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metropolitan regions. Likewise, aerosols indirectly impact cloud lifetime, atmospheric column
thermodynamics and precipitation patterns. For these reasons, it is of particular importance to
assess the aerosol spatial and temporal variability in the first instance to reduce the associated
global climate models uncertainty to correctly forecasting future scenarios and then to react fast
in applying mitigation strategies. In this paper, an aerosol optical depth (AOD) retrieval algorithm
for high-spatial resolution images in the blue wavelength range for urban environments is
developed for the first time. The proposed approach is completely blind because does not use
look-up-tables or complex radiative transfer models, which require the setting/estimation of
many parameters. The multi-wavelength (exploiting the coastal and the blue bands) AOD
retrieval permits to retrieve also important aerosol micro-physical properties, e.g., the size. The
proposed method leverages on the use of Kalman filters to deal with the unavoidable sensor's
noise improving the accuracy of the estimation of the AOD. The approach is assessed on four
different test cases acquired by Landsat 8 involving two metropolitan areas. A strong agreement
to ground-based AERONET measurements is observed on several performance metrics. Clear
advantages in comparison with the baseline approach relied upon the simple inversion of the
explored model are pointed out.

1. Introduction

The Aerosol Optical Depth (AOD) is a comprehensive variable accounting for aerosol (natural or anthropogenic) optical and micro-
physical properties widely used to assess the aerosol-cloud interactions (Miilmenstadt and Feingold, 2018), e.g. cloud formation, cloud
lifetime, atmospheric column heating/cooling, which drastically influences the Earth-Atmosphere global radiative budget and then
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climate. Further, the AOD, quantifying the extinction of solar radiation along the atmospheric column, can be used as proxy to estimate
the particulate matter with an aerodynamic diameter < 2.5 ug (PM2.5) (Van Donkelaar et al., 2006; Toth et al., 2019). A poor air
quality, with elevated concentrations of PM2.5 at surface, translates into increased mortality and morbidity due to cardiovascular
disease (Miller et al., 2007) and lung cancer (Lepeule et al., 2012; Chudnovsky et al., 2014) especially in underdeveloped regions (Lolli
etal., 2019). Recently, several studies relate PM2.5 also with an increase in COVID-19 pandemic transmission (Lolli and Vivone, 2020;
Lolli et al., 2020) and a decrease in solar energy production (Lolli, 2021). Since the last decade, the European Union (EU) legislation
put limitations on road transportation, domestic combustion and agriculture emissions. In the United States, the Environment Pro-
tection Agency (EPA) successfully implemented similar restrictions to limit anthropogenic emissions to improve the air quality, as
showed in (Tosca et al., 2017). However, to fully understand aerosol-cloud interaction and to improve air-quality in large metropolitan
areas, AOD observations at global and micro spatial scale are still needed, as well as at regional and urban scale (Miilmenstadt and
Feingold, 2018; Chudnovsky et al., 2014). Currently, punctual high precision AOD measurements are provided by the National
Aeronautic and Space Administration (NASA) AErosol RObotic NETwork (https://aeronet.gsfc.nasa.govAERONET; (Holben et al.,
1998)), a global network of 1000+ permanent worldwide observation sites constituted by homogeneous sunphotometers retrieving
daytime AOD with a temporal resolution of 60 s. However, the network, even if dense, struggles to characterize AOD variability both at
regional and urban scale. For these reasons, in the last decades, scientific developments were encouraged to improve the AOD retrieval
algorithms from multi-sensor multi-spectral instruments aboard satellites. The first satellite-based AOD estimation was possible just
over dark surfaces (e.g., ocean and dark vegetation), which was developed for the National Oceanic and Atmospheric Administration
(NOAA) aboard the Advanced Very High-Resolution Radiometer (AVHRR) (Stow and Chen, 2002; Zhao et al., 2002) and Sea-star
onboard Sea-viewing Wide-Field-of view Sensor (SeaWiFS) (Hsu et al., 2012; Sayer et al., 2012a; Sayer et al., 2012b). Being the
Earth surface very complex because of its heterogeneity, variability, presence of anisotropic bidirectional characters, and high
reflectance, the AOD retrieval is a great challenge. At present, with the new generation of satellite-onboard sensors, the AOD algo-
rithms can be divided into five main categories: 1) Single-view spectral instrument methods; 2) Multiple view-angle spectral instru-
ment methods (Kahn et al., 2009); 3) Polarization AOD algorithms; 4) AOD estimation from lidar instrument; and 5) AOD retrieval
through a multi-sensor synergistic approach. More in detail, the single-view spectral instrument methods include contrast reduction
methods, the Dark Target (DT) algorithm, the Deep Blue (DB) algorithm, the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) algorithm, the Simplified Aerosol Retrieval Algorithm (SARA), and the minimum Reflectance Technique (MRT). Among
those techniques, Griggs (Griggs, 1975) used 0.55, 0.65, and 0.75um wavelengths from ERTS/Landsat-1 aboard MSS (multispectral
scanner) sensor and estimated AOD over ocean based on contrast reduction methods. Differently, Holben (Holben et al., 1992) used the
Normalized Differential Vegetation Index (NDVI) and 3.75 um wavelength from the NOAA aboard AVHRR sensor to retrieve the AOD
over land based on the DT algorithms and contrast reduction methods. Based on the DT algorithm, Ouaidrari and Vermote (Ouaidrari
and Vermote, 1999) also estimated AOD over land using red, blue, and green channels from the Landsat aboard TM sensor.
Furthermore, the DT algorithm was applied to radiance data over land (0.47um, 0.66um, 2.12um) and ocean (0.87um) from Terra and
Aqua aboard MODIS sensor to retrieve AOD (Remer et al., 2005; Levy et al., 2007a; Levy et al., 2007b). Instead, the DB algorithm uses
the radiance data (0.412um, 0.49um, and 0.67um) from MODIS and SeaWiFS sensors to estimate AOD over the bright reflecting surface
(e.g., desert, arid and semi-arid surfaces (Hsu et al., 2004; Hsu et al., 2006)). The MAIAC algorithm uses blue (0.47um), green
(0.550pm), and NIR (2.13um) MODIS bands to retrieve AOD over land (Lyapustin et al., 2011; Lyapustin et al., 2018). Bilal (Bilal et al.,
2013; Bilal et al., 2014) developed the SARA algorithm, based on the MODIS sensor, which can estimate AOD at any wavelength over
land. Finally, the MRT algorithm proposed by Wong (Wong et al., 2011) exploits reflectance observations (at 0.47um, 0.55um, 0.66um)
from the MODIS sensor to retrieve the AOD over land. Furthermore, Grey (Grey et al., 2006) proposed the multi-view angle method to
extract AOD over land using reflectance observations (0.55um, 0.66um, 0.87um, 1.61um) from the AATSR instrument. Thomas
(Thomas et al., 2009) developed a multi-view angle method named Global Retrieval of ATSR Cloud Parameters and Evaluation
(GRAPE) method to estimate AOD at 550 nm over ocean and land using data from ATSR-2 and AATSR sensors. For retrievals over land
and ocean, Diner (Diner et al., 1998; Diner et al., 2006; Diner et al., 2008) and Khan (Kahn et al., 2009) also used the multi-view angle
method to extract AOD (0.446um and 0.558um). Deuze (Deuzé et al., 2001) and Tanre (Tanré et al., 2011) developed the polarization
method to estimate AOD over land and ocean using reflectance data (0.49um, 0.67um, 0.865um) from POLDER sensor. The Selective
Iterated Boundary Location (SIBYL) algorithm was developed to retrieve AOD from two channels at 532 nm and 1064 nm from the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) satellite (Omar et al., 2013; Vaughn et al., 2009; Hu et al., 2009).

Satellite observations from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) MODO04 (0.55 ym) aerosol product
(Levy et al., 2007b) and its higher resolution version Multi-Angle Implementation of Atmospheric Correction (MAIAC) (Chudnovsky
et al.,, 2014) equally cannot provide AOD estimations at sub-kilometer resolutions. The dark target and deep blue MODIS NASA
retrieval algorithms (Remer et al., 2005; Levy et al., 2007a), together with their simplified versions (Bilal et al., 2018), are still strongly
dependent on complex radiative transfer look-up tables (LUT) or surface reflectance. In this paper, we describe the development of the
High-rEsolution satellite image-based Aerosol optical Depth (HEAD) algorithm. This is an image-based estimation method that uses
Kalman filters, similar to a predictive data compression (Bilal et al., 2018) applied to the high-resolution satellite imagery of urban
environments to obtain AOD retrievals in the blue wavelength region at very high spatial resolution (up to 10 m). HEAD algorithm
bridges two different spatial scales, permitting to study AOD variability at local and regional scales. HEAD retrieval algorithm does not
need any prior assumption or radiative transfer look-up table (LUT) and it is independent on surface reflectance because in urban
environment pixels in shadow are much easier to spot. The approach is assessed on four different test cases acquired by Landsat 8
involving two geographical areas in the United States and Thailand. A strong agreement with respect to the ground-based AERONET
measurements is observed on several performance metrics.
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The remaining of the paper is organized as follows. In Section 2, the data used to assess the algorithm performance are described,
while Section 3 is devoted to the theory and assumptions behind the proposed HEAD approach. Furthermore, in Section 4, the
extended Kalman filter for estimating the asymmetry factor is presented. Experimental results are shown in Section 5. Concluding
remarks are drawn in Section 6.

2. Datasets

In this paper, we used the archived Landsat 8 (L8) OLI (Vermote et al., 2016) sensor multispectral images. To validate the algo-
rithm, we follow an approach that prioritizes L8 images where multiple AERONET observations, considered as ground-truth, are
available, instead of validating the algorithm at different sparse uncorrelated observational sites. This approach helps to better un-
derstand the importance of the spatial variability. For this reason, we acquired Landsat OLI images during the Distributed Regional
Aerosol Gridded Observation (DRAGON) campaign that held in Boulder, Colorado (CO) metropolitan area in summer 2014. Moreover,
to strength the validation process, the algorithm was also tested in Northern Thailand (Chiang-Mai metropolitan area), a region prone
to biomass burning events during the monsoon season.

2.1. Satellite data

The multi-spectral Landsat 8 OLI (launched in February 2013) sensor bands have a spatial resolution of 30 m and a revisit time of
16 days. In this study, B1 (coastal) and B2 (blue) Landsat 8 OLI bands (Table 1) are considered to retrieve the AOD at 443 nm and 482
nm, respectively. The retrieved AOD is validated against the Version 3 (V3) Level 2 AERONET measured AOD in the same wavelength
range.

2.2. AERONET aerosol optical depth

Following the approach in (Bilal et al., 2013), HEAD AOD retrievals are validated against AOD measurements taken by 16 AER-
ONET temporary and permanent observational sites deployed in both rural and metropolitan areas around Boulder, CO during the
2014 Discovery-AQ campaign (Crawford and Pickering, 2014) and in a Southeast Asia region subject to massive biomass burning
events during the monsoon season as in Chiang Mai, Thailand. The new Version 3 (V3) Level 2 AERONET data (Giles et al., 2019) are
used for inter-comparison purposes. The AOD data show both high accuracy, with one standard deviation uncertainty of 0.02, and a
positive bias of 0.02 (Giles et al., 2019). AERONET measurement data were obtained averaging the AOD values from 10 min prior to
10 min after satellite overpass. Table 2 shows the corresponding wavelength at which AERONET AOD is retrieved (column 2) to
validate HEAD AODs from bands B1 (coastal) and B2 (blue), respectively. AERONET AOD values are corrected to match B1 and B2
wavelengths.

3. A dark target kalman filter algorithm for AOD estimation

The proposed retrieval algorithm estimates the AOD from the atmospheric path radiance, i.e., the scattered energy by the different
constituents in the atmosphere that reaches the instrument telescope at the top-of-the-atmosphere without being reflected by the
Earth's surface (Lolli et al., 2017). These techniques, which rely upon the path radiance estimation, have been widely used in image
fusion, especially for pansharpening (Vivone et al., 2018a; Vivone et al., 2018b). In order to determine the path radiance and then the
AOD, the original image is divided into patches with a statistically significant number of pixels. The common assumption in dark target
based approaches for AOD retrieval is that the patch includes at least a dark target, i.e., a pixel having a surface reflectance equal to
zero (practically, the dark target energy is only due to the atmosphere). This latter hypothesis seems hard to be verified in practice.
Indeed, it is difficult to be find pure dark targets in nature (even for a limited wavelength range), thus invalidating the use of dark target
based approaches for AOD estimation. For instance, it is worth to be remarked that vegetation and clear water show a reflectance
ranging from 0.01 and 0.03 in the blue band (i.e., different from zero), thus representing “almost dark” targets for that band. Our
approach deals with this crucial issue by relaxing the concept of dark target. In fact, the residual contribution of the surface reflectance
can be considered as an additive noise filtering it out by using a Kalman filter, thus avoiding any interference in the final estimate.
Hence, the proposed approach is independent from the surface reflectance and it is also able to take into account of the presence of the
environment and/or instrumental noise. This is paid by the need of finding more than one “almost dark” object in the patch under

Table 1
Spectral bands, band numbers and central wavelengths [nm] of the L8 sensor.
Spectral band Band number Central wavelength
Coastal aerosol Bl 443.0
Blue B2 482.0
Green B3 561.5
Red B4 645.5
Near infra-red BS 865.0
Short-wave infra-red1 B6 1608.5
Short-wave infra-red2 B7 2200.5
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Table 2

Spectral bands and central wavelengths [nm] of
the L8 data (left column) used in this study and
the corresponding AERONET AOD wavelength
(right column).

L8 OLI AERONET
B1[443.0] 440
B2[482.0] 500

analysis.

The optical image consists of spectral reflectances, pr(4, 05, 6,, ¢), where 4 is the considered wavelength, 6; the solar zenith angle, 6,
the view zenith angle, and ¢ the relative zenith angle. From the top-of-the-atmosphere (TOA) radiance, L1{(4,0,,0,,¢), pr can be
calculated as follows (Bilal et al., 2013):

xd’Ly (4,05, 6,, 4)

2,0,,0,,4) = 1
P800 8) =55 35 cos(0,) W
where d is the Sun-Earth distance in astronomical units and E°(1) is the solar spectral irradiance.
pr is defined as the sum of three terms (Bilal et al., 2013):
/)T(/L, 051 91/1 (/)) = /)A (ia g.uew ¢) + /)Ru's 95’ 9“ ('b) (2)

J”f(pS(lve:v 0147 ¢) )7

where pj4 is the TOA reflectance term accounting for aerosol scattering, pr is the term accounting for molecular scattering (Rayleigh),
and f(-) is a function of the surface reflectance, pg, with f(x) > 0 if x > 0 and f(0) = 0.

The first goal is to isolate the contribution due to p4 in (2). On one hand, pg could be easily calculated and compensated in (2) (Bilal
etal., 2019) using ancillary data. On other hand, no analytical expression exists for ps. Thus, after estimating and then compensating pr
(Bilal et al., 2019), we assume the presence of a dark object in the scene, i.e., an object that has ps(4,6s,6,,¢) = 0, thus having f
(ps(4,05,0,,$)) = 0.

Once identified, the dark object TOA reflectance is only due to pA‘l Thus, the AOD 74(1) can be calculated starting from p, as
follows:

_ 4cos(6;)cos(0,)
- a)OPa(gsy0y7¢)pA(l,9J’9"7¢)7 (3)

74 (
where wy is the single-scattering albedo term, which accounts for aerosol absorption (wy = 1 indicates full scattering aerosols, wy =
0 denotes full absorbing aerosols), P, is the approximated phase function as defined in (Henyey and Greenstein, 1941).

- [g(d)]
{1+ e - 28(2)cos(®) }*

0 is the scattering angle (if the sensor and sun are exactly at nadir, the angle is r), and g(1) is the asymmetry factor that reflects the
wavelength dependent particle scattering energy angular distribution (g(4) = 1 indicates forward scattering, g(4) = 0 denotes ho-
mogeneous scattering and g(1) = — 1 indicates backscattering).

The following assumptions are required in order to retrieve the acquired scenario AOD: i) at least a dark object is acquired, ii) the
aerosol loading can be considered homogeneous over the considered patch, iii) the contribution due to the Rayleigh scattering is
properly compensated from the total TOA reflectance, p7, and iv) the absence of any kind of noise in the TOA reflectance measure-
ments. If all these hypotheses are valid, the dark object can be simply found getting the minimum value of p for all the acquired TOA
reflectances in a given image patch (a subset with a proper size of the whole image). This is because f(x) > 0 if x > 0 and f(0) = 0 and,
hence, a value of ps > 0 can only increase the value of pr. This method will be called Minimum from hereon. By analyzing the four
hypotheses, the third assumption is reasonable. Instead the second assumption can be only locally valid, especially if the acquired
scene contains aerosol emission sources (i.e., the aerosol load should be considered homogeneous into the patch of a given size). Thus,
the selection of the block size is crucial. Indeed, the existing trade-off between the first and the second assumptions is straightforward:
the greater the block, the higher the probability to find a dark object, but the second assumption could be not valid. Instead, the smaller
the block, the higher the probability to get the second assumption verified, but the first assumption could be not valid.

It is worth to be remarked that the first and fourth assumptions are hardly verified in practice having a clear impact on the per-
formance in estimating 74. Thus, in order to consider noisy images with a residual contribution of ps(4,6s,0,,¢) in (2) due to the
consideration of “almost dark” targets, a sequential Bayesian filtering problem is proposed. In particular, we can relax the first
assumption, i.e., assuming that more than one “almost dark” object is present (e.g., the p-th percentile of the distribution of the TOA

Pa(0x76v7¢): (4)

1 Remember that pr can easily be compensated using the formula in (Bilal et al., 2019).
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reflectances is due to “almost dark” objects). It is worth to be noted that “almost dark” objects are easy to find because there are many
examples of natural structures that have the same behavior of “almost dark” objects, but only for a limited wavelength range, e.g., large
water bodies in the near-infrared spectrum or vegetation in the red band. It is even more easier to spot them in the blue wavelength
range because, in the visible spectrum, the atmospheric transmittance is lower at shorter wavelengths with respect to the higher ones.
Moreover, thanks to the use of the proposed Bayesian approach, we can remove the fourth hypothesis (the noise is indeed filtered out
by the Kalman filter). Thus, the “almost dark” object TOA reflectances can be seen as observations in a Bayesian filter, say {z%,
where K is the number of the “almost dark” objects in the acquired scene. The state after k observations, say Xk, is represented by the
AOD, 74(4). The dynamic model is defined as follows:

X = Xg—1 + Wi, %)

where wy ~ 1" (O, aﬁ,) is the process noise that can be modeled as a Gaussian with zero-mean and variance 6w2. The observations {z}1%
are related to the state to be estimated, xi, through the following observation model:

7% = Hxp +ny, (6)

where, following (3), H is set as

_ a)()Pa(H.‘,H,,,dJ)

"~ 4cos(6,)cos(6,) i

2 accounting for instru-

mental noise, uncompensated molecular scattering, and residual surface contributions due to the use of not pure dark objects.

Considering the linearity of the dynamic and observation models and that both the process noise and measurement noise are white,
the optimal filter (in the sense of minimum mean squared error) is the Kalman filter (Bar-Shalom and Li, 1995). Hence, the estimation
of the AOD at step k (after k observations), i.e., ik‘k, can be obtained starting from an initial value, fom, and the related error covariance
matrix, Py, say Pojo, exploiting the following equations (Bar-Shalom and Li, 1995):

and ny ~ .,/Zf"”(O, aﬁ) is the measurement noise that is modeled as a Gaussian with zero-mean and variance o,

1. Prediction step.

X1 = Xk—1fe—1, (€))

Pu1 = Protje1 + 05 9)

2. Update step.

Xk = Xip—1 + Ki(zx — HXip—1), (10)

Py = Pigr — KiSiK7 (11)
where

Ky = Py H'S;! (12)

is the Kalman gain, -7 is the transpose operator and
Sk :HPH]\,IHT+U%. (13)
The final estimate of the AOD, 74(4), is Xxx, namely the state obtained after presenting to the Kalman filter all the K observations (i.
e., the “almost dark” objects in a given patch under analysis).

4. An extended Kalman filter for asymmetry factor estimation

This section is devoted to the presentation of the proposed extended Kalman filter (Bar-Shalom and Li, 1995) for the estimation of
the asymmetry factor. Again, the reflectances provided by the “almost dark” objects, denoted as {zi}1X, become the observations of the
Bayesian filter. Instead, for this problem, the state to be estimated, x, is the previously defined asymmetry factor g(1). Again, the
dynamic model followed by g(4) is the same as the one used to estimate z4(4), i.e.,

X = X1 + Wy, 14)

where wy ~ .1 (0, 6§_w> is the process noise that can be modeled as a zero-mean Gaussian distribution with variance o, w>. The ob-

servations {zx}1X are related to the state to be estimated, x, through the following non-linear observation model:
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e = h(xk)—‘rnk, (15)

where, from (3), (4) and considering xx = g(1),

h(xg) = 20 1-x () (16)
) = Zeos(0)c0@) [1 4 27— 2egeon(@) T

and my ~ Z(O 0@,1) is the measurement noise that can be modeled as a zero-mean Gaussian distribution with variance oy, n® ac-

counting for instrumental noise, uncompensated molecular scattering, and residual surface contributions due to the use of not pure
dark objects. It is worth to be noted that in this case 74(1) represents an input of the g(1) estimation procedure.

Considering that the observation model is non-linear, an Extended Kalman Filter (EKF), which is linearized about an estimate of the
current mean and covariance, is exploited (Bar-Shalom and Li, 1995). In particular, the state observation matrix is defined to be the
following Jacobian, i.e.,

o

H, = a7

)
0 X1

where ?k‘k,l is the state prediction at step k defined as for 74. The matrix Hy is calculated according to (17) and, considering the non-
linear model in (16), we have

Wo
H, = ————14(A)hf,, 18
© duphe A (18
where
hfy = — 2% ihey” —3(1 =X, ) he) [Rur + cos(©) ] (19)
and
hey =1 +§i‘k_] — 2Xyk—1c05(0). (20)

The same Kalman filter prediction equations for Xxx_1 and Pyj_1 in (8) and (9) are exploited in this case. Instead, starting from the
linearization of h(-), Hy in (18), the state update equation becomes (Bar-Shalom and Li, 1995):

Xue = K-t + Kiclze — h(Xep—1) | 2n

where

—1

Ki = Py o H] (HiPy HE + 2, ) (22)

Instead, the covariance matrix update equation is given by

o Coastal
—e—Blue

Lo |

OOooOOOOO

0.6 o
o ©

0 0.1 02 03 04 05 06 07 08 09 1
2
O-Tl

Fig. 1. Multi-variate analysis to optimize the o, parameter for the Chiang Mai dataset acquired on 20 March 2014. The value is independent on the
scenario under analysis.
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P = [1 — KeHi ) Pije1.- (23)

Again, the final estimate of the asymmetry factor, g(1), is represented by Xy, namely, the state after presenting all the K obser-
vations to the EKF.

5. Experimental results

This section is devoted to the presentation of the experimental results about the estimation of the AOD and the related performance
assessment. Furthermore, an example about the estimation of the asymmetry factor is also provided.

As described in Sections 3 and 4, the Kalman filter should be optimized with respect to the parameters that take into consideration
both the observational and instrumental noises. In particular, the 6,? parameter plays a role of crucial importance representing the
additive noise in the observation model in (6). After carried out a multivariate analysis on different LANDSAT 8 OLI images, the results
put in evidence that its optimal value is around 0.2. An instance of the optimization process is shown in Fig. 1 for the Chiang Mai
dataset acquired on 20 March 2014. In particular, the root mean square error metric between the estimated values from the Kalman
filter and the AERONET observations (ground-truth) is minimized. The minimum for both the spectral bands is around 0.2 justifying
this choice. For the other parameters describing the aerosol microphysical properties as g(4) and w((1), required in order to use the
model in (3) and (4), the setting is less crucial. The retrieval is much more sensitive to the asymmetry factor g(1) than the single
scattering albedo wo(4). We arbitrarily fix the values of w((4) and g(1) to make HEAD algorithm independent of the aerosol type. The
values were chosen accordingly with AERONET climatological data. We are aware that this choice can introduce errors especially in
some particular cases, e.g., pure dust or ash outbreaks. However, as shown in the next section, this choice is corroborated by the
excellent agreement obtained between HEAD retrievals and AERONET observation data in two very different regions of the world as
Colorado and Thailand. Thus, default values for (1) and g(1) are exploited in the AOD estimation test cases and reported in Table 3,
which is related to the Chiang Mai test case in Fig. 1. It is worth to be pointed out that Table 3 also shows the values of some angles that
are about the particular acquisition geometry. The setting of these parameters is easy because they can be obtained by accessing to the
meta data of the particular Landsat 8 acquisition.

HEAD performance is assessed together with its effectiveness, against the ground-based AERONET observations, in two locations, i.
e., Colorado (USA) and Thailand. As suggested in (She et al., 2019), the AERONET data are inter-compared with an averaged value of
HEAD over a patch of 300m x 300m image window.

In the next paragraphs, we present the HEAD retrievals on four images, two obtained in Colorado and two in Northern Thailand. For
each case, we reported the geo-referenced images of the LANDSAT 8 OLI TOA reflectances for band B1 and B2, respectively, together
with the names of the AERONET observational stations. Afterwards, HEAD retrievals are reported for each band for the Minimum
method, used as baseline, and the proposed Kalman filter approach exploiting the parameters as in Table 3.

5.1. 02 July 2014, Colorado, USA

In this first case study, the AOD retrieved from HEAD for coastal (B1) and blue (B2) bands is showed. The proposed scenario is the
region around Boulder, CO, during the NASA Discover-AQ campaign. The main study area extends along the Northern Front Range
from the Denver metropolitan area in the south to Fort Collins in the north extending eastward from the mountains as far as Greeley.
This area contains a diverse mixture of air pollution sources that include transportation, power generation, oil and gas extraction,
agriculture, natural vegetation and episodic wildfires. The region being studied often experiences ozone levels in summer that exceed
national US health standards. Ground-level ozone is chemically produced from the combination of nitrogen oxides and hydrocarbon
emissions in sunlight. The Colorado study is the final stop in a series of four field studies by the DISCOVER-AQ team focused on areas
across the United States that routinely experience poor air quality. As shown in Fig. 2, in the analyzed image, nine AERONET stations
are present. Few scattered clouds are contaminating the image and they are visible in the lower left corner. Fig. 3 shows the AOD
estimations of the compared approach for the two analyzed spectral bands. In Table 4, the different AERONET stations show rather
homogeneous values over the region under analysis with AOD values ranging in the interval 0.27-0.36 for band B2. Chatfield Pk
(South-East) is the station recording the lower AOD while Boulder is recording the higher values. HEAD algorithm exploiting Kalman

Table 3

Values used to retrieve the AOD in Fig. 1 for B1 (coastal) and B2
(blue) bands, respectively, for the Chiang Mai dataset acquired
on 20 March 2014.

Parameter Value

05 24.76°

6, 0°

[C] 155.24°

0n” 0.2

0w’ 0.1

p) 0.44-0.48 ym

gD 0.55 (for both B1 and B2)
wo(1) 0.915 (for both B1 and B2)
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Fig. 2. LANDSAT OLI 8 TOA reflectance on 02 July 2014 during the AERONET DRAGON campaign. The names of the AERONET stations used
during the validation process are also reported. Cloud contamination is visible especially in the left lower corner.

filtering is on general underestimating the AERONET values, but still the agreement is very good and much better than using the
Minimum approach. Fig. 2 shows how much the minimum method is under-evaluating the AOD.

5.2. 12 August 2014, Colorado, USA

The second proposed case study is taken again during the NASA Discover-AQ campaign in Bouder region, Colorado. In this day, five
AERONET stations are available for performance assessment, see Fig. 4. The atmosphere is cleaner with respect to 02 July 2014. The
five stations show an AOD ranging from 0.11 to 0.17 for coastal band and 0.09-0.13 for blue band, see Table 5. Boulder is again the
station showing the higher values while Welch, on the Southwest, the lower values. The proposed HEAD approach shows a much better
agreement with AERONET observations with respect to the Minimum. On average, over the five stations, HEAD has a difference of 0.03
for B1 and 0.01 for B2, while for the Minimum it is 0.1 and 0.06, respectively. In Fig. 5, patterns are clearly visible in the AOD with
higher values in the North, clearer zones in the center, and peaks in the Southwest, compatible with local air pollution linked to some
metropolitan areas.

5.3. 20 March 2014, Chiang Mai, Thailand

The considered LANDSAT 8 OLI image shows the Northern Thailand region, centered in the metropolitan area of Chiang Mai on 20
March 2014, see Fig. 6. Chiang Mai is surrounded by forest and agricultural fields. The air pollution occurs in the dry season every year
and biomass burning has been known as a major source. In March, intense episodes of biomass burning events are reported. A smoke
creek is clearly visible in the center of the image (Fig. 7). The region is also affected by pollution related to urban activities, e.g., road
traffic and domestic cooking. The area is not part of any DRAGON campaign, for this reason, only an AERONET station is available. At
glance in Fig. 7, it is clearly visible a smoke creek (red areas) over the Chiang Mai metropolitan area. The red features highlight intense
biomass burning aerosol presence, with very high values reaching peaks of 2.5 for the AOD, while the Northeast part is showing a much
clearer atmosphere of about 0.6. The inter-comparison in Table 6 with the single AERONET station, again, put in evidence how the
HEAD Kalman filter performance is much better with respect to the Minimum, with an error of about 10% against 50%.
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Fig. 3. AOD retrieved from LANDSAT 8 OLI reflectance (Fig. 2) with the Minimum (a) and (b) and the Kalman filter (c) and (d) on 02 July 2014 in
Colorado during the NASA DISCOVERY-AQ campaign.

5.4. 09 March 2016, Chiang Mai, Thailand

The last considered LANDSAT 8 OLI image represents another biomass burning episode in Chiang Mai region on 09 March 2016, as
shown Fig. 8. In this case, the aerosol loading is lower with respect to 20 March 2014, but several aerosol sources are present in the
region. In the Southwest, aerosol layers reaching very high values of AOD, up to 2, are present, as shown in Fig. 9. In the center of the
figure, instead, a region with cleaner air is clearly visible. Again, Table 7 reports how much HEAD is closer to the AERONET
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Table 4
Colorado dataset (date: 02 July 2014). 5p; and 8, are the absolute errors between the estimated AOD and the reference AERONET observations. Best
results are in boldface.

AERONET KF Minimum

Bl B2 Bl B2 dp1 Op2 Bl B2 dp1 Op2
DRAGON Boulder 0.357 0.301 0.268 0.280 0.090 0.021 0.314 0.252 0.043 0.049
DRAGON Chatfield Pk 0.269 0.227 0.262 0.265 0.006 0.039 0.036 0.041 0.232 0.185
DRAGON Denver La Casa 0.340 0.285 0.275 0.280 0.065 0.005 0.050 0.056 0.289 0.229
DRAGON Fort Collins 0.309 0.258 0.274 0.278 0.035 0.020 0.041 0.046 0.268 0.212
DRAGON NREL Golden 0.315 0.265 0.269 0.273 0.047 0.008 0.045 0.051 0.270 0.214
DRAGON Rocky Flats 0.292 0.245 0.267 0.272 0.025 0.027 0.042 0.048 0.250 0.197
DRAGON Welch 0.302 0.252 0.275 0.270 0.032 0.023 0.045 0.053 0.256 0.199
NEON CVALLA 0.333 0.283 0.267 0.271 0.066 0.012 0.044 0.049 0.289 0.233
Table Mountain 0.332 0.280 0.267 0.272 0.065 0.008 0.043 0.050 0.289 0.230
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Fig. 4. LANDSAT OLI 8 TOA reflectance on 12 August 2014 during the AERONET DRAGON campaign. The names of the AERONET stations used
during the validation process are also reported.

Table 5
Colorado dataset (date: 12 August 2014). 5p; and &g, are the absolute errors between the estimated AOD and the reference AERONET observations.
Best results are in boldface.

AFRONET KF Minimum

Bl B2 Bl B2 Sp1 Spa Bl B2 1 g2
BSRN BAO Boulder 0.167 0.136 0.121 0.132 0.047 0.003 0.055 0.069 0.112 0.067
DRAGON Aurora East 0.148 0.120 0.113 0.124 0.035 0.005 0.045 0.056 0.102 0.064
DRAGON Denver La Casa 0.154 0.122 0.117 0.123 0.037 0.001 0.047 0.052 0.107 0.070
DRAGON Welch 0.116 0.094 0.112 0.119 0.004 0.025 0.043 0.051 0.073 0.043
NEON CVALLA 0.151 0.128 0.116 0.118 0.034 0.010 0.047 0.054 0.103 0.074
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Fig. 5. AOD retrieved from LANDSAT 8 OLI reflectance (Fig. 4) with the Minimum (a) and (b) and the Kalman filter (c) and (d) on 12 August 2014
in Colorado during the NASA DISCOVERY-AQ campaign.

observation taken as reference, with an improvement of 40% with respect to the Minimum.
5.5. Overall performance using AERONET ground-based stations

For the case studies analyzed in the previous sections, we report in Table 8 the overall performance of the HEAD algorithm with
respect to AERONET observations considered as reference. We used three different metrics for evaluation. The first index is the Root

Mean Square Error (RMSE) in (24), which assumes that the differences between the satellite retrieval method and ground-based
observations are normally distributed (Lolli et al., 2013).

11
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Fig. 6. LANDSAT OLI 8 TOA reflectance on 20 March 2014 in Chiang Mai, Thailand, during an intense biomass burning event.
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Fig. 7. AOD retrieved from LANDSAT 8 OLI reflectance (Fig. 6) with the Minimum (a) and (b) and the Kalman filter (c) and (d) on 20 March 2014 in
Chiang Mai, Northern Thailand, during an intense biomass burning event.
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Table 6
Chiang Mai dataset (date: 20 March 2014). 5p; and §p» are the absolute errors between the estimated AOD and the reference AERONET observations.
Best results are in boldface.

AERONET KF Minimum
Bl B2 Bl B2 8p1 Sp2 Bl B2 Sp1 Sp2
Chiang Mai 1.290 1.060 1.214 1.263 0.076 0.203 2.311 2.382 1.021 1.322
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012
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Fig. 8. LANDSAT OLI 8 TOA reflectance on 09 March 2016 in Chiang Mai, Thailand, during an intense biomass burning event.

" - — AODsat;)*
RMSE — \/ZII(AODaero, ODsat;) ’ 24)

n

where the RMSE is the average deviation between the i-th AERONET AOD (AODaero;) and the satellite retrieved AOD (AODsat;) for the
pixel containing the AERONET station, with n the total measurement number. The ideal RMSE value is zero.

The second index is the Mean Absolute Error (MAE) in (25). The difference with respect to the RMSE is that the MAE is less sensitive
to large errors. The RMSE is always greater or equal to MAE.

1 n
MAE = - > | AODaero; — AODsat; | . (25)
naa
The ideal MAE value is zero. The last metric is the Root Mean Bias (RMB) in (26):
RMB = ———— (26)

where - is the average operator.

If the RMB values are <1, we are in presence of underestimation, while the opposite is true for values >1. The ideal value is 1.

The outcomes in Table 8 are obtained averaging the results over Bl and B2 bands. Both for Kalman filter and the Minimum, the
RMSE and the MAE highlight that error variance is very small. From the RMB, instead, it can be noticed that the Minimum is strongly
underestimating the AOD AERONET values in Colorado, USA, while is strongly overestimating the ground-based observations in
Thailand, whereas Kalman filter RMB values are close to 1 for both the scenarios indicating that the HEAD approach strongly improves
the AOD retrieval based on the Minimum.

Finally, Fig. 10 depicts a comprehensive validation using all the AERONET observations for all the images. Overall, the HEAD
(black dots, black line) shows a very good agreement with the ground-based observation for both coastal and blue bands. The green
and the black optimal lines are very close and almost superimposed, while the red line, representing the Minimum, shows substantial
differences. (See Fig. 11.)

6. Concluding remarks
Aerosol emissions play a fundamental role in modulating incoming solar radiation (direct effects), in acting as ice-nuclei for cloud
formation (indirect effects) and in changing the thermodynamic properties of the atmospheric column (semi-direct effects). Moreover,

natural and anthropogenic aerosol advections over large metropolitan areas can exacerbate air-pollution and promote haze formation,
a threat for transports and population. For these reasons, monitoring the aerosol loading is of fundamental importance, especially in

13
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Fig. 9. AOD retrieved from LANDSAT 8 OLI reflectance (Fig. 8) with the Minimum (a) and (b) and the Kalman filter (c) and (d) on 09 March 2016 in
Chiang Mai, Northern Thailand, during an intense biomass burning event.

Table 7
Thai dataset (date: 09 March 2016). 5p; and &g, are the absolute errors between the estimated AOD and the reference AERONET observations. Best
results are in boldface.

AERONET KF Minimum
Bl B2 Bl B2 8p1 Sp2 Bl B2 Sp1 Sp2
Chiang Mai 1.300 1.100 1.188 1.204 0.112 0.104 1.821 1.852 0.521 0.752

Table 8
RMSE, MAE, RMB are reported in this table for the four analyzed test cases in Colorado (USA) and Thailand. The analysis puts in evidence how the
proposed Kalman filter (HEAD) approach improves the satellite retrieval based on the Minimum. Best results are in boldface.

Date KF Minimum
RMSE MAE RMB RMSE MAE RMB
Cco 2014-07-02 0.035 0.033 0.940 0.240 0.240 0.160
2014-08-12 0.023 0.020 0.900 0.088 0.082 0.390
Thai 2014-03-20 0.140 0.140 1.060 1.170 1.170 2.020
2016-09-03 0.110 0.110 1.010 0.640 0.640 1.540
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Fig. 10. AOD retrievals from the HEAD and the Minimum algorithms are validated against AERONET sun-photometer observations. Red dots refer
to the Minimum measurements, instead, black dots are related to the HEAD. The solid lines are about the application of regression to measurements.

The results show an improvement when HEAD (Kalman Filter; KF) is used. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 11. Asymmetry parameter retrieval for B1 (coastal) and B2 (blue) bands, respectively, on 02 July 2014 in Boulder, Colorado (USA) region. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

wild and remote regions. In-situ observations, despite a high temporal resolution, are sparse and not sufficient to characterize aerosol
emissions at large scale. On other hand, the AOD, a comprehensive parameter directly related to the aerosol loading, is only available
at a global scale exploiting satellite observations. In this work, we developed an algorithm based on Kalman filter to directly retrieve
the AOD from high resolution multispectral satellite images in the blue wavelengths, independently on surface reflectance, aerosol
type and without using look-up-tables or complex radiative transfer models. The proposed algorithm is important as it fills a gap to
assess aerosol loading at regional scale. It has been tested for two different scenarios as in Colorado, during the NASA Discover-AQ
campaign where a dense network of AERONET sunphotometer were deployed and taken as reference, and in Northern Thailand
during intense biomass burning events. Despite the different scenarios, the inter-comparison put in evidence an excellent agreement
between AERONET observational data and the algorithm retrieval. A further test case has also been presented showing the possibility
of estimating (exploiting the proposed extended Kalman filter) the asymmetry factor parameter when AOD observations are available
from ground-based stations. In future research, very high- resolution images will be used to provide AOD at 10 m resolution or finer.
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