Fig. 2). The formation control problem consists

of determining the velocities (vh, ωh)
T of the follower, which

maintain the formation as the leader moves. Let β = θr − θh
be the relative orientation of Rr and Rh, ur = (vr, ωr)

T and

uh = (vh, ωh)
T their velocity control inputs, and

G =

[
cos γ d sin γ

− sin γ
l

d cos γ
l

]
, F =

[
− cosψ 0

sinψ
l

−1

]
,

where d is the offset to an off-axis reference point Ph on Rh,

γ = β + ψ and l, ψ are the actual separation and relative

bearing of Rh and Rr, respectively (Fig. 2). The desired

formation velocity for Rh can then be written as,

uh = G−1(q− Fur), (2)

being q an auxiliary control input defined as

q =

[
k1(l

d − l)

k2(ψ
d − ψ)

]
,

where k1, k2 are positive control gains (observe that G is

always invertible as long as d/l > 0, which is always

true). Equation (2) has been obtained by applying input-output

linearization [21].

In what follows, we show how to tailor (2) to our human-

guidance problem. Notice that in our framework the distinction

between the leader and the follower vanishes: in fact, both

agents cooperate to achieve a common goal (reach the desired

target), without direct physical interaction.

B. Human-robot guidance

Different from (2), in our scenario the human should al-

ways be able to freely choose her/his walking speed (linear

velocity vh). However, in order to be guided by the robot Rr

towards a target position, her/his angular velocity ωh should

be regulated. Note that by changing the angular velocity ωh of

the user, we modify her/his heading θh (cf. (1)). Nevertheless,

the robot should regulate its linear velocity vr accordingly to

the user, while its angular velocity ωr depends on the specific

trajectory from the initial to the target position. We assume

Xf

Yf

Xr

Yr

Yw

XwOw

θf

θr

Reference path

lp

s

Of

Fig. 3. Path following setup: lp represents the coordinate of the vehicle
position along the y-axis of the Frenet frame 〈Of ,Xf ,Yf 〉, s is the
curvilinear coordinate of the robot along the path, θf and θr represent the
angle between the x-axis of the world frame 〈Ow ,Xw,Yw〉 and the x-axis
of the Frenet and robot frame, respectively.

that the trajectory of the robot is smooth (its tangent is well-

defined at each point), and its curvature is known at all points.

Moreover, we consider that the vehicle is always localized with

respect to the path, and that a Frenet frame, whose origin is

the orthogonal projection of the vehicle position on the path,

is always available (Fig. 3). If we assume that the initial robot

configuration is not far from the desired path and that vr > 0,

the desired angular velocity ωr of the robot that solves the

path following problem is

ωr = vr ar, (3)

being

ar = −k3lp
sin(θp)

θp
− k4θp + cos(θp)

c(s)

1− c(s)lp
,

where k3, k4 are positive control gains, lp represents the signed

distance of the vehicle position along the y-axis of the Frenet

frame, θp = θr−θf , being θf the angle between the x-axis of

the world frame 〈Ow,Xw,Yw〉 and the x-axis of the Frenet

frame, s is the curvilinear coordinate along the path, and c(s)
is the curvature of the path at that point, defined as c(s) =
dθf/ds [22].

Concerning the cooperative navigation control law, let

Gf =

[
d sin γ − cosψ

d cos γ
l

sinψ
l

]
, Ff =

[
cos γ 0

− sin γ
l

−1

]
,

then the control velocities for the human and robot are given by

(cf. (2)),

[
ωh

vr

]
= (Gf )

−1
(
q− Ff

[
vh

ωr

])
. (4)

It is worth noting that input-output linearization is possible

as long as cos(γ−ψ) 6= 0. Assuming that the human is moving

with linear velocity vh and the robot is rotating with angular

velocity ωr, then the control law reported in (4) allows to

maintain the formation specified by ld and ψd.
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By combining (3) and (4), we obtain the following human-

robot control law, which allows the robot to follow a precom-

puted path,

[
ωh

vr

]
= (Gpf )

−1(q− vhFpf ), (5)

being

Gpf =

[
d sin γ − cosψ

d cos γ
l

sinψ
l

− ar

]
, Fpf =

[
cos γ
− sin γ
l

]
.

Note that Gpf is not invertible if l−1 cos(γ−ψ)−ar sin γ =
0 which is equivalent to β = acos(lar sin γ).

Remark 1: Suppose that the robot estimates the human

motion using an onboard vision sensor with limited field of

view (FoV) (cf. Fig. 1 and Sect. IV). Since the formation

parameters are fixed with respect to the robot, a proper choice

of ld and ψd allows to maintain the human inside the sensor’s

field of view. ⋄

In this section, we presented a cooperative navigation con-

trol for human-robot teams. We model the human and the

robot as first order systems with velocity control inputs. Hence,

suitable velocities should be provided to the agents in order

to safely move in the environment. While it is simple to apply

desired velocities to a robot, it is not trivial to impose a desired

angular velocity to a human. In the next section, we will show

how we can use haptic feedback to address this problem.

III. HAPTIC FEEDBACK

Our purpose is to provide haptic stimuli in order to adjust

the heading of the user. Due to the nonholonomic nature of

the human locomotion in goal directed path, the device should

elicit only three basic behaviors on the human (turn left, turn

right, and slow down). Thus, only three stimuli would be

sufficient in principle. In order not to overload the tactile

channel and not to reduce the recognition time, we display

few significative signals. Note that, although the human is

always free to decide her/his pace, the slow down behavior is

introduced in case of emergency, danger or when the maximal

linear velocity of the robot is not sufficient to keep up with

the human’s velocity.

Different from [12], [13], which developed a vibrotactile

belt to guide the user, in this work we focus on vibrotactile

armbands. We reduce the number of the vibrating motors

(tactors) in order to elicit only the necessary human’s be-

haviors. The haptic interfaces are designed in order to be

informative, easy to use, and wearable. In what follows, we

present the vibrotactile devices and two haptic cueing methods.

The first method, which consists of a more wearable solution,

is composed of a single armband worn on the dominant

forearm (unilateral condition). The second method, which

aims to be more intuitive, uses two armbands placed bilaterally

on the forearms (bilateral condition). Even if the bilateral

condition allows for a larger spatial separation between the

stimuli, and a better discrimination of the directional cues, the

unilateral condition provides a more compact solution.

(1)

(1)

(2)

(3)

(a)

(b) (c)

Fig. 4. (a) The vibrotactile armband is fitted on the forearm and it is equipped
with vibrating motors (tactors) (1), attached to an elastic armband (2) whose
width is about 60 mm. The Li-Ion battery and the Arduino board are in (3).
Two different configuration were tested: (b) a single armband with three
tactors; (c) two armbands with two tactors each.

A. Description of the haptic armband

Tactile vibratory sensitivity is influenced by the spatial

location on the body, the distance between the stimulators,

the frequency of stimulation and the age of the user. Studies

have demonstrated that vibration is best detected on hairy skin

due to skin thickness and nerve depth, and that vibrotactile

stimuli are best detected in bony areas [23]. In particular,

wrists and spine are preferred for detecting vibrations, with

arms next in line [24]. Movement can decrease detection rate

while increasing response time of particular body parts. For

example, walking affects lower body sites the most [24]. The

effect of movement on vibrotactile sensitivity has been also

investigated in [25].

As with other sensory modalities, touch deteriorates with

age. Discriminative capabilities and the appreciation of tempo-

ral gaps in vibratory stimuli were found to be poorer in elderly

individuals. Such loss has been attributed to physiological

changes in the skin itself, and/or to neurological factors. An

accurate analysis of the ability to localize vibrotactile stimuli

on the forearm was conducted in [26]. The authors considered

the locations of the stimuli, the proximity of such stimuli

to body references such as the elbow and the wrist, and the

age of the users. Results showed that if points of stimulation

lie adjacent to natural anchor points, stimuli localization is

enhanced at those sites.

Due to the aforementioned considerations, we have con-

centrated on the development of vibrotactile armbands. By

focusing on a single armband (unilateral condition), three

tactors are sufficient to warn the user, since the haptic

feedback should elicit three basic behaviors. An armband

shape with three tactors circling the forearm (Fig. 4(a)-(b))

ensures sufficient distance between the vibrating motors, while

covering a minimal area of the forearm. In fact, in two-point
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discrimination perception, the minimal distance between two

stimuli to be differentiated is about 35 mm on the forearms.

There is no evidence for differences among the left and

right sides of the body, and women are known to be more

sensitive than men to skin stimulation [27], [23]. In order to

improve the intuitiveness of the haptic feedback, we investigate

a second solution (bilateral condition), in which two haptic

armbands, equipped with two tactors each, are used. The

subject wears one vibrotactile armband on each forearm in

order to maximize the stimuli separation, while keeping the

discrimination process as intuitive as possible. According to

[26], in each modality we place the armbands close to the

elbow in order to increase the separation between the tactors

and exert the strongest influence on localization accuracy, due

to the proximity to body landmarks.

From a technical point of view, the vibrotactile armbands

are composed of cylindrical vibro-motors, independently con-

trolled via an external PC using the Bluetooth communication

protocol (Fig. 4). The communication is realized with an

RN42 Bluetooth module connected to an Arduino mini pro

3.3V with a baud rate of 9600. An Atmega 328 micro-

controller installed on the Arduino board is used to inde-

pendently control the vibration amplitude of each motor. The

Precision Microdrives 303-100 Pico Vibe 3.2 mm vibration

motors are placed inside the fabric pockets on the external

surface of the armband (the width of the armband is about

60 mm), with shafts aligned with the forearm (Fig. 4). The

motors have a vibration frequency range of about 100-280 Hz

(the maximal sensitivity of human skin is achieved around

200-300 Hz [28]), typical normalized amplitude of 0.6 G, lag

time of 21 ms, rise time of 32 ms and stop time of 35 ms.

Note that the proposed motors are controlled by applying a

certain amount of voltage that determines both frequency and

amplitude. Thus, users feel changes in both the intensity and

pitch of perception when the applied voltage is varied.

B. Haptic feedback generation

In what follows, we illustrate our idea on how to convey

motion information by using the proposed haptic devices. At

first, we present the haptic feedback mechanism from a high

level point of view. It is worth noting that the proposed mech-

anism is general and independent from the two vibrotactile

configurations described above. Successively, we present how

the haptic feedback policy is translated into vibrating stimuli

for the two proposed configurations.

Let us consider three stimuli, L (turn left), S (slow down)

and R (turn right) and let sj(t) be the vibrating signal of

stimulus j ∈ {L, S,R} at time t. Let ∆t be the constant

sampling time of our system. ω∗
h(t+∆t) represents the angular

velocity computed by the controller in (4)-(5), and ω̃h(t+∆t)
is the predicted angular velocity of the user obtained by

applying an Extended Kalman Filter (EKF) (cf. Sect. IV) to

the dynamic model of the human (1). Note that ω∗
h(t+∆t) is

the angular velocity that the user should have at time t+∆t
in order to properly follow the robot. Let α, δ ∈ R

+, the

proposed haptic feedback policy is,

sL(t) =

{
on, if ω∗

h(t+∆t)− ω̂h(t+∆t) > α

off, else,

sR(t) =

{
on, if ω∗

h(t+∆t)− ω̂h(t+∆t) < −α

off, else,

sS(t) =

{
on, if ‖Pr(t)−Ph(t)‖ < δ

off, else.

The threshold value α is used to avoid excessive alternation

between the haptic stimuli turn left and turn right, as they

can generate frequent and unwanted oscillations in the human

locomotion. The signal sS(t) is sent to warn the human if

she/he is too close to the robot, i.e., the actual human-robot

distance is less than δ. In real scenarios the maximal robot

velocities are limited. Thus, it may happen that the robot

cannot maintain the formation, if the human moves too fast.

The limit is: vr(t + ∆t) > Vr (cf. (4)), where Vr ∈ R
+

represents the maximal linear velocity of the robot. Note that

the human user is always free to decide her/his pace. Only

when the minimal human-robot distance is violated, a proper

haptic signal is sent to the user in order to inform her/him to

slow down.

Concerning the configuration with a single armband, the

three stimuli (L, S, R) are mapped one-to-one onto the three

tactors (left, center, right) of the device. The user wears the

armband, as depicted in Fig. 4(a): the tactors representing the

right and left direction are on the corresponding sides of the

forearm. We assume that the orientation of user’s arm does not

vary too much during the motion, since it may influence the

left/right location of the tactors. This issue could be solved

by modifying the tracking algorithm in Sect. IV in order

to estimate the orientation of the forearm. Thus, vibrotactile

stimuli could be dynamically mapped on the three tactors de-

pending on their actual positions. In the bilateral configuration,

vibration of the left armband alerts the participant to turn left,

and vice versa. The slow down stimulus is displayed by a

vibration of both armbands.

In order to reduce the aftereffect problem (Pacinian corpus-

cles that sense vibration on the skin may adapt to continuous

stimuli, see [30] and the references therein) and to preserve

the users’ ability to localize vibration, in both configurations

we activate the tactors with a square wave. It has period

2τ , τ ∈ R
+, duty cycle of 50%, and logic levels 0 and 1

(Fig. 5(top)). When the logic level is high, the tactor vibrates

with a frequency of 280 Hz (which is in the range of maximal

sensitivity [28], [29]), and amplitude of 0.6 G (which is the

maximal amplitude exerted by the tactors). On the contrary,

when the logic level is low, the tactor is turned off. For the

bilateral configuration, two tactors alternatively vibrate when

a stimulus is sent to the device. In other words, the squared

waves sent to the tactors are shifted by τ (Fig. 5). Note that in

our application, the situation in which all tactors are turned on,

or when the left and right tactors are simultaneously activated,

never occurs.
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Fig. 5. Vibrotactile stimuli. In order to preserve the users’ ability to localize
vibrations, in all configurations each tactor is activated with a square wave
having period 2τ and duty cycle of 50% (top). When the logic level is 1, the
tactor vibrates with a frequency of 280 Hz and amplitude of 0.6 G. When
the logic level is 0, the tactor is turned off. If two tactors are simultaneously
activated, their signals are shifted by τ (bottom).

C. Evaluation of the haptic feedback

The proposed device was tested on 7 healthy subjects (6
males, age range 23-40, 5 right-handed). 2 of them had expe-

rience with previous prototypes of our haptic armband (based,

however, on different electromechanical designs). None of

the participants reported any deficiencies in the perception

abilities (including vision, hearing, touch and proprioception).

The participants signed an informed consent form. All of them

were informed about the purpose of the experiment. They were

allowed to discontinue participation at any time. No payment

was provided for the participation.

Two different experiments were performed. The aim of the

first one was to evaluate whenever the unilateral and bilateral

conditions could elicit the intended causal chain of stimulus-

perception-response. The second experiment was performed to

evaluate the maximal stimulus duration that did not degrade

the perception of the stimulus itself, since vibration effects

may persist after the end of the stimulation (aftereffect prob-

lem). In order to evaluate the users’ experience, a questionnaire

using bipolar Likert-type five-point scales was filled out by

each subject at the end of the experiments for both haptic

conditions.

In the first experiment, participants were instructed to walk

along a walkway whilst wearing the armband/s, and to react

accordingly to the stimulus type (L, S, R), as soon as they

perceived it. The length of the walkway was about 4 m. The

vibrotactile stimulus was provided as soon as the user was 1.7

m in front of the obstacle. The armband/s continued to vibrate

for 2 s. For each haptic configuration (unilateral and bilateral),

each subject performed 12 trials (4 trials for each stimulation

type) organized in a pseudo-random order. All subjects were

blindfolded and wore circumaural headphones reproducing

white noise to mask the distracting ambient or cueing sounds

from the stimulators. Two RGB-D cameras tracked the motion

of the human by using a custom designed tracking algorithm

(Sect. IV). Sequences of stimulation appeared in short bursts

with τ = 0.2 s, vibration frequency of 280 Hz, and amplitude

of 0.6 G (Fig. 5). The vibration period 2τ was determined

both by mechanical limitation of the proposed tactors, and by

pilot studies. Such experiment allowed to evaluate the haptic

devices in a scenario as similar as possible to the final setup.
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Fig. 6. Evaluation of the haptic feedback. Trajectories performed by the
users, as the participants walk from top to bottom using a single vibrotactile
armband (a)-(b) and two armbands (c)-(d), for the three stimuli (turn left, turn
right, and slow down), respectively.

In the second experiment, we analyzed if a stimulus with

a long duration affected the perception of the stimulus itself

(aftereffect problem). Each subject was seated comfortably at a

desk. Both feedback conditions (unilateral and bilateral) were

evaluated. The subjects were given circumaural headphones

emitting white noise to mask distracting sounds. Each subject

tested two sets of vibrotactile stimuli. Each set was composed

of pulsed square wave signals with period 2τ = 0.4 s,

amplitude of 0.6 G (Fig. 5), and 4 different durations (2 s,

10 s, 30 s and 60 s) unknown to the users. Each signal was

displayed to the armband. The user had to notify when the

armband stopped to vibrate. For each vibrotactile stimulus, we

recorded the interval of time between the end of the stimulus

and the instant in which the user notified it. Responses were

made by pressing a specific button on a keypad. For each

stimulus, we asked the users if they felt any tingling sensation.

The questionnaire, consisting of 6 questions, was designed

to evaluate their comfort, opinion of feedback quality, per-

ceived effectiveness of the feedback, intrusiveness and flex-

ibility of the device, and overall preferences. An answer

of 5 meant strongly agree, whereas an answer of 1 meant

strongly disagree.

1) Data analysis: In the first experiment, all subjects cor-

rectly reacted to the proposed stimuli for both haptic con-

figurations (Fig. 6). By analyzing the trajectories performed

by the participants, we estimated their reaction time (time

TABLE I
AVERAGE REACTION TIME OF THE USERS FOR THE GIVEN STIMULI (TURN

LEFT, TURN RIGHT, SLOW DOWN).

Condition Turn left (s) Turn right (s) Slow down (s)

Unilateral 0.86 ± 0.13 0.80 ± 0.14 0.87 ± 0.16
Bilateral 0.72 ± 0.14 0.74 ± 0.16 0.75 ± 0.16
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TABLE II
AVERAGE INTERVAL OF TIME BETWEEN THE END OF THE STIMULUS

(DURATION 2 S, 10 S, 30 S, 60 S) AND THE INSTANT IN WHICH THE USER

NOTIFIED IT.

Condition 2 s (s) 10 s (s) 30 s (s) 60 s (s)

Unilateral 0.72 ± 0.08 0.70 ± 0.19 0.67 ± 0.19 0.78 ± 0.12
Bilateral 0.72 ± 0.14 0.75 ± 0.14 0.69 ± 0.24 0.79 ± 0.14

taken for the users to make a turn, or to slow down, after the

stimulus was sent) (Table I). The average reaction time was

approximately 0.84 s with a standard deviation of 0.22 s using

the single armband and 0.74 s with a standard deviation of

0.21 s using two armbands. Comparison of the means among

the feedback conditions was tested using a two-way repeated-

measures ANOVA (ANalysis Of VAriance) [31]. Feedback

conditions and localization of the feedback signals (L, S,

R) were considered as within-subject factors. A family-wise

level αp = 0.05 was used for all tests. The collected data

passed the Shapiro-Wilk normality test and the Mauchly’s

Test of Sphericity. The means did not differed significantly

among feedback conditions [F (1, 6) = 3.905, p = 0.096,

αp = 0.05], meaning that the reaction time of the users was

not influenced by using the unilateral or bilateral condition to

present directional cues. For each feedback condition, a one-

way repeated measures ANOVA was conducted to determine

whether reaction times for different stimuli (L, S, R) changed

in a significant way. In both conditions, the collected data

passed the Shapiro-Wilk normality test and the Mauchly’s

Test of Sphericity. Tests showed that reaction times for the

given stimuli did not depend on the type of stimulus: unilateral

condition [F (2, 12) = 1.853, p = .199, αp = 0.05], bilateral

condition [F (2, 12) = 0.154, p = .859, αp = 0.05].

The authors are aware that the proposed tests were con-

ducted in a controlled environment and performed on healthy,

able bodied adults and that the reaction time may increase

in a real world situation, such as a loud factory or a busy

hospital and with older/impaired subjects. Nevertheless, tests

performed in Sect. V show the validity of our approach in a

real scenario.

In the second experiment, we performed a one-way

repeated-measures ANOVA on the elapsed time to determine

whether reaction times for different stimulus durations (2 s,

10 s, 30 s, 60 s) were related to the duration of the stimulus

itself (Table II). For both feedback conditions, the collected

data passed the Shapiro-Wilk normality test and the Mauchly’s

Test of Sphericity. Tests showed that reaction times did not

depend on the duration of the stimulus: unilateral condition

[F (3, 18) = 0.421, p = 0.740, αp = 0.05], bilateral condition

[F (2, 12) = 1.853, p = .199, αp = 0.05]. Since no tingling

sensation was felt by the users, we can state that in our

application the aftereffect problem never occurs as long as

signals with duration lower than 60 s are considered.

2) Survey responses: A questionnaire, presented in the form

of bipolar Likert-type five-point scales (Table III), was filled

out by the users in order to understand how they judged the

two different feedback configurations. First four questions U1-

4 and B1-4 investigated how much the users found the two

configurations usable and comfortable. Questions U5-6 and

TABLE III
QUESTIONNAIRE PROPOSED AT THE END OF THE EXPERIMENTS FOR THE

UNILATERAL AND BILATERAL CONDITION, RESPECTIVELY.

Questions

U1 The unilateral condition is easy to use.

U2 The unilateral condition is not hampering.

U3 Following the cues of the unilateral condition is not tiring.

U4 Wearing one single armband is a comfortable solution.

U5 The cues suggested by the unilateral condition give comprehensive

information for the guidance system.

U6 The cues suggested by the unilateral condition are easy to distinguish.

B1 The bilateral condition is easy to use.

B2 The bilateral condition is not hampering.

B3 Following the cues of the bilateral condition is not tiring.

B4 Wearing two armbands is a comfortable solution.

B5 The cues suggested by the bilateral condition give comprehensive

information for the guidance system.

B6 The cues suggested by the bilateral condition are easy to distinguish.

TABLE IV
RESULTS OF THE QUESTIONNAIRE FOR THE UNILATERAL AND BILATERAL

CONDITION, RESPECTIVELY.

Questions Results Questions Results

U1 3.86 ± 0.690 B1 4.00 ± 0.816
U2 4.71 ± 0.488 B2 4.29 ± 0.488
U3 4.29 ± 0.756 B3 4.14 ± 0.690
U4 4.14 ± 0.690 B4 2.86 ± 0.690
U5 3.86 ± 0.690 B5 3.71 ± 0.756
U6 2.86 ± 0.690 B6 4.29 ± 0.756

B5-6 investigated if the users felt the suggested cue to be

informative enough and if the cues were easy to distinguish

in the two configurations. A series of Wilcoxon Signed-Rank

tests was performed for highlighting statistical significance of

the difference between the proposed questions (Table IV). No

significant differences were found between question U1-3 and

B1-3 and between question U5 and question B5, showing that

the two configurations were easy to use, not tiring and did

not hamper the user. Moreover, the haptic cues sent to the

participants were found informative enough. Eventually, the

unilateral solution was considered comfortable [Z = −2.251,

p = 0.024, αp = 0.05], whereas the cues sent through the

bilateral solution were easier to understand and more intuitive

[Z = −2.060, p = 0.039, αp = 0.05].

The proposed feedback configurations were comparable

(see also Sect. III-C1). In the experimental validation of

the system, we decided to use the bilateral configuration,

since cues sent through this solution were found easier

to understand. We believe that the results obtained in the

experimental validation would have not differed too much if

the unilateral condition was used.

IV. VISUAL DETECTION AND TRACKING OF THE HUMAN

The human-robot control policy described in (4)-(5) requires

an estimation of the human’s pose and velocities. This section

provides an overview of the major steps of our method for

estimating such parameters from dense depth images provided

by an RGB-D camera on-board the robot. We believe that our

approach is relatively general and can also be applied to other

typologies of vision sensors (e.g., time-of-flight cameras).

A. Description of the tracking algorithm

Let x̃h = [x̃h, ỹh, θ̃h, ṽh, ω̃h]
T be the state of the human

that we need to estimate. The first step of the tracking
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(a) (b)

Fig. 7. Human body tracking method on real data. (a) NITE’s skeleton tracker
is used to initially detect the subject (the skeleton of the torso is shown in
white). (b) Data points which are too far from the torso are removed, while
the remaining points are down-sampled and expressed in the robot reference
frame. The points are finally projected onto the robot’s plane of motion and
the pose of the human is detected via ellipse fitting.

algorithm consists in determining the pose of the user. We use

NITE skeleton tracker to initially detect the human (Fig. 7(a))

and Point Cloud Library [32] to process the depth (3-D point)

data and extract the information of the human pose. The

shoulders play an important role in the description of the

human locomotion (cf. [18]). This is why in the detection

phase we discard all the 3-D points that are too far from the

human’s torso. In order to speed up the tracking process, we

first down-sample the data using a voxel grid filter with a leaf

size of 1 cm. Then, we express the down-sampled point cloud

in the robot reference frame, and we project the point cloud

onto the robot’s plane of motion (xy-plane). Finally, an ellipse

fitting [33] is performed over the projected points (Fig. 7(b)).

The estimated position (x̃h, ỹh) of the human corresponds to

the center of the ellipse. The user’s orientation θ̃h is assumed

to be coincident with the orientation of the major axis of the

ellipse with respect to the robot’s frame. In order to fully

exploit the temporal information inherent to human’s motion

and to estimate x̃h from pose measurements, we implement an

Extended Kalman Filter (EKF). EKF provides an estimation

of the current state x̃h as well as a one-step ahead prediction

of it. The prediction of x̃h is used to generate suitable haptic

signals (cf. Sect. III-B).

In case of failures of the skeleton tracker, we select the

3-D points in the neighborhood of the predicted human pose.

We project such points onto the robot’s plane of motion.

Successively, we perform a cluster filtering to discard those

clusters whose dimension is outside of a given range, and

whose distance is far enough from the last tracked human

position. Finally, an ellipse fitting is performed over the

resulting cluster. An example of this procedure is visible in

the attached video.

B. Evaluation of the tracking algorithm

The proposed method runs at an average frame rate of 27
frames per second on a laptop with 16 GB RAM, 2.4 GHz

Intel i7 CPU, and NVIDIA GeForce GTX 765M graphic card.

Synthetic data with ground truth information were used for

the quantitative evaluation of the proposed method. This is a

common approach in the relevant literature because ground

truth data for real-world image sequences is hard to obtain.

The employed synthetic sequence consisted of 7 trajectories,

each one composed of 60 consecutive human poses (a total of

420 poses were considered) that encoded the human walking

motion. All the trajectories lied in a 3 m × 3 m area. The

user’s heading ranged from −90 deg to 90 deg. Computer

graphic was used to synthesize the required input for each

considered pose. The method was also evaluated with respect

to its tolerance to noisy observations. Two types of noise were

considered: errors in depth estimation and errors in the camera

orientation with respect to the floor. The latter ones affected

the correct projection of the point cloud onto the robot xy-

plane. We considered the camera orientation error as noise on

the roll angle of the camera frame. We modeled the errors as

Gaussian distributions centered around the actual value with

the variance controlling the amount of noise.

Figs. 8 (a)-(b) show the mean and the standard deviation

of both the pose-estimation error ‖(x, y)T − (x̃, ỹ)T ‖ and

the heading-estimation error |θ − θ̃|, when noise was added

to depth estimation. Figs. 8 (c)-(d) show the mean and the

standard deviation of pose and heading-estimation error, when

noise was added to the estimation of the floor orientation with

respect to the camera frame. From Fig. 8 we observe that the

performance of our tracker is not critically affected by errors

in depth estimation, or in camera roll angle estimation.

V. EXPERIMENTAL VALIDATION

We tested the proposed control strategy (4) in an indoor

environment using a Pioneer LX robot (with maximal linear

velocity of 1.8 m/s) equipped with a backward facing Asus

Xtion RGB-D camera (Fig. 9).

Fifteen healthy subjects (age range 23-52, 12 males, 13

right-handed) were involved in our experiments1. Five of

them participated in the evaluation of the haptic armband

(cf. Sect. III-C). None of the participants reported any defi-

ciencies in the perception abilities (including vision, hearing,

touch and proprioception). The participants signed an informed

consent form. All of them were informed about the purpose of

the experiment, were able to discontinue participation at any

time and no payment was provided for the participation. All

subjects were blindfolded and instructed to move accordingly

to the haptic feedback, but no instructions were given about

their velocities. Since the surrounding sounds could probably

modify the users’ behavior, as they could be afraid to hit

something, we cut off the auditory feedback by reproducing

white noise through earphones.

Two different trajectories (clockwise and counterclockwise)

were considered for the robot in each modality (Fig. 10). The

trajectories were about 225 m and 223 m long, respectively.

Each one was composed of four clear long corridors (the width

of the corridors ranged from 1.2 to 2.2 m) and six 90 deg

turns. Each subject performed 4 trials, 2 for each trajectory, in

a randomized order. Thus the total number of considered trials

was 60. In order to evaluate the proposed haptic policy, the

subjects additionally performed 2 trials for each trajectory. In

1Please notice that this paper is accompanied by multimedia material. The
videos of the real-time experiments are available also at: http://goo.gl/aH1yO2
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Fig. 8. Evaluation of the tracking algorithm. Mean and standard deviation of the position and heading estimation error with increasing noise on: (a)-(b)
depth estimation; (c)-(d) camera roll angle estimation. The noise was modeled as a Gaussian distribution centered in the actual value with variance σu. The

supplemental material accompanying the paper provides videos with the results obtained in real-world sequences.

this case, the users had no vision impairment, and the desired

trajectory was displayed by the laptop positioned on the mobile

robot. It is worth noting that the experiments with blindfolded

people were performed to show the validity of the proposed

approach in the challenging scenario in which visual and also

auditory information might not be available. In other terms,

blind-folding was meant more to prove how performant was

our method more than specifically investigating guidance for

blinds.

The robot had a map of the environment and autonomously

localized itself via the Monte Carlo Localization [34] provided

by the Aria Core Library [35]. The initial obstacle-free paths

for both the robot and the user were computed offline using

a customized version of the planner presented in [36]. In ad-

dition, we considered 3 static virtual obstacles and 2 dynamic

ones (Figs. 10(a)-(b)). The obstacles were unknown to the

robot, i.e, the initial paths did not consider such obstacles.

We simulated a sensing range of 4 m for the robot. As soon

as the obstacles were within the sensing range of the robot,

the actual path was updated online by running a new instance

of the planner. The camera was rotated about its x-axis of

23.20 deg. The formation parameters were set to ld = 1.1 m

and ψd = π, k1 = k2 = 3, d = 0.1 m, α = 0.7 rad/s and

δ = ld−0.2 m. The parameters above were determined by both

the mechanical limitations of the system and the environment.

They were set in order to allow the user to properly navigate

and accomplish the goal.

For each trajectory we computed the formation error E(t) =
Ph(t)−Pr(t)− l

d (cosψd, sinψd)T . Fig. 11 shows the trials

in which lowest formation error was achieved. Figs. 11(a)-(d)

report the actual position of the reference point Ph(t) and

its desired pose computed as Pr(t) + ld (cosψd, sinψd)T .

Figs. 11(b)-(e) show the time evolution of the norm of the for-

mation error E(t) for both trajectories. Peaks in the formation

error were mainly due to the rotational velocity of the robot in

correspondence of sharp turns, and to inaccurate estimations

of human’s pose. The related vibrational signals of the haptic

devices are reported in Figs. 11(c)-(f). Figs. 12(a)-(d) show

the formation error for each trial Ei(t), i = 1, 2, . . . , 60.

The percentage of the total duration of the trial in which the

vibrotactile armband was activated is reported in Figs. 12(b)-

(e). Finally Figs. 12(c)-(f) report the mean (and the standard

deviation) of the linear velocity of the users for each trial

vh
i(t), i = 1, 2, . . . , 60. In white are reported the results of

the subjects who had previously participated in the evaluation

(a) (b)

Fig. 9. Experimental setup: the human subject was blindfolded and instructed
to move accordingly to the haptic feedback provided by two custom-design
vibrotactile armbands. (b) Pioneer LX robot equipped with a backward facing
Asus Xtion camera.

of the haptic devices (cf. Sect. III-C). For both trajectories

the mean of the formation error is always smaller than 0.3

m. Moreover, users who never tried the haptic interface

before were able to correctly recognize the haptic stimuli

and follow the robot. Results show the functionality of the

proposed approach. For the clockwise and counterclockwise

trajectories, the mean of the formation error Ei(t) among

all the trials was 0.24 ± 0.04 m and 0.23 ± 0.05 m. The

average percentage of time in which the armbands were

turned on was 26.65± 7.10 % and 24.41± 6.91 %, while the

average of the users’ linear velocities was 0.62 ± 0.07 m/s

and 0.63± 0.08 m/s. Concerning the activation time of the

armbands it is worth noting that also during a straight line, the

armbands may correct the trajectory of the users due to the

well known fact that it is hard for a blindfolded people to walk

exactly straight, due to the absence of landmarks. Thus, also

a straight line can reveal if the proposed approach is valid.

For the linear velocities of the subjects, it is worth noting

that we asked the subjects to walk at their comfortable speed.

Moreover, due to the reduced activation of the slow down

behavior, the users’ linear velocities were mainly determined

by the confidence of the users in the system. Experiments

performed on users with no vision impairments revealed that

for the clockwise and counterclockwise trajectories the forma-

tion error Ei(t) among all the trials was 0.15 ± 0.03 m and
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Fig. 10. Experimental scenario. The experimental scenarios contained a goal region and virtual dynamic and static obstacles (blue). The objective was to
guide the user from her/his starting position to the goal one while avoiding obstacles. We considered three static obstacles (obstacles 1, 2, and 3) and two
moving obstacles (obstacles 4 and 5). The black arrows represent the velocity directions of the dynamic obstacles. The speed of the moving obstacles was
0.4 and 0.5 m/s, respectively for obstacle 4 and 5. Each user performed the proposed trajectory four times: two times in a clockwise order (a) and twice in a
counterclockwise order (b). A path planner was used to generate the initial trajectories for both the robot and the user. The initial trajectories did not consider
the obstacles which were unknown to the users. For the obstacles, we considered a sensing range of 4 m for the robot, i.e, when an obstacle was inside the
sensing range, the planner was used to update the current trajectories. The insets show sample images of the environment.

0.13± 0.02 m, and the average of the users’ linear velocities

was 0.82±0.08 m/s and 0.79± 0.07 m/s. A Paired Samples T-

Test revealed no statistical differences between the clockwise

and counterclockwise trajectories (for both the vision-impaired

and no impairment condition) in terms of formation error,

users’ walking speeds, and activation time of the armbands.

Smaller formation errors (clockwise trajectory t14 = −9.225,

counterclockwise trajectory t14 = −9.187) and faster paces

(clockwise trajectory t14 = 15.663, counterclockwise trajec-

tory t14 = 8.198) were found for the no impairment condition

with respect to the vision-impaired one, p < 0.005.

A. Discussion

Although the results presented in Sect. V are promising, a

comparison between the results obtained using this approach

and experiments performed with sighted people reveal that

additional studies need to be done in order to have comparable

formation errors and walking speeds.

The proposed haptic feedback policy assumes that users be-

have like unicycle systems and smoothly rotate when a proper

vibrotactile stimuli is received. Under these assumptions, the

haptic feedback can direct the user toward the desired pose

until she/he is close enough to it. If the user sharply turns

when a stimuli is received, it may become difficult for the

proposed method to correctly guide her/him, mainly due to

delays in the reaction time of the user. However, this situation

never happened in our experimental validation.

We designed the system in a way that the user always

remains in charge of the final decision to take and she/he

can always override the suggestions given by the system. A

possible drawback of such decision is that, in case of danger,

the proposed system can not force the user to move in a

particular way. This problem is indeed shared among all the

approaches that use tactile feedback.

The Asus Xtion offers a 58 deg horizontal wide viewing

angle and an effective sensing range of 0.8-3.5 m. It works

well in an almost completely open environment, however its

real world uses can be limited. In the proposed experiments,

we showed that it is possible to use such sensor also in less

open environments. The human was correctly tracked around

a series of 90 deg turns through hallways by using a proper

choice of formation parameters and trajectory for the robot. It

is worth noting that the formation parameters (ld, ψd) should

be accurately tailored depending on the sensors’ characteristics

and on the environment.

VI. CONCLUSION AND FUTURE WORK

The paper presents a new paradigm for the assisted navi-

gation of a human in an unknown environment with a mobile

robot using visual and haptic information. The subject is free

to decide her/his own pace. A warning vibrational signal is

generated by haptic armbands only when a large deviation

with respect to the planned route occurs. In this work we show

that, based on recent studies, control algorithms designed for

robot teams can be suitable applied to human-robot formations.

Moreover, we demonstrate that by exploiting the nonholo-

nomic nature of human locomotion, few vibrotactile stimuli

are sufficient to effectively guide the user in mixed human-

robot formations. Finally, our cooperative guidance system is

easy to use and it does not need long training programs. The

effectiveness of the proposed approach is demonstrated via

real-world experiments conducted on 15 subjects in a large

indoor environment.

The use of wearable haptic devices opens new scenarios in

mixed human-robot teams. In future work, we plan to improve

the haptic feedback in order to make the users more confident

about the system. We will investigate the extension of the

proposed work to a mixed team composed of a robot and

multiple users. Similarly, we will extend the proposed haptic

feedback to more complex tasks like cooperative manipulation

between a human and a mobile manipulator.
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Fig. 11. Experimental results. Clockwise (top) and counterclockwise trajectories (bottom). (a)-(d) Desired and actual trajectories performed by the users:
the shaded areas represent the portions of the trajectory which were updated due to the presence of static and dynamic obstacles; (b)-(e) formation error
E(t) = (Ex(t), Ey(t))T ; (c)-(f) armbands activation time for the users who achieved the lowest formation error.
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Fig. 12. Experimental results. Clockwise (top) and counterclockwise (bottom) trajectories. (a)-(d) Mean and standard deviation of the norm of the formation
error E(t) = (Ex(t), Ey(t))T over the 60 trials for the 15 subjects. (b)-(e) Percentage of activation time of the armbands with respect to the trajectory
execution time. (c)-(f) Mean and standard deviation of the linear velocity vh(t) of the users. In white are reported the subjects who participated in the
evaluation of the haptic armband.
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holds a postdoctoral position at the University of
Siena, Italy. His research interests include computer
vision, visual servoing, mobile robotics, haptics and
augmented/virtual reality. He is a member of the

IEEE.

Marco Aggravi (S’11 - M’16) received his M.Eng.
Degree (2011) on Computer Engineering and his
Ph.D. in Information Engineering and Science
(2016) from the University of Siena. He was a
Visiting Ph.D. student at DLR Institute of Robotics
and Mechatronics, Oberpfaffenhofen, Germany in
2011. He is currently a research assistant at the
SIRSlab, University of Siena. His fields of research
are human-robot interaction and haptic guidance
methodologies. He is a member of the IEEE.

Domenico Prattichizzo (S’93 - M’95 - SM’15
- F’16) received the M.S. degree in Electronics
Engineering and the Ph.D. degree in Robotics and
Automation from the University of Pisa in 1991
and 1995, respectively. Since 2002 Associate Pro-
fessor of Robotics at the University of Siena. Since
2009 Scientific Consultant at Istituto Italiano di
Tecnoloogia, Italy. In 1994, Visiting Scientist at
the MIT AI Lab. Guest Co-Editor of Special Issue
“Robotics and Neuroscience” of the Brain Research
Bulletin (2008). Co-author of the “Grasping” chapter

of “Handbook of Robotics” Springer, 2008, awarded with two PROSE Awards
presented by the American Association of Publishers. Since 2014, Associate
Editor of Frontiers of Biomedical Robotics. From 2007 to 2013 Associate
Editor in Chief of the IEEE Trans. on Haptics. From 2003 to 2007, Associate
Editor of the IEEE Trans on Robotics and IEEE Trans. on Control Systems
Technologies. From 2013 Chair of the IEEE RAS Early Carreer Awards Eval-
uation Panel. Vice-chair for Special Issues of the IEEE Technical Committee
on Haptics (2006-2010). Chair of the Italian Chapter of the IEEE RAS (2006-
2010), awarded with the IEEE 2009 Chapter of the Year Award. Co-editor of
two books by STAR, Springer Tracks in Advanced Robotics, Springer (2003,
2005). Research interests are in haptics, grasping, visual servoing, mobile
robotics and geometric control. Author of more than 200 papers in those fields.
Leader of a research unit in four EU projects: ROBOCAST, THE, ACTIVE,
DALI. Coordinator of the EU ECHORD-EXPERIMENT HANDS.DVI, and
of the IP collaborative project WEARHAP. He is a fellow of the IEEE.


